高中数学必修四北师大版 4.1 任意角的正弦函数、余弦函数的定义 作业3 含答案
- 格式:doc
- 大小:57.50 KB
- 文档页数:5
§4正弦函数和余弦函数的定义与诱导公式4.1任意角的正弦函数、余弦函数的定义4.2单位圆与周期性填一填1.(1)对于任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于唯一的点P(u,v),那么点P的________叫作角α的正弦函数,记作________;点P的________叫作角α的余弦函数,记作________.(2)正弦函数v=sin α、余弦函数u=cos α的定义域为全体实数.象限三角函数第一象限第二象限第三象限第四象限sin α++--cos α+--+(1)正(余)弦函数值的周期性①公式:sin(x+k·2π)=________,k∈Z;cos(x+k·2π)=________,k∈Z.②意义:终边相同的角的正弦函数值、余弦函数值分别________.(2)周期函数①定义:一般地,对于函数f(x),如果存在非零实数T,对定义域内的任意一个x值,都有f(x+T)=________,把f(x)称为周期函数,T 称为这个函数的________.②最小正周期:对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.判一判1.如图所示,sin α=y .( )2.第三象限角的正弦、余弦、正切都是负值.( )3.终边相同的角不一定相等,其三角函数值一定相等.( ) 4.对于任意角α,三角函数sin α、cos α都有意义.( )5.三角函数值的大小与点P (x ,y )在终边上的位置无关.( ) 6.若sin α>0,则α是第一、二象限角( )7.函数f (x )=|x |满足f (-1+2)=f (-1),则这个函数的周期为-1( )8.若T f (x )的周期( )想一想1.提示:(1)三角函数是一个函数,符合函数的定义,是由角的集合(弧度数)到一个比值的集合的函数.(2)sin α与cos α值的大小只与角α终边与单位圆交点P 的坐标(u ,v )有关,其中sin α=v ,cos α=u .(3)sin α不是sin 与α的积,是一个三角函数的记号,是一个整体. 2.正、余弦函数值的符号是如何确定的?提示:sin α与cos α的值的符号取决于α的终边所在的象限. 思考感悟:练一练1.已知角α的终边与单位圆交于点⎝⎛⎭⎪⎫-3,-1,则sin α的值为( )A .-32B .-12C.32D.122.若sin α<0,cos α>0,则角α的终边位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.锐角α的终边交单位圆于点P ⎝ ⎛⎭⎪⎫12,m ,则sin α=________,cos α=________.4.求值:sin 750°=________.知识点一正、余弦函数的定义1.如图,∠AOP =π3,点Q 与点P 关于y 轴对称,P ,Q 都为角的终边与单位圆的交点,求:(1)点P 的坐标;(2)∠AOQ 的正弦函数值、余弦函数值.2.已知角α的终边在直线3x +4y =0上,求sin α,cos α的值.知识点二 三角函数值的符号3.A.45B.35C .-35D .-454.(1)判断sin 2·cos 3sin 4·cos 6的符号;(2)若sin α>0,cos α<0,判断角α所在象限.(1)cos 25π3+sin ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+cos 765°+sin 1 125°+cos 360°.6.设f (x )f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫72的值为( )A .2B .0C .-1D .-37.已知定义在R 上的偶函数f (x )是最小正周期为π的周期函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值是________.基础达标一、选择题1.有下列命题,其中正确的个数是( ) ①终边相同的角的三角函数值相同; ②同名三角函数值相同,角不一定相同;③终边不相同,它们的同名三角函数值一定不相同; ④不相等的角,同名三角函数值也不相同. A .0个 B .1个 C .2个 D .3个2.若角α的终边与单位圆相交于点⎝ ⎛⎭⎪⎫22,-22,则sin α的值为( )A.22 B .-22 C.12 D .-123.计算sin(-1 380°)的值为( )A .-12 B.12C .-32 D.32 4.sin 780°的值为( )A .