模拟退火算法讲解
- 格式:pptx
- 大小:284.32 KB
- 文档页数:30
模拟退火算法解决优化问题模拟退火算法(Simulated Annealing,SA)是一种基于模拟固体退火过程的全局优化算法,被广泛应用于解决各种优化问题。
它的基本思想源于固体退火过程中的原子热运动,通过模拟原子在退火过程中的状态变化,寻找全局最优解。
本文将介绍模拟退火算法的基本原理、算法流程以及在解决优化问题中的应用。
一、模拟退火算法的基本原理模拟退火算法的基本原理来自于固体物理学中的固体退火过程。
在固体退火过程中,固体在高温下加热后逐渐冷却,原子会随着温度的降低而逐渐趋于稳定状态。
类比到优化问题中,算法在搜索过程中允许一定概率接受比当前解更差的解,以避免陷入局部最优解,最终达到全局最优解。
二、模拟退火算法的基本步骤1. 初始化:随机生成初始解,并设定初始温度和终止条件。
2. 选择邻域解:根据当前解生成邻域解。
3. 接受准则:根据一定概率接受邻域解,更新当前解。
4. 降温策略:根据降温策略逐渐降低温度。
5. 终止条件:达到终止条件时停止搜索,输出最优解。
三、模拟退火算法的应用模拟退火算法在解决各种优化问题中都有广泛的应用,包括组合优化、函数优化、图像处理等领域。
下面以组合优化问题为例,介绍模拟退火算法的具体应用。
1. 旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径经过所有城市并回到起点。
模拟退火算法可以通过不断调整路径来寻找最优解。
2. 排课问题:在学校排课过程中,需要合理安排老师和班级的上课时间,避免冲突和空闲时间过长。
模拟退火算法可以优化排课方案,使得课程安排更加合理。
3. 装箱问题:在物流领域中,需要将不同大小的物品合理装箱,使得装箱空间利用率最大化。
模拟退火算法可以帮助优化装箱方案,减少空间浪费。
四、总结模拟退火算法作为一种全局优化算法,具有较好的全局搜索能力和收敛性。
通过模拟退火算法,可以有效解决各种优化问题,得到较优的解决方案。
在实际应用中,可以根据具体问题的特点调整算法参数和策略,进一步提高算法的效率和准确性。
模拟退火算法简单易懂的例子
模拟退火算法是一种基于概率的算法,来源于固体退火原理。
下面以一个简单的例子来说明模拟退火算法:
想象一个有十个元素的数组,代表一个能量状态,每个元素都有一个能量值。
开始时,所有元素都处于最高能量状态。
我们的目标是找到最低能量的状态,即最优解。
模拟退火算法的工作原理如下:
1. 从最高温度开始,逐渐降低温度。
在每个温度下,算法会尝试各种元素的组合方式,并计算其能量。
2. 在温度较高时,算法会尝试各种组合,并接受能量增加的“移动”,因为这些增加的能量对应于更高的温度,所以被接受的概率更大。
3. 随着温度的降低,算法开始更多地考虑能量的减少。
如果一个状态比前一个状态的能量更低,那么它一定会被接受。
但如果一个状态的能量比前一个状态的能量高,那么它会被以一定概率接受。
这个概率随着温度的降低而减小。
4. 重复上述过程,直到达到终止温度。
这时,算法已经找到了最低能量的状态。
模拟退火算法可以找到全局最优解,而不是局部最优解。
这是因为算法在搜索过程中会接受一些次优解(即能量增加的“移动”),以便跳出局部最优解,探索更广阔的解空间。
以上内容仅供参考,如果需要更多信息,建议查阅相关文献或咨询专业人士。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E 为温度T 时的内能,ΔE 为其改变量,k 为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E 模拟为目标函数值f,温度T 演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t 及其衰减因子Δt、每个t 值时的迭代次数L 和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T 值的迭代次数L(2) 对k=1,……,L 做第(3)至第6 步:(3)产生新解S′(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7)T 逐渐减少,且T->0,然后转第2 步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法模拟退火算法(Simulated Annealing)是一种经典的优化算法,常用于解决复杂的优化问题。
它的灵感来自于金属退火的过程,通过降温使金属内部的不稳定原子重新排列,从而获得更优的结构。
在算法中,通过接受一定概率的差解,模拟退火算法能够逃离局部最优,并最终找到全局最优解。
在MATLAB中,我们可以使用以下步骤来实现模拟退火算法:1.初始化参数:设定初始温度T0、终止温度Tf、温度下降速率α、算法运行的迭代次数等参数,并设定当前温度为T0。
2.生成初始解:根据问题的要求,生成一个初始解x。
3. 迭代优化:在每个温度下,进行多次迭代。
每次迭代,随机生成一个新的解x_new,计算新解的目标函数值f_new。
4. 判断是否接受新解:根据Metropolis准则,判断是否接受新解。
