SMT焊接质量评估与检测详1
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
SMT焊点质量检测方法热循环为确保电子产品德量稳固性和可靠性,或对失效产品进行剖析诊断,一般需进行必要的焊点质量检测。
SM T中焊点质量检测办法很多,应当依据不同元器件、不同检测项目等选择不同的检测方法。
1 焊点质量检测方式焊点质量常用检测方法有非破坏性、破坏性和环境检测3种,见表1所示。
1.1 目视检测目视检测是最常用的一种非破坏检测方法,可用万能投影仪或10倍放大镜进行检测。
检测速度和精度与检测职员才能有关,评价可依照以下基准进行:⑴润湿状况钎料完整笼罩焊盘及引线的钎焊部位,接触角最好小于20°,通常以小于3 0°为标准,最大不超过60°。
⑵焊点外观钎料流动性好,表面完全且平滑光明,无针孔、砂粒、裂纹、桥连和拉尖等渺小缺点。
⑶钎料量钎焊引线时,钎料轮廓薄且引线轮廓显明可见。
1.2 电气检测电气检测是产品在加载条件下通电,以检测是否满足所请求的规范。
它能有效地查出目视检测所不能发明的微小裂纹和桥连等。
检测时可应用各种电气丈量仪,检测导通不良及在钎焊进程中引起的元器件热破坏。
前者是由渺小裂纹、极细丝的锡蚀和松香粘附等引起,后者是由于过热使元器件失效或助焊剂分解气体引起元器件的腐化和变质等。
1.3 X-ray 检测X-ray检测是应用X射线可穿透物资并在物质中有衰减的特征来发明缺陷,主要检测焊点内部缺陷,如BGA、CSP和FC焊点等。
目前X射线装备的X光束斑一般在1-5μm范畴内,不能用来检测亚微米规模内的焊点微小开裂。
1.4 超声波检测超声波检测利用超声波束能透进金属材料的深处,由一截面进入另一截面时,在界面边沿发生反射的特色来检测焊点的缺陷。
来自焊点表面的超声波进入金属内部,碰到缺陷及焊点底部时就会发生反射现象,将反射波束收集到荧光屏上形成脉冲波形,根据波形的特色来断定缺陷的位置、大小和性质。
超声波检验具有敏锐度高、操作便利、检验速度快、本钱低、对人体无害等长处,但是对缺陷进行定性和定量判定尚存在艰苦。
SMT质量分析报告1. 引言本文将对SMT(Surface Mount Technology)质量进行分析和评估。
SMT是一种广泛应用于电子制造行业的技术,主要用于电路板的组装。
通过对其质量进行分析,可以帮助制造商提高产品质量和生产效率。
2. 数据收集为了进行质量分析,我们收集了大量的数据,包括以下几个方面:- 外观检查:对SMT组装的电路板进行外观检查,包括焊点的完整性、元器件的放置准确性等。
- 功能测试:对组装完成的电路板进行功能测试,确保各个元器件和电路连接正常。
- 缺陷记录:记录在组装过程中出现的缺陷,如焊接不良、元器件损坏等。
- 过程参数:记录SMT组装过程中的各个参数,如温度、湿度、速度等。
3. 数据分析基于收集的数据,我们进行了详细的分析,主要包括以下几个方面: - 外观检查分析:通过统计焊点完整性和元器件放置准确性的数据,评估SMT组装的精度和稳定性。
- 功能测试分析:通过统计功能测试结果,评估电路板的可靠性和性能。
- 缺陷分析:对缺陷记录进行分类和统计,找出SMT组装中常见的问题和缺陷原因。
- 过程参数分析:通过分析过程参数和质量指标的关系,找出影响SMT质量的关键参数。
4. 结果和讨论根据数据分析的结果,我们得出以下几点结论: - SMT组装的外观质量整体良好,焊点完整性和元器件放置准确性达到预期要求。
- 功能测试结果显示,大部分电路板的功能正常,但仍存在少量异常情况,需要进一步调查原因。
- 缺陷分析结果表明,焊接不良是SMT组装中最常见的问题,可能与焊接工艺参数不合适有关。
- 过程参数分析显示,温度和湿度是影响SMT质量的关键参数,需要严格控制在合理的范围内。