-32 B.32C .-12 D.125.如果α的终边过点(2sin 30°,-2cos 30°),那么sin α=( ) A.12 B .-12C.32 D .-326.已知角α的终边经过P (-b,4),且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .57.若三角形的两内角A ,B ,满足sin A cos B <0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都有可能8.若cos α=-32,且角α的终边经过点P (x,2),则P 点的横坐标x 是( )A .2 3B .±2 3C .-2 2D .-2 3 二、填空题9.若α是第三象限角,则点P (sin α,cos α)在第________象限.10.求值:sin 13π6=________.11.若点(sin θcos θ,2cos θ)位于第三象限,则角θ是第________象限的角.12.已知角α的终边经过点P (3,-4t ),且sin(2k π+α)=-35,其中k ∈Z ,则t 的值为________.三、解答题13.求下列三角函数值. (1)cos(-1 050°);(2)sin ⎝ ⎛⎭⎪⎫-31π4.14.已知f (x +3)=-1f (x ),判断f (x )是否为周期函数,并求出它的一个周期.能力提升15.已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.16.已知1|sin α|=-1sin α,且lg cos α有意义. (1)试判断角α所在的象限.(2)若角α的终边上一点是M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、 余弦函数的定义4.2 单位圆与周期性一测 基础过关 填一填1.(1)纵坐标v v =sin α 横坐标u u =cos α3.(1)sin x cos x 相等 (2)f (x ) 周期判一判1.× 2.× 3.√ 4.√ 5.√ 6.× 7.× 8.√ 练一练1.B 2.D 3.32 12 4.12 二测 考点落实1.解析:(1)设点P 的坐标为(x ,y ),则x =cos ∠AOP =cos π3=12.y =sin ∠AOP =sin π3=32,故点P 的坐标为⎝ ⎛⎭⎪⎫12,32.(2)∵P 与Q 点关于y 轴对称,∴Q ⎝ ⎛⎭⎪⎫-12,32,根据正、余弦函数的定义可知:sin ∠AOQ =32,cos ∠AOQ =-12.2.解析:因为角α的终边在直线3x +4y =0上,所以在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t ,r =x 2+y 2 =(4t )2+(-3t )2=5|t |,当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t=-45.综上可知,sin α=-35,cos α=45,或sin α=35,cos α=-45. 3.解析:∵r =(-4)2+32=5,∴cos α=-45,故选D. 答案:D4.解析:(1)∵2∈⎝ ⎛⎭⎪⎫π2,π,3∈⎝ ⎛⎭⎪⎫π2,π,4∈⎝ ⎛⎭⎪⎫π,3π2,6∈⎝ ⎛⎭⎪⎫3π2,2π, ∴sin 2>0,cos 3<0,sin 4<0,cos 6>0. ∴sin 2·cos 3sin 4·cos 6>0.(2)∵sin α>0,∴α的终边在一、二象限或y 轴的正半轴上;∵cos α<0,∴α的终边在二、三象限或x 轴的负半轴上.故当sin α>0且cos α<0时,α在第二象限.5.解析:(1)∵25π3=8π+π3,-15π4=-4π+π4∴cos 25π3+sin ⎝⎛⎭⎪⎫-15π4=cos π3+sin π4=1+22. (2)∵810°=720°+90°,765°=720°+45°, 1 125°=1 080°+45°, ∴sin 810°+cos 765°+sin 1 125°+cos 360° =sin 90°+cos 45°+sin 45°+cos 0°=1+22+22+1=2+ 2.6.解析:f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫4-12=f ⎝ ⎛⎭⎪⎫-12 =2×⎝ ⎛⎭⎪⎫-12+1=0.答案:B7.解析:由已知,得f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. 答案:32 三测 学业达标1.解析:终边相同的角的同名三角函数值相同;同名三角函数值相同,角不一定相同;终边不相同,它们的同名三角函数值也可能相同;不相等的角,同名三角函数值可能相同.