如果新解比当前解更优,则直接接受;否则,以概率exp((f_current - f_new) / T)接受新解。
5.更新解和温度:根据前一步的判断结果,更新当前解和温度。
如果接受了新解,则将新解作为当前解;否则,保持当前解不变。
同时,根据设定的温度下降速率,更新当前温度为T=α*T。
6.重复步骤3-5,直到当前温度小于终止温度Tf。
7.返回最优解:记录整个迭代过程中的最优解,并返回最优解作为结果。
以下是一个简单的示例,演示如何使用MATLAB实现模拟退火算法解决旅行商问题(TSP)。
```matlabfunction [bestPath, bestDistance] =simulatedAnnealingTSP(cityCoordinates, T0, Tf, alpha, numIterations)numCities = size(cityCoordinates, 1);currentPath = randperm(numCities);bestPath = currentPath;currentDistance = calculateDistance(cityCoordinates, currentPath);bestDistance = currentDistance;T=T0;for iter = 1:numIterationsfor i = 1:numCitiesnextPath = getNextPath(currentPath);nextDistance = calculateDistance(cityCoordinates, nextPath);if nextDistance < currentDistancecurrentPath = nextPath;currentDistance = nextDistance;if nextDistance < bestDistancebestPath = nextPath;bestDistance = nextDistance;endelseacceptanceProb = exp((currentDistance - nextDistance) / T); if rand( < acceptanceProbcurrentPath = nextPath;currentDistance = nextDistance;endendendT = alpha * T;endendfunction nextPath = getNextPath(currentPath)numCities = length(currentPath);i = randi(numCities);j = randi(numCities);while i == jj = randi(numCities);endnextPath = currentPath;nextPath([i j]) = nextPath([j i]);endfunction distance = calculateDistance(cityCoordinates, path) numCities = length(path);distance = 0;for i = 1:numCities-1distance = distance + norm(cityCoordinates(path(i),:) - cityCoordinates(path(i+1),:));enddistance = distance + norm(cityCoordinates(path(numCities),:) - cityCoordinates(path(1),:)); % 加上回到起点的距离end```以上示例代码实现了使用模拟退火算法解决旅行商问题(TSP)。
模拟退火算法公式模拟退火算法是一种基于物理退火过程的优化算法,最早由美国物理学家,冯·诺依曼奖得主,以及诺贝尔物理学奖得主南部-安丘因于1953年提出。
它模拟了固体物质退火时的行为,通过对潜在解空间的搜索,寻找全局最优解。
在固体退火过程中,物质从高温到低温逐渐冷却,通过不断调控温度,使系统的能量逐渐减少。
模拟退火算法的核心思想正是基于这一过程,通过一系列接受概率较低的状态转移,来跳出局部最优解,最终找到全局最优解。
模拟退火算法具体流程如下:1. 随机初始化初始解,并设定初始温度和终止温度。
2. 在每个温度下,通过随机扰动当前解,产生一个新解。
3. 计算新解的函数值和当前解的函数值之差△E。
4. 如果△E ≤ 0,则接受新解作为当前解。
5. 如果△E > 0,则以一定概率接受新解。
该概率由Metropolis 准则决定,概率公式为 P = e^(-△E/T)。
6. 逐渐降低温度,根据设定的降温速率进行迭代搜索,直到达到终止温度。
值得注意的是,温度决定了接受不良解的概率,随着退火过程的进行,温度逐渐降低,接受不良解的概率减小,使得算法更加倾向于收敛到全局最优解。
模拟退火算法在全局优化问题中有着广泛的应用。
例如,在旅行商问题中,通过模拟退火算法可以找到最优的旅行路径,从而使得旅行商的行程最短。
在网络设计中,模拟退火算法可以优化网络拓扑结构,提高数据传输效率。
在机器学习中,模拟退火算法可以用于参数调优,帮助优化模型的性能。