5. 结论基于以上分析结果,我们提出以下建议以改进SMT质量: - 进一步优化焊接工艺参数,确保焊接质量达到最佳状态。
- 定期进行功能测试,及时发现和解决异常情况,提高产品可靠性。
- 强化员工培训,提高他们对SMT质量控制的认识和技能。
焊接质量检验标准焊接在电子产品装配过程中是一项很重要的技术,也是制造电子产品的重要环节之一。
它在电子产品实验、调试、生产中应用非常广泛,而且工作量相当大,焊接质量的好坏,将直接影响到产品的质量。
电子产品的故障除元器件的原因外,大多数是由于焊接质量不佳而造成的。
(一)焊点的质量要求:对焊点的质量要求,应该包括它包括良好的电气接触、足够的机械强度和光洁整齐的外观三个方面,保证焊点质量最关键的一点,就是必须避免虚焊。
(1)插件元件焊接可接受性要求:1.引脚凸出:单面板引脚伸出焊盘最大不超过2。
3mm;最小不低于0.5 mm.对于厚度超过2.3mm的通孔板(双面板),引脚长度已确定的元件(如IC、插座),引脚凸出是允许不可辨识的。
2.通孔的垂直填充:焊锡的垂直填充须达孔深度的75%,即板厚的3/4;焊接面引脚和孔壁润湿至少270°.3.焊锡对通孔和非支撑孔焊盘的覆盖面积须≥75%.4.插件元件焊点的特点是:①外形以焊接导线为中心,匀称、成裙形拉开。
②焊料的连接呈半弓形凹面,焊料与焊件交界处平滑,接触角尽可能小。
③表面有光泽且平滑,无裂纹、针孔、夹渣。
(2) 贴片(矩形或方形)元件焊接可接受性要求:1.贴片元件位置的歪斜或偏移的允收标准是:不超过其元件或焊盘宽度(其中较小者)的1/2,且不可违反最小电气间隙。
2.末端焊点宽度最小为元件可焊端宽度的50%或焊盘宽度的50%,其中较小者。
3.最小焊点高度为焊锡厚度加可焊端高度的25%或0.5 mm,其中较小者。
(3)扁平焊片引脚焊接可接受性要求:1.扁平焊片引脚偏移的允收标准是:不超过其元件或焊盘宽度(其中较小者)的25%,且不违反最小电气间隙.2.末端焊点宽度最小为元件引脚可焊端宽度的75%.3.最小焊点高度为正常润湿。
(二)焊接质量的检验方法:⑴目视检查目视检查就是从外观上检查焊接质量是否合格,也就是从外观上评价焊点有什么缺陷.目视检查的主要内容有:①是否有漏焊,即应该焊接的焊点没有焊上;②焊点的光泽好不好;③焊点的焊料足不足;④焊点的周围是否有残留的焊剂;⑤有没有连焊、焊盘有滑脱落;⑥焊点有没有裂纹;图2正确焊点剖面图(a)(b)凹形曲线主焊体焊接薄的边缘⑦焊点是不是凹凸不平;焊点是否有拉尖现象。
SMT焊接质量检验标准SMT焊接质量检验标准本标准旨在统一焊接外观检验标准,确保焊接质量和检验的一致性。
适用于SMT、成型线、装配线等有关的焊接质量检验。
生产线操作人员和检测人员要依照本标准来保证产品的外观和整体的性能。
典型缺陷虚焊:零件脚或引线脚与锡垫间没有锡或锡量太少或其它因素造成没有接合,看似焊住其实没有焊住的焊接点,这种焊接点有可能当时用设备无法检测出来,但在用户使用过程中能慢慢的暴露出来,危害性极高。
包焊:焊点焊锡过多,看不到零件脚或其轮廓者。
桥接:有脚零件在脚与脚之间被多余的焊锡连接短路,特别是在手工焊接时,亦或刮CHIPS脚造成残余锡渣使脚与脚短路。
错件:零件放置的规格或种类与作业规定或BOM、图纸等不符合。
缺件:应放置零件的位置,因不正常的缘故而产生空缺。
极性反向:极性方位正确性与加工工程样品装配不一样,象电解电容,二极管都是极性元件,要特别注意。
零件偏位:零件焊接点与焊盘发生偏移,易引起管脚之间短路。
焊盘损伤:在补焊或维修时使用烙铁不当导致焊盘被破坏,这极易引起主板报废,造成重大损失。
焊点的质量要求对焊点的质量要求,应该包括良好的电气接触、足够的机械强度和光洁整齐的外观三个方面,保证焊点质量最关键的一点,就是必须避免虚焊。