故只有②正确.答案:B2.解析:根据任意角的三角函数的定义可知,点⎝ ⎛⎭⎪⎫22,-22到原点的距离为1,则sin α=-221=-22,故选B.答案:B3.解析:sin(-1 380°)=sin[60°+(-4)×360°]=sin 60°=32. 答案:D4.解析:sin 780°=sin(2×360°+60°)=sin 60°=32,故选B. 答案:B5.解析:依题意可知点(2sin 30°,-2cos 30°)即(1,-3),则r=12+(-3)2=2,因此sin α=y r =-32.答案:D6.解析:由x =-b ,y =4,得r =b 2+16,所以cos α=-b b 2+16=-35,解得b =3(b =-3舍去).答案:A7.解析:由题意知,A ,B ∈(0,π), ∴sin A >0,cos B <0,∴B 为钝角. 故选B. 答案:B8.解析:r =x 2+22,由题知x x 2+22=-32,∴x =-23,选D.答案:D9.解析:∵α为第三象限角, ∴sin α<0,cos α<0,∴P (sin α,cos α)位于第三象限. 答案:三10.解析:sin 13π6=sin ⎝ ⎛⎭⎪⎫2π+π6=sin π6=12,故填12.答案:1211.解析:依题意得⎩⎪⎨⎪⎧sin θcos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0.因此θ是第二象限角. 答案:二12.解析:∵sin(2k π+α)=-35(k ∈Z ),∴sin α=-35.又角α的终边过点P (3,-4t ),故sin α=-4t 9+16t 2=-35,解得t =916⎝ ⎛⎭⎪⎫t =-916舍去. 答案:91613.解析:(1)∵-1 050°=-3×360°+30°,∴-1 050°的角与30°的角终边相同.∴cos(-1 050°)=cos 30°=32.(2)∵-314π=-4×2π+π4,∴角-31π4与角π4的终边相同. ∴sin ⎝ ⎛⎭⎪⎫-31π4=sin π4=22. 14.解析:∵f (x +6)=f [(x +3)+3]=-1f (x +3)=-1-1f (x )=f (x ), ∴f (x )是周期函数,且6是它的一个周期.15.解析:设角α的终边上任一点为P (k ,-3k )(k ≠0), 则x =k, y =-3k ,r =k 2+(-3k )2=10|k |.当k >0时,r =10k ,α是第四象限角,sin α=y r =-3k 10k=-31010, 1cos α=r x =10kk =10, 所以10sin α+3cos α=10×⎝⎛⎭⎪⎫-31010+310=-310+310=0; 当k <0时,r =-10k ,α为第二象限角,sin α=y r =-3k -10k=31010,1cos α=r x =-10kk =-10, 所以10sin α+3cos α=10×31010+3×(-10)=310-310=0. 综上所述,10sin α+3cos α=0.16.解析:(1)由1|sin α|=-1sin α,可知sin α<0,所以α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lg cos α有意义可知cos α>0,所以α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1, 解得m =±45.又α是第四象限角,故m <0,从而m =-45, 由正弦函数的定义可知sin α=y r =m |OM |=-451=-45.由Ruize收集整理。
§4正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性课时目标1.借助单位圆理解任意角的三角函数(正弦、余弦)的定义.2.熟记正弦、余弦的函数值在各象限的符号.3.理解正、余弦函数的周期性及这一性质的应用.1.单位圆的定义在直角坐标系中,以________为圆心,以__________为半径的圆,称为单位圆.2.一般地,在直角坐标系中,给定单位圆,对于任意角α,使角α的顶点与原点重合,始边与x轴正半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫作角α的____________,记作v=sin α;点P的横坐标u叫作角α的__________,记作______________.通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角三角函数y=sin x和y=cos x.它们的定义域为全体实数,值域为________.3.