然而,模拟退火算法也存在着一定的局限性。
首先,算法的运行时间较长,需要大量的迭代次数和计算资源。
其次,在应对高维问题和非凸问题时,算法可能会陷入局部最优解,无法得到全局最优解。
因此,在实际应用中,我们需要根据问题的特点选择合适的算法,并结合其他优化方法来提高解的质量。
综上所述,模拟退火算法是一种具有指导意义的全局优化算法。
通过模拟退火过程,可以在搜索解空间时避免陷入局部最优解,并找到全局最优解。
模拟退火算法(Simulated Annealing)是一种随机优化算法,其基本思想是将问题转化为能量最小化问题,在解空间中以概率形式进行搜索空间,从而达到全局优化的目的。
一、算法原理的原理源于冶金学中的“模拟退火”过程。
在冶金学中,模拟退火是一种将材料加热到足够高的温度,使得原子以无序方式排列,并随着温度逐渐下降,原子逐渐重新排列成为有序状态的过程。
类似地,在算法中,模拟退火过程由三个参数组成:初始温度、降温速率和停止温度。
算法从一个初始解开始,随机产生新解,并计算新解与当前解之间的能量差。
如果新解的能量小于当前解的能量,则直接接受新解,如果新解的能量大于当前解的能量,则以一定的概率接受新解,以避免过早陷入局部最优解。
通过不断降温的过程,在搜索空间中进行随机跳跃,并慢慢收敛到全局最优解。
二、算法流程的流程如下:1. 设定初始温度、降温速率和停止温度。
2. 随机生成一个初始解,并计算其能量。
3. 生成一个新解,并计算新解与当前解之间的能量差。
4. 如果新解的能量小于当前解的能量,则接受新解。
5. 如果新解的能量大于当前解的能量,则以一定的概率接受新解。
6. 降温,更新温度。
7. 判断算法是否收敛,如果未收敛则返回步骤2。
三、应用场景广泛应用于组合优化问题、图论问题、生产调度问题等领域。
例如:1. 旅行商问题:在旅行商问题中,可以通过搜索空间中随机跳跃的方式找到最短路径,从而达到全局最优解。
2. 排课问题:在学校的排课问题中,可以帮助学校最优化考虑不同的课程安排,得到最优化的课程表。
3. 生产调度问题:在生产调度问题中,可以帮助生产企业在限制资源的条件下找到最优化的生产方案,提高生产效率。
四、优缺点作为一种优化算法,具有以下优点:1. 全局搜索能力强:能够在搜索空间中进行全局搜索,并趋向于全局最优解。
2. 算法收敛性好:在算法搜索到解后,能够很快地达到最优解,收敛速度较快。
3. 收敛到局部最优解的可能性较小:由于算法在跳跃过程中具有随机性,因此收敛到局部最优解的可能性较小。
模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。
它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。
首先,模拟退火算法需要生成一个初始解。
初始解是随机生成的,它代表了问题的一个可能解。
初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。
然后,算法需要定义一个邻域结构来解空间。
邻域结构定义了问题的解的相邻解之间的关系。
在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。
在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。
接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。
如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。
这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。
在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。
温度参数的降低速率决定了算法的接受较差解的概率的减小速率。
温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。
总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。
它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。
但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。
模拟退化算法一、引言模拟退火算法是一种基于概率的全局优化算法,它模拟了物质在高温下退火冷却的过程,通过不断降温来达到寻找全局最优解的目的。
模拟退火算法的应用范围非常广泛,包括图像处理、机器学习、组合优化等领域。
本文将介绍模拟退火算法的基本原理、优缺点以及应用实例。
二、模拟退火算法的基本原理模拟退火算法是一种基于概率的全局优化算法,它通过模拟物质在高温下退火冷却的过程来寻找全局最优解。
算法的基本流程如下:1. 初始化温度T和初始解x;2. 在当前温度下,随机生成一个新解x';3. 计算新解x'的目标函数值f(x')和当前解x的目标函数值f(x);4. 如果f(x')<f(x),则接受新解x';5. 如果f(x')>f(x),则以一定概率接受新解x',概率为exp(-(f(x')-f(x))/T);6. 降低温度T,重复步骤2-5,直到温度降至最低。