插件元件焊接可接受性要求:引脚凸出不应超过 2.3mm,最小不低于0.5mm。
对于厚度超过2.3mm的通孔板(双面板),引脚长度已确定的元件(如IC、插座),引脚凸出是允许不可辨识的。
焊锡的垂直填充须达孔深度的75%,即板厚的3/4;焊接面引脚和孔壁润湿至少270°。
焊锡对通孔和非支撑孔焊盘的覆盖面积须≥75%。
贴片(矩形或方形)元件焊接可接受性要求:贴片元件位置的歪斜或偏移不应超过其元件或焊盘宽度(其中较小者)的1/2,且不可违反最小电气间隙。
末端焊点宽度最小为元件可焊端宽度的50%或焊盘宽度的50%,其中较小者。
接头部件的位置偏移和倾斜必须避免与邻近的导体接触。
SMT检验作业指导书一、引言SMT(表面贴装技术)是一种广泛应用于电子创造业的技术,它通过将电子元器件直接贴装在印刷电路板(PCB)上,实现电子产品的高效生产。
为了确保SMT生产线的质量和效率,SMT检验作业起着至关重要的作用。
本文将详细介绍SMT检验作业的指导书,包括检验目的、检验范围、检验流程、检验标准等内容。
二、检验目的SMT检验作业的目的是确保生产出的电子产品符合质量要求,达到预期的性能和可靠性。
通过对SMT生产线中的关键环节进行检验,可以及时发现和纠正生产过程中的问题,提高产品质量和生产效率。
三、检验范围SMT检验作业的范围涵盖了整个SMT生产线,包括以下环节:1. PCB检验:检查PCB的尺寸、孔径、焊盘等是否符合要求。
2. 贴片机检验:检查贴片机的操作是否正常,贴装的元器件是否准确、完整。
3. 焊接检验:检查焊接质量,包括焊点的焊接强度、焊接位置是否准确等。
4. 清洗检验:检查清洗后的PCB表面是否干净,无残留物。
5. AOI检验:使用自动光学检查设备对贴装后的PCB进行视觉检测,发现缺陷和错误。
6. 功能测试:对贴装完成的电子产品进行功能测试,确保其正常工作。
四、检验流程SMT检验作业的流程如下:1. 准备工作:准备所需的检验设备和工具,包括测量仪器、显微镜、AOI设备等。
2. PCB检验:使用测量仪器对PCB的尺寸、孔径等进行检测,确保其符合要求。
3. 贴片机检验:检查贴片机的工作状态和贴装效果,使用显微镜对贴装的元器件进行目视检查。
4. 焊接检验:使用显微镜对焊点进行检查,确保焊接质量良好。
5. 清洗检验:使用显微镜检查清洗后的PCB表面,确保无残留物。
6. AOI检验:使用自动光学检查设备对贴装后的PCB进行视觉检测,发现缺陷和错误。
7. 功能测试:对贴装完成的电子产品进行功能测试,确保其正常工作。
8. 记录和分析:将检验结果记录下来,并进行分析和总结,为后续的生产过程改进提供参考。
SMT焊接质量检验-标准最新版本摘要表面安装技术(SMT)作为一种电子装配技术已经得到了广泛应用。
SMT 工艺对产品的质量具有重要影响。
因此,针对 SMT 工艺需要进行一系列的质量检验措施,以确保其质量可控。
本文将对 SMT 焊接质量检验相关的标准进行介绍。
标准介绍IPC-A-610IPC-A-610 是电子行业制定的一个全面的接受性标准,用来评估 SMT 零部件和整体装配品的工艺装配质量。
IPC-A-610 属于可选标准,不是强制性的,但是得到了广泛使用。
IPC-J-STD-001IPC-J-STD-001 是电子行业对焊接工艺标准的制定,主要是为了提供可行的方法,并说明基本的要求,以实现各种电子板的最佳工艺。
它也是可选标准,但是使用率很高。
IPC-7711/7721IPC-7711/7721 是 IPC 制定的电子行业标准,用于补救浆料,半成品和完成组件的修复。
这些标准是一些特定的建议和方法,用于维修工程师可以准确地和有效地进行维修,而不会对电路板或元件造成进一步的损害。
其他标准除了上述三种标准外,还有一些其他的标准可以用于 SMT 焊接质量检验。