正、余弦函数的符号象限三角函数第一象限第二象限第三象限第四象限sin αcos α4sin(α+k·2π)=________,k∈Z;cos(α+k·2π)=________,k∈Z.由此我们可以得到如下结论:终边相同的角的________________相等.5.周期函数的有关概念对于函数f(x),如果存在______实数T,任取定义域内的任意一个x值,都有________=f(x),那么函数f(x)就称为周期函数,T称为这个函数的________.一、选择题1.sin 390°等于( )A.32B.-32C.-12D.122.若sin α<0且tan α>0,则α是( ) A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A.1 B.0 C.2 D.-24.点A(x,y)是-300°角终边与单位圆的交点,则yx的值为( )A. 3 B.- 3 C.33D.-335.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .56.已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,求a 的取值范围为( )A .-2<a <3B .-2<a ≤3C .-2≤a <3D .-3≤a <2二、填空题7.若角α的终边过点P (5,-12),则sin α+cos α=________.8.若α是第二象限角,则点P (sin α,cos α)在第________象限.9.5sin 90°+10 cos 180°-3 sin 270°+4 cos 420°=________________________________________________________________________.10.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.三、解答题11.已知α是第三象限角,试判定sin(cos α)·cos(sin α)的符号.12.已知角α终边上一点P (-3,y ),且sin α=34y ,求cos α和tan α的值.能力提升13.若θ为第一象限角,则能确定为正值的是( )A .sin θ2B .cos θ2C .sin θ2cos θ2D .cos 2θ 14.已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的正弦和余弦.1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.符号sin α、cos α是一个整体,离开“α”,“sin”、“cos”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘积.3.正、余弦函数的周期性反映了终边相同的角的三角函数值相等.作用是把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性答案知识梳理1.原点 单位长 2.正弦函数 余弦函数 u =cos α [-1,1] 3.+ + - - + - - + 4.sin α cos α 同一三角函数的值 5.非零 f (x +T ) 周期作业设计1.D2.C [∵sin α<0,∴α是第三、四象限角.又tan α>0,∴α是一、三象限角,故α是第三象限角.]3.C [∵α为第二象限角,∴sin α>0,cos α<0.∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.] 4.A [x =cos(-300°)=cos(-360°+60°)=cos 60°=12, y =sin(-300°)=sin(-360°+60°) =sin 60°=32. ∴y x =3.]5.A [r =b 2+16,cos α=-b r =-bb 2+16=-35, 解得b =±3,由题意知b >0,∴b =3.]6.B [∵sin α>0,cos α≤0.∴α位于第二象限或y 轴正半轴上.∴3a -9≤0,a +2>0. ∴-2<a ≤3.]7.-713解析 r =52+-122=13,∴sin α=y r =-1213, cos α=x r =513,∴sin α+cos α=-713. 8.四解析 α为第二象限角,sin α>0,cos α<0,∴P 在第四象限.9.0解析 原式=5×1+10×(-1)-3×(-1)+4×cos 60°=5-10+3+2=010.2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图像上,且m <0,n <0,n =3m .