三、模拟退火算法的优缺点模拟退火算法具有以下优点:1. 全局搜索能力强:模拟退火算法能够在全局范围内搜索最优解,避免了局部最优解的陷阱;2. 可以处理非线性问题:模拟退火算法可以处理非线性问题,如组合优化问题、图像处理问题等;3. 算法简单易实现:模拟退火算法的算法流程简单,易于实现。
但是,模拟退火算法也存在以下缺点:1. 算法收敛速度慢:模拟退火算法需要不断降温才能达到全局最优解,因此算法收敛速度较慢;2. 参数设置困难:模拟退火算法需要设置初始温度、降温速度等参数,参数设置不当会影响算法的效果;3. 算法结果不稳定:模拟退火算法的结果受到随机因素的影响,因此算法结果不稳定。
四、模拟退火算法的应用实例模拟退火算法在实际应用中具有广泛的应用,以下是几个应用实例:1. 组合优化问题:模拟退火算法可以用于解决组合优化问题,如旅行商问题、背包问题等;2. 图像处理问题:模拟退火算法可以用于图像处理问题,如图像分割、图像去噪等;3. 机器学习问题:模拟退火算法可以用于机器学习问题,如神经网络训练、参数优化等。
一. 爬山算法( Hill Climbing )' b2 m3 p" g. ]! u9 a* }2 ~' o% p$ l1 [8 n. D, q0 |" C介绍模拟退火前,先介绍爬山算法。
爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
. K3 \$ @$ a$ V' {& \! k- c- m* U8 l8 J, R) j' a 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。
如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
8 V: I9 Q7 h5 @3 j' K, s1 J& ^ H9 y4 ~3 M) {9 C/ D* Y# {0 E$ a$ }二. 模拟退火(SA,Simulated Annealing)思想$ Q$ Q: y7 N0 q9 w7 S$ M6 u% |- G) A" \) P1 V 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。
模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。
以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。
也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
7 `4 V! }4 U0 t1 h9 k0 ]) F* \4 S2 S' ]/ O7 d( e: }* W/ o) N0 v 模拟退火算法描述:! `. j) x$ t6 o' v7 S, O$ V3 ~' R1 f2 H% k$ |& n若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动. f6 S. R3 ?' ^ e! `/ c) E% J1 c" ^' m5 c若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)% }1 M# [8 }" Q* R+ ~7 O6 N8 W( L8 N8 k这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
模拟退火算法讲义1.基本思想2.算法流程(1)初始化初始解,设为当前解;(2)设置初温T和下降速度参数α;(3)在当前温度下进行随机邻域,寻找更好的解;(4)每次得到新解后,计算其目标函数值与当前解的目标函数值之差ΔE;(5)若ΔE小于等于0,或满足一定的概率条件P(ΔE,T),则接受新解作为当前解;(6)降低温度,即T=T*α;(7)若满足停止条件,则算法终止,否则回到步骤(3);(8)输出当前解作为最优解。
3.关键问题(1)初始温度的选择:初始温度过高可能导致无法跳出局部最优解,而初始温度过低可能导致无法找到全局最优解。
一种常用的方法是通过多次试验来确定初始温度,使其能够在相对较短的时间内找到一个较优解。
(2)温度下降速度的选择:温度下降速度决定了算法的收敛速度,过快的下降速度会导致陷入局部最优解,而过慢的下降速度则会使算法收敛速度过慢。
通常可以通过实验来确定一个适合的下降速度参数α。
(3)邻域算子的选择:邻域算子是指在当前解的邻域内进行,从而寻找更好的解。
常见的邻域算子有随机扰动法、交换相邻解法等。
具体选择哪种算子需要根据具体问题的特点来确定。
4.算法优缺点(1)算法具有较好的全局能力,能够跳出局部最优解,具有一定的随机性;(2)算法易于实现,并且没有太多的问题依赖,适用于各种类型的问题;(3)由于算法采用随机策略,所以有一定的概率陷入局部最优解,需要调节参数来平衡全局和局部的能力。
总结起来,模拟退火算法是一种基于随机的启发式算法,通过温度的不断降低来达到在解空间中全局最优解的目的。