比如 ISO9001 标准、IEC61000 标准等等。
标准内容简介IPC-A-610IPC-A-610 主要涉及到以下内容:•产品外观:产品的各个外观细节;•零部件:对各个组件的安装方式、位置等进行检验;•焊接:焊点外观、焊接位置、焊接接口等;•焊锡:焊锡的外观、间距等;•焊接电子元件:电子元件安装的方式、位置、状态等;•印刷文本:检查电路板上的印刷文字是否正确;•产品的各种性能和功能检查。
IPC-J-STD-001IPC-J-STD-001 主要包括以下内容:•焊接材料规范:包括有关易碎焊料的要求;•外观检验:采用放大镜进行检查;•电路板检验:检查电路板上的插座、接触点等;•元件质量检验:包括元件大小、发热量等;•电气检验:包括通过测试电路板上的电气线路。
SMT焊接质量分析报告SMT焊接是一种表面贴装技术,通过热熔焊料在基板上的焊点处进行焊接,用于连接表面贴装元件和基板之间的电路。
由于焊接质量的直接影响到电路连接的可靠性和性能,因此对SMT焊接质量进行分析和评估是非常重要的。
首先,焊接质量的分析主要包括焊接质量的可视检查和焊接联络性能的测试。
可视检查可以通过检查焊点的外观来评估焊接质量,包括焊点的形状、光亮度和无焊接缺陷等。
焊点的形状应该是圆形或半球形,无明显的凹陷或突起。
焊点的光亮度应该均匀一致,没有明显的氧化或腐蚀迹象。
焊接缺陷包括冷焊、开花焊、毛刺、焊剂残留等。
如果发现焊点外观不良或有焊接缺陷,需要进一步分析其原因,以便采取相应的措施进行改进。
其次,焊接联络性能的测试是评估焊接质量的重要手段。
常用的焊接联络性能测试方法包括剪切测试、剥离测试和热冲击测试等。
剪切测试用于评估焊接强度,通过施加水平或垂直力来检测焊点是否能够承受剪切力。
剥离测试用于评估焊接可靠性,通过施加拉伸力来检测焊点与基板之间是否能够保持牢固的粘结。
热冲击测试用于评估焊接耐热性,通过快速变温来检测焊点是否会出现裂纹或脱落等问题。
这些测试方法可以定量地评估焊接的质量和可靠性,并提供参考数据进行焊接工艺的改进。
最后,焊接质量分析报告需要综合以上的可视检查和焊接联络性能测试结果,并结合焊接工艺参数、材料质量和生产环境等因素进行综合分析。
分析报告应该包括焊接质量的基本情况、发现的问题和缺陷、问题的原因、解决方案和改进建议等内容。
报告还应提供客观的数据和证据支持分析结果,以便后续的改进工作。
总之,SMT焊接质量的分析和评估是确保产品质量和性能的重要环节。
通过可视检查和焊接联络性能测试等手段可以对焊接质量进行全面的评估,从而为焊接工艺的改进提供有力的支持。
分析报告应该有条理、客观、准确,提出解决问题和改进的具体建议。
SMT检验作业指导书一、引言SMT(表面贴装技术)是一种常用的电子元器件安装技术,它通过将电子元器件直接贴装在PCB(印刷电路板)上,提高了电子产品的生产效率和质量。
为确保SMT过程中的质量控制,本作业指导书旨在提供详细的SMT检验作业流程和标准,以确保生产过程中的质量稳定性。
二、SMT检验作业流程1. 准备工作在开始SMT检验之前,需要进行以下准备工作:- 检查并确认所有所需的检验设备和工具的可用性和完整性。
- 根据工艺要求,准备好样品和标准件。
- 确保检验环境符合要求,包括温度、湿度等环境参数。
2. 外观检验外观检验是SMT检验的第一步,主要用于检查电子元器件的外观是否符合要求。
具体步骤如下:- 检查元器件的封装是否完整,无裂纹、划痕等损伤。
- 检查元器件的引脚是否弯曲、断裂或错位。
- 检查元器件的标识是否清晰可辨认。
3. 尺寸检验尺寸检验用于验证电子元器件的尺寸是否符合要求。
具体步骤如下:- 使用合适的测量工具(如卡尺、显微镜等)测量元器件的尺寸。
- 将测量结果与标准值进行比较,确保尺寸在允许范围内。