∴|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.11.解 α是第三象限角,则有:①cos α<0且-1<cos α<0,②sin α<0且-1<sin α<0,进而有:①cos α是第四象限角,所以sin(cos α)<0,②sin α是第四象限角,所以cos(sin α)>0,所以sin(cos α)·co s(sin α)<0.12.解 sin α=y 3+y 2=34y . 当y =0时,sin α=0,cos α=-1;当y ≠0时,由y 3+y 2=3y 4,解得y =±213. 当y =213时,P ⎝⎛⎭⎪⎫-3,213,r =433. ∴cos α=-34; 当y =-213时,cos α=-34. 13.C [∵θ为第一象限角,∴2k π<θ<2k π+π2,k ∈Z . ∴k π<θ2<k π+π4,k ∈Z . 当k =2n (n ∈Z )时,2n π<θ2<2n π+π4 (n ∈Z ). ∴θ2为第一象限角, ∴sin θ2>0,cos θ2>0,sin θ2cos θ2>0. 当k =2n +1 (n ∈Z )时, 2n π+π<θ2<2n π+54π (n ∈Z ). ∴θ2为第三象限角, ∴sin θ2<0,cos θ2<0,sin θ2cos θ2>0,而4k π<2θ<4k π+π,k ∈Z ,cos 2θ有可能取负值.]14.解 ∵x =-15a ,y =8a ,∴r =-15a 2+8a 2=17|a | (a ≠0).(1)若a >0,则r =17a ,于是sin α=817,cos α=-1517. (2)若a <0,则r =-17a ,于是sin α=-817,cos α=1517.。
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。
1.4.1《任意角的正弦函数、余弦函数的定义》一、教学目标1.知识与技能目标(1)了解任意角的正弦函数、余弦函数定义产生的背景和应用;(2)掌握任意角的正弦函数与余弦函数的定义,正确理解三角函数是以实数为自变量的函数,并能应用.2.过程与方法目标(1)通过参与知识的“发现”与“形成”的过程,培养合理猜测的能力,体会函数模型思想,数形结合思想.(2)培养观察、分析、探索、归纳、类比及解决问题的能力.3.情感、态度、价值观目标在学习中感悟数学概念的合理性、严谨性、科学性.感悟数学的本质,培养追求真理的精神.通过本节的学习,使同学们对正弦函数与余弦函数有了一个全新的认识,通过对定义的应用,提高学生分析、解决问题的能力.二、教学重难点教学重点: 任意角的正弦函数与余弦函数的定义(包括定义域和函数值在各象限的符号)及其应用.难点: 任意角的正弦函数与余弦函数的定义及其构建过程的理解.三、教学方法与教学手段问题教学法、合作学习法结合多媒体课件四、教学过程(一)问题引入【投影展示】问题1:初中我们学过锐角 的正弦函数与余弦函数,同学们还记得它是怎样表示的吗?借助右图直角三角形,复习回顾. sin s rαα==的对边斜边,cos h rα==α的邻边斜边.问题2:锐角三角函数就是以锐角为自变量,以比值为函数值的函数,那么该比值会随着三角形的大小而改变吗?为什么?(根据相似三角形的知识可知该比值不会发生改变)(二)新知探究我们所学角的范围已经扩充到任意角,如果角α为任意角,显然初中正弦函数与余弦函数的定义已经不能满足我们的需求,我们必须重新定义正弦函数、余弦函数.今天,我们将在直角坐标系中,对此作深入探讨.【投影展示】问题3:如图,在直角坐标系中,我们作出一个以原点为圆心,以单位长度为半径的圆,该圆称为单位圆.设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,终边与单位圆交于点(,)P u v ,你能求出sin α与cos α的值吗?该值与点P 的坐标有什么关系呢?由学生自己探究,得出结论,sin v v rα==,cos uu rα==. 归纳总结:一般地,在直角坐标系中,给定单位圆,对于任意角α,使角α的顶点与原点重合,始边与x 轴正半轴重合,终边与单位圆交于点(,)P u v ,那么点P 的纵坐标v 叫作角α的正弦函数,记作sin v α=;点P 的横坐标u 叫作角α的余弦函数,记作cos u α=.通常,我们用x 表示自变量,即x 表示角的大小,用y 表示函数值,则得到任意角的正弦函数sin y x =,余弦函数cos y x =.【投影展示】问题4:在上述定义中,正、余弦函数的定义域与值域分别是什么?说明:x 表示角的大小,故可为全体实数,而在单位圆中显然[1,1]y ∈-,故值域为[1,1]-.【投影展示】问题5 如果知道角终边上一点P ,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?(由学生探讨)说明:三角函数的值与点(,)P x y 在终边上的位置无关,仅与角的大小有关.根据三角形相似对应边成比例可知,我们只需计算点(,)P x y到原点的距离r =,那么sin y rα==cos x rα==.因此任意角的正弦函数与余弦函数是以角度为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故它们也可以看成以实数为自变量的函数.【投影展示】问题6 当角α分别在第一、第二、第三、第四象限时,你能确定角α的正弦函数值、余弦函数值的正负吗?完成课本P14页表格.三角函数说明:正弦函数符号与所在象限记忆法则,从函数出发来记,“正弦上为正,余弦右为正,正切一、三正”;也可以从象限出发来记忆,即“一全为正,二正弦正,三正切正,四余弦正”.(三)新知应用【投影展示】例1在直角坐标系的单位圆中,4πα=-,(1)画出角α;(2)求出角α的终边与单位圆的交点坐标;(3)求出角α的正弦函数值、余弦函数值.(课本P14页例1)分析:只需求出交点坐标,套用定义即可求解. 变式训练1判断65sinπ与65cos π的符号,并通过计算进行验证. 【投影展示】例2已知角α终边上一点(3,2)P -,求角α的正弦函数值、余弦函数值.分析:该点并不是角的终边与单位圆的交点,所以应先计算||r OP =,再利用sin y r α=,cos xrα=求解.解:r ==所以siny r α===,cos x r α=== 【投影展示】变式训练2已知角α终边上一点(2,3)(0)P a a a -≠,求角α的正弦函数值、余弦函数值.【投影展示】变式训练3已知角α终边与直线1(0)3y x x =≤重合,求角α的正弦函数值、余弦函数值.若去掉“0x ≤”这个条件呢?说明:变式2中由于未注明a 的正、负,故需分情况讨论,旨在让同学们学会分类讨论思想,而变式3中并没有给出终边上一点的坐标,需要自己任意选取一特殊点的坐标求解,也可以作出单位圆与该射线或直线的交点,借助方程组的思想求出交点坐标,套用定义求解.(四)反思升华由学生自己从以下三方面进行反思小结,教师从知识层面和思想方法层面帮助学生整理本节课的小节:①本章的三角函数定义与初中时的定义有何异同? ②你能准确判断三角函数值在各象限内的符号吗? ③正弦函数与余弦函数的定义在应用时应注意什么呢? (五)作业布置【投影展示】课本P16页练习3,4,5填书上,P20页A 组1,3,做作业本上.补充作业:已知角α终边与直线2y x =重合,求sin cos αα+的值. (六)板书设计五、教学反思本节课整体效果是不错的,从熟知的初中的锐角三角函数到高中的任意三角函数,从旧知识到新知的扩展,对学生来讲较容易接受.课堂中的变式训练也使新知识能够以充分的应用,锻炼了学生的思维能力、考虑问题周密性,整节课学生始终处于探索与应用中.。
北师⼤版⾼中数学必修4-第⼀章三⾓函数-4正弦函数和余弦函数的定义与诱导公式-典题题库第⼀章三⾓函数-4正弦函数和余弦函数的定义与诱导公式⼀、选择题(共26⼩题,每⼩题5.0分,共130分)1.已知sin=,则sin的值为()A.B.-C.D.-【答案】C【解析】∵sin=,∴sin)=sin=sin=.2.使函数y=sin x递减且函数y=cos x递增的区间是()A.B.(k∈Z)C.(k∈Z)D.(k∈Z)【答案】D【解析】y=sin x的单调递减区间是[+2kπ,π+2kπ],k∈Z,y=cos x的递增区间是[π+2kπ,2π+2kπ],k∈Z,在区间(k∈Z)上y=sin x递减,y=cos x为递增函数,故D符合要求.3.函数f(x)=|sin x-cos x|+(sin x+cos x)的值域为()A. [-,]B. [-,2]C. [-2,]D. [-2,2]【答案】B【解析】由题意得f(x)==当x∈[2kπ+,2kπ+]时,f(x)∈[-,2];当x∈(2kπ-,2kπ+)时,f(x)∈(-,2).故可求得其值域为[-,2].4.函数f(a)=cos2θ+a cosθ-a(a∈[1,2],θ∈[,])的最⼩值是() A.C. 3+(-1)aD. cos2θ+2cosθ-2【答案】D【解析】∵θ∈[,],∴cosθ-1<0,∴f(a)=cos2θ+a cosθ-a=(cosθ-1)a+cos2θ在[1,2]上是减少的,∴f(a)的最⼩值为f(2)=cos2θ+2cosθ-2.5.函数y=sin2x-sin x+1(x∈R)的值域是()A. [,3]B. [1,2]C. [1,3]D. [,3]【答案】A【解析】令sin x=t,则y=t2-t+1=(t-)2+,t∈[-1,1],由⼆次函数性质,得当t=时,y取得最⼩值.当t=-1时,y取得最⼤值3,∴y∈[,3].6.函数y=sin2x+sin x-1的值域为()A. [-1,1]B.C.D.【答案】C【解析】y=sin2x+sin x-1=(sin x+)2-,当sin x=-时,y min=-;当sin x=1时,y max=1.7.若f(x)=a sin x+b(a,b为常数)的最⼤值是3,最⼩值是-5,则的值为()A.-4B. 4C. ±4D. 2【答案】C【解析】∵f(x)=a sin x+b(a,b为常数)的最⼤值是3,最⼩值是-5,∴b+|a|=3,且b-|a|=-5,解得b=-1,|a|=4,即b=-1,a=±4,∴=±4.8.已知函数y=sin x的定义域为,值域为,则b-的值不可能是()B.C.D.【答案】D【解析】∵y=sin x的定义域为,值域为,⽽sin=sin=,sin=-1,∴≤b≤,∴≤b-≤,∴b-∈[,].∵,,均在区间[,]内,⽽?[,].9.如果≥,那么sin x的取值范围为() A. [-,)B. (,1]C. [-,)∪(,1]D. [-,)【答案】C【解析】若≥,则0<≤,解得-≤x≤,且x≠,则-≤sin x≤1,且sin x≠,故sin x的取值范围为[-,)∪(,1].10.函数f(x)=,x∈(0,2π)的定义域是() A. [,]B. [,]C. [,]D. [,]【答案】B【解析】由题意得sin x≥,⼜x∈(0,2π)∴x∈. 11.函数y=的定义域是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【答案】B【解析】∵2sin x-1≥0,∴sin x≥,∴2kπ+≤x≤2kπ+(k∈Z). 12.下列函数中,与函数y=定义域相同的函数为() A.y=B.y=C.y=x e xD.y=【解析】∵函数y=的定义域为{x∈R|x≠0},∴对于A,其定义域为{x|x≠kπ}(k∈Z),故A不满⾜;对于B,其定义域为{x|x>0},故B不满⾜;对于C,其定义域为{x|x∈R},故C不满⾜;对于D,其定义域为{x|x≠0},故D满⾜.13.函数y=lg(sin x)的定义域为()A.(k∈Z)B. (2kπ,2kπ+π) (k∈Z)C.(k∈Z)D.(k∈Z)【答案】B【解析】由题意得sin x>0,函数的定义域为(2kπ,2kπ+π),k∈Z.14.函数f(x)的定义域为,则f(sin x)的定义域为()A.B.C.(k∈Z)D.∪(k∈Z)【答案】D【解析】∵函数f(x)的定义域为,∴-≤sin x≤,解得2kπ-≤x≤2kπ+或2kπ+≤x≤2kπ+(k∈Z),∴所求函数的定义域是∪(k∈Z).15.函数y=的定义域是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【答案】D【解析】由题意得cos x≥-,所以函数的定义域为(k∈Z).16.若⾓α∈(,π),则点P(sinα,cosα)位于()A.第⼀象限B.第⼆象限C.第三象限D.第四象限【解析】∵⾓α∈,∴sinα>0,cosα<0.∴点P(sinα,cosα)位于第四象限.17.当α为第⼆象限⾓时,-的值是()A. 1B. 0C. 2D.-2【答案】C【解析】∵α为第⼆象限⾓,∴sinα>0,cosα<0.∴-18.若三⾓形的两内⾓α,β满⾜:sinα·cosβ<0,则此三⾓形的形状为()A.锐⾓三⾓形B.钝⾓三⾓形C.直⾓三⾓形D.不能确定【答案】B【解析】因为三⾓形的两内⾓α,β满⾜:sinα·cosβ<0,⼜sinα>0,所以cosβ<0,所以90°<β<180°,故β为钝⾓.19.已知sinθcosθ<0,那么⾓θ是()A.第⼀或第⼆象限⾓B.第⼆或第三象限⾓C.第⼆或第四象限⾓D.第⼀或第四象限⾓【答案】C【解析】由题意知,sinθcosθ<0,则或,所以⾓θ在第⼆或第四象限.20.函数y=+的值域是()A. {2}B. {2,-2}C. {2,0,-2}D. {2,0}【答案】C【解析】当x是第⼀象限⾓时,sin x>0,cos x>0,则y=+=1+1=2;当x是第⼆象限⾓时,sin x>0,cos x<0,当x是第三象限⾓时,sin x<0,cos x<0,则y=+=-1-1=-2;当x是第四象限⾓时,sin x<0,cos x>0,则y=+=-1+1=0.综上可得函数y=+的值域是{2,-2, 0}.21.已知α是第⼆象限⾓,P(x,)为其终边上⼀点,且cosα=x,则x等于()A.B. ±C.-D.-【答案】D【解析】∵cosα===x,∴x=0(∵α是第⼆象限⾓,舍去)或x=(舍去)或x=-.22.已知⾓α的终边经过点(3,-4),则sinα+cosα的值为()A