虽然算法具有较好的全局能力,但在实际应用中还需要根据具体问题的特点来选择合适的参数和邻域算子,以取得较好的效果。
模拟退⽕算法详解博客⾷⽤更佳模拟退⽕算法(Simulate Anneal ,SA )是⼀种通⽤概率演算法,⽤来在⼀个⼤的搜寻空间内找寻命题的最优解。
模拟退⽕是由S .Kirkpatrick ,C .D .Gelatt 和M .P .Vecchi 在1983年所发明的。
V .Cern 和yacute 在1985年也独⽴发明此演算法。
模拟退⽕算法是解决TSP 问题的有效⽅法之⼀。
TSP 是啥我们等会再解释(就是⼀道例题,给个link:,有兴趣的童鞋可以先看着)模拟退⽕的出发点是基于物理中固体物质的退⽕过程与⼀般组合优化问题之间的相似性。
模拟退⽕算法是⼀种通⽤的优化算法,其物理退⽕过程由加温过程、等温过程、冷却过程这三部分组成。
---引⾃《百度百科》关于物理呢,本蒟蒻就不做过多的解释了.算法原理就是⼀个物体,在降温的过程中,根据热⼒学规律并结合计算机对离散数据的处理,在温度为T 时,出现能量差为ΔE 的降温的概率为P (ΔE )这个P 函数我们在下⼀个部分给⼤家解释.算法解析(现在我们要求这个函数图像的最⼩值)附图:要开始写这个算法,我们就要引⼊⼀个叫做Metropolis 接受准则的玩意⼉了.(英语⼤佬们不要把它当成那个⼤都会了...)P =1(ΔE >0)P =exp (−ΔEkT )(ΔE <0)显然如果 ΔE 为正的话转移是⼀定会成功的, 但是对于 ΔE <0 我们则以上式中计算得到的概率接受这个新解.然后我们维护温度 T 即可. 这⾥我们有三个参数: 初温 T b , 降温系数 D , 终温 T e⼀般 T b 是个⽐较⼤的数,取1000000, D 是个接近 1 但是⼩于 1 的值,⼀般取0.97, T e 是个接近 0 的正值, ⼀般取1−14即1e −14.⾸先让温度 T =T b , 然后进⾏⼀次转移尝试, 然后让 T ∗=D .当 T <T e 时模拟退⽕过程结束, 当前解作为最优解.转移转移是整个模拟退⽕算法的重头戏.它通过当前温度进⾏⼀定程度的扰动,产⽣新解.其实扰动也并不复杂,当时学习这种算法时就不懂扰动是什么.它其实就是当前温度T 0,乘以⼀个随机数R 加在原解上得到新解.很多同学可能看不懂.现在我们假设估价函数为f (x ),x 为原解,我们要让函数值最⼩.那么新解就是x 1=x +T 0∗R (R ∈[−1,0)∪(0,1])那么ΔE =f (x )−f (x 1)此处千万不要把x 和x 1记反了,要不然这样使⽤Metrospolis 准则就会出错.我们在⼀次模拟退⽕完成后,可以再多来⼏次怎么⽣成R 呢,有些同学可能会有问题,具体我们可以⽤记得要⽤初始化例题现在,你应该已经了解了模拟退⽕算法了这⾥有⼏道例题TSP 问题没错,就是⽂章开头提到的那个TSP 问题具体请百度平衡点具体⾃⼰可以在洛⾕上看附带代码(double)(rand()-rand())/RAND_MAXsrand(time(NULL))#include<bits/stdc++.h>#define LD long doubleusing namespace std;/***** 模拟退⽕控制 *****/const LD D=0.97,EPS=1e-14;int times=10;/***** ============ *****/int n;int w[1010],x[1010],y[1010];LD bx=0,by=0;LD cur_ans,new_ans,best;inline LD Rand(){ //产⽣-1到1闭区间(除去0)的随机数return (LD)(rand()-rand())/((LD)RAND_MAX);}LD calc(LD cx,LD cy){ //估价函数LD ret=0;for(int i=1;i<=n;i++){LD dx=cx-x[i],dy=cy-y[i];ret+=sqrt(dx*dx+dy*dy)*w[i];}return ret;}int main(){srand(time(NULL)); cin>>n;Processing math: 100%cin>>n;for(int i=1;i<=n;i++){cin>>x[i]>>y[i]>>w[i];bx+=x[i];by+=y[i];}bx/=n;by/=n; //初始解best=cur_ans=calc(bx,by);while(times--){ //控制多次退⽕cur_ans=best;LD cx=bx,cy=by;for(LD T=1000000;T>EPS;T*=D){ //模拟退⽕LD nx=cx+T*Rand(),ny=cy+T*Rand();new_ans=calc(nx,ny);if(best>new_ans){ //更新最优解best=new_ans;bx=nx,by=ny;}if(cur_ans>new_ans||exp((cur_ans-new_ans)/T)>(LD)rand()/RAND_MAX){ //更新当前解并转移 cur_ans=new_ans;nx=cx,ny=cy;}}}cout<<fixed<<setprecision(3)<<bx<<" "<<by<<endl;return 0;}。