4. 焊接质量检验焊接质量检验用于验证电子元器件的焊接质量是否符合要求。
具体步骤如下:- 检查焊点是否均匀、光滑,无焊接缺陷(如焊接虚焊、焊接翘曲等)。
- 使用显微镜检查焊点的焊接质量,确保焊点的形状和焊盘的涂覆均符合标准要求。
5. 功能性测试功能性测试用于验证电子元器件的功能是否正常。
具体步骤如下:- 根据产品要求,连接电子元器件到测试设备。
- 运行功能测试程序,检查电子元器件的功能是否正常。
- 记录测试结果,确保所有功能测试都通过。
6. 温度和湿度测试温度和湿度测试用于验证电子元器件在不同温湿度条件下的性能稳定性。
具体步骤如下:- 将电子元器件置于恒温恒湿箱中,设定不同的温度和湿度条件。
- 在每个条件下,测试电子元器件的性能并记录测试结果。
- 将测试结果与标准值进行比较,确保性能稳定性在允许范围内。
SMT检验作业指导书引言概述:SMT(Surface Mount Technology)是一种表面贴装技术,广泛应用于电子创造业中。
为了确保产品质量和生产效率,SMT检验是至关重要的环节。
本文将为您提供一份SMT检验作业指导书,旨在匡助您了解SMT检验的重要性以及如何进行有效的SMT检验。
一、SMT检验的重要性1.1 提高产品质量:SMT检验可以匡助发现电子产品创造过程中的缺陷,如焊接问题、元件缺失等。
通过及时发现和解决这些问题,可以提高产品质量,减少不良品率,增强企业竞争力。
1.2 保证产品可靠性:SMT检验可以检测电子产品的可靠性,包括元件的连接可靠性、电气参数的准确性等。
通过对产品进行全面的SMT检验,可以确保产品在使用过程中的稳定性和可靠性。
1.3 提升生产效率:SMT检验可以匡助发现生产过程中的问题,如设备故障、操作错误等。
通过及时发现并解决这些问题,可以提高生产效率,减少生产成本,提高企业的生产力和效益。
二、SMT检验的方法和工具2.1 目视检验:目视检验是最常用的SMT检验方法之一,通过人眼观察电子产品的外观和焊接质量,判断是否存在缺陷。
这种方法简单易行,但对操作人员的经验要求较高。
2.2 AOI检验:AOI(Automated Optical Inspection)是一种自动化的光学检验方法,通过高分辨率相机和图象处理软件,对电子产品进行检测和分析。
AOI检验可以快速、准确地检测焊接缺陷、元件缺失等问题。
2.3 X射线检验:X射线检验是一种非破坏性的检验方法,通过对电子产品进行X射线照射,观察和分析X射线照片,检测焊接质量、元件连接等问题。
这种方法适合于检测难以通过目视或者AOI检验发现的问题。
三、SMT检验的关键要点3.1 检验标准:在进行SMT检验时,需要制定相应的检验标准。
这些标准应包括焊接质量、元件位置和方向、电气参数等方面的要求。
制定合理的检验标准可以确保检验的准确性和一致性。
SMT焊接质量评估与检测详解
SMT焊接质量评估与检测详解
SMT自动检测方法:元件测试、PCB光板测试、自动光学测试、X光测试、SMT在线测试、非向量测试以及功能测试。
一连接性测试
1. 人工目测检验(加辅助放大镜):IPC-A-610B 焊点验收标准基本上以目测为主。
(1) 优良的外观:润湿程度良好;焊料在焊点表面铺展均匀连续边沿接触角一般应<30,
(2) 对于焊盘边缘的焊点,应见到变月面;焊点处的焊料层要适中,避免过多过少;焊点位置必须准确;焊点表面应连续和圆滑。
(3) 主要缺陷:桥连/桥接-短路;立碑,吊桥、曼哈顿和墓碑片式阻容元件;错位-元件位置移动出现开路状态;焊膏未熔化;吸料/芯吸现象-QFP、SOIC
2. 自动光学检查(AOI):通过淘汰对SMA 进行照射
用光学镜头将SMA 反射光采集进行运算
经过计算机图像处理系统处理从而判断SMA 上元件位置及焊接情况。
3.丝网印刷后AOI:焊膏缺失、焊膏桥接、焊膏塌落;进一步要求能够测量焊膏的高度及面积;
器件贴装后AOI:元件漏贴、元器件极性错/器件品名
识别、元器件偏移/歪斜、片式元件侧立/直立;
4. 再流焊后AOI:通过焊锡的浸润状态可以推断出焊锡的焊接强度。
5.AOI 的基本算法
(10). 亮度(BRIGHT)
(2). 暗度(DARK)
(3). 对比度(CONTRAST)
(4). 无对比度(NO CONTRAST)
(5). 水平线(HORIZONTAL LINE)
(6). 无水平线
(7). 垂直线(VERTICAL LINE)
(8). 无垂直线
(9). 亮度百分比(PERCENT WHITE)和暗百分比(PERCENTBLACK)
激光/红外线组合式检测系统
原理:通过激光光束对被测物进行照射,利用热容量的大小所产生的表面状态变化,即由物体发热、温度上升的强弱差异,来实现对焊点的自动检测不同SMD对激光光束吸收率的变化与多种不良状态有着密切的关系。
焊接温度过度的的PCB 组件,焊点面常常模糊无光泽,或者容易出现表面粗糙的魄微粒状,这些不良焊接对光束的吸收率高,检测时会使焊接点温度快速上升,使热过程曲线处于高水平。
X射线检测仪:
具有很强的穿透性,其透视图可显示焊点厚度、形状及质量密度分布,这此指标能充分反映出焊点的焊接质量,如开路、短路、孔、洞内部气泡以及锡量不足。
有两种类型:直射式 X 光检测仪、断层剖面X 光检测仪。
最小分辨率/用途:50um 整体缺陷; 10um 一般PCB 检测与质量控制、BGA 检测; 5um 细间距引线与焊点检测um 级BGA 检测、倒装片检测、PCB 缺陷分析与工艺控制;1um 键合裂纹检测、微电路缺陷检测。
在线测试仪(In-circuit test)简称ICT:
对元件极性贴错、元件品种贴错、数值超过标称值允许的范围进行性能测试,并同时检查出影响其性能的相关缺陷,包括桥联、虚焊、开路以及元件极性贴错、数值超差等,并根据暴露出的问题及时调整生产工艺。
接触式检测技术。
在线测试仪有两种:制造缺陷分析仪MDA ( Manutacturing DefectsAnalyzer),ICT 的早期形式,它只能模拟测试模拟电路的组伯板;
另一种是ICT,它几乎可以测试到所有与制造过程有关的缺陷,并能精确判断出有缺陷元件,多采用中央处理器技术。
向量法测试技术指把 N 分频器计算器的输出方波加到器件的输入端,以完成对器件的激励并根据器件的真值表确定所加的测试频率,测试系统再用测试标准板与被测器件进行比较和评估。
也称格雷码法。
边界扫描技术通过具有边界扫描功能的器件来实现,因此边界扫描测试技术又是专门针对这类器件而执行。
用于那些复杂的 VLSI 或ASIC 器件,在芯片内部插入标准的边界扫描单元(Boundary Scan Cell),这些单元彼此串联在主逻辑电路周围,构成了移位寄存器。
边界扫描技术以其虚拟的接触解决了高密谋、细间距引脚难以测试的问题。
非向量测试(Veclorless Test)技术
1. 电容耦合测试(FRAME SCAN)
功能:能检查出多种IC 封装器件的开路、桥连缺陷如PLCC、QFP、DIP,还可以发现组件中非硅元件的连接开路。
原理:在被器件上放置一块金属片感应器,器件引脚架、金属片感应器及封装材料三者就形成一个微小的电容,然后每个引脚依次加入AC 激励,同时接收到IC 顶部金属片感应器的感应信号。
2. 模拟结测试(Delta Scand)
3. 频率电感耦合测试(WAVE SCAN)
4. 飞针测试仪(FLYING PROBO TESTER)――针床式在线测试仪的最新改进功能测试测试整个系统是否能够实现设计目标,三个基本单元――加激励、惧响应并根据标准组件的响应评价被测试组件的响应。
有诊断程序用来鉴别和确定故障。