模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。
用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。
退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。
二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。
模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
模拟退火算法模拟退火算法的基本思想将一个优化问题比拟成一个金属物体,将优化问题的目标函数比拟成物体的能量,问题的解比拟成物体的状态,问题的最优解比拟成能量最低的状态,然后模拟金属物体的退火过程,从一个足够高的温度开始,逐渐降低温度,使物体分子从高能量状态缓慢的过渡到低能量状态,直至获得能量最小的理想状态为止,从而得到优化问题的全局最优解。
求解模拟退火算法描述如下:(1) 解空间解空间S 可表示为{}1,2,,n ⋅⋅⋅的所有固定起点和终点的循环排列集合,即()(){}{}1121,,1,,,2,3,,1n n n S n n ππππππ-=⋅⋅⋅=⋅⋅⋅⋅⋅⋅-=为的循环排列,,其中:每一个循环排列表示侦察2n -个目标的一个回路,i j π=表示在第1i -次侦察目标j ,初始解可选为(1,2,,)n ⋅⋅⋅,这里先使用蒙特卡洛方法求得一个较好的初始解。
(2) 目标函数目标函数(或代价函数)为侦察所有目标的路径长度。
要求 1111min (,,),i i n n i f d ππππ+-=⋅⋅⋅=∑而一次迭代由下列三步构成。
(3) 新解的产生。
设上一步迭代的解为1111111u u u v v v w w w n πππππππππππ-+-+-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①2变换法。
任选序号,u v ,交换u 和v 之间的顺序,变成逆序,此时的新路径为11111u v v u u v n ππππππππ-+-+⋅⋅⋅⋅⋅⋅⋅⋅⋅②3变换法。
任选序号,u v 和w ,将u 和v 之间的路径插到w 之后,对应的新路径为1111.u v w u v w n ππππππππ-++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅(4) 代价函数差对于2变换法,路径差可表示为1111()()u v u v u u v v f d d d d ππππππππ-+-+=+-+(5) 接受准则1,0exp(),0f P f T f <⎧=⎨-≥⎩ 如果0f ∆<,则接受新的路径;否则,以概率exp()f -∆接受新的路径,即用计算机产生一个[]0,1区间上均匀分布的随机数rand ,若exp()rand f T ≤-∆则接受。
模拟退火遗传算法模拟退火遗传算法是一种结合了模拟退火算法和遗传算法的优化算法。
它通过模拟物理退火过程和基因遗传进化过程,来寻找最优解。
在实际应用中,它被广泛应用于组合优化、函数优化、图像处理等领域。
一、模拟退火算法1.1 原理模拟退火算法是一种基于概率的全局寻优方法。
其原理是通过随机选择一个解,并以一定的概率接受该解或者以较小的概率接受劣解,从而达到全局最优解。
1.2 步骤(1)初始化初始温度T0和初始解x0;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的解x';(3)计算新旧两个解之间的差异ΔE,并根据Metropolis准则决定是否接受新解;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。
1.3 优缺点优点:可以跳出局部最优,具有全局搜索能力;易于实现;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;需要调节参数。
二、遗传算法2.1 原理遗传算法是一种基于生物进化思想的优化算法。
其原理是通过模拟自然界中的进化过程,将问题转换为一个个个体,通过交叉、变异等操作来产生新的个体,并筛选出适应度高的个体,从而达到全局最优解。
2.2 步骤(1)初始化种群;(2)计算每个个体的适应度;(3)根据适应度选择优秀的个体进行交叉和变异操作;(4)重复步骤(2)到(3),直至达到停止条件。
2.3 优缺点优点:能够跳出局部最优,具有全局搜索能力;易于并行化处理;不需要求导数。
缺点:需要大量迭代次数;结果具有一定的随机性;容易陷入早熟现象。
三、模拟退火遗传算法3.1 原理模拟退火遗传算法是将模拟退火和遗传算法结合起来使用。
其原理是在模拟退火过程中引入了交叉和变异操作,从而增加了搜索空间,并提高了搜索效率。
3.2 步骤(1)初始化初始温度T0和初始种群;(2)对于每个温度T,进行多次迭代,每次迭代生成一个新的种群;(3)计算新旧两个种群之间的差异,并根据适应度选择优秀的个体进行交叉和变异操作;(4)降低温度T,并重复步骤(2)到(3),直至达到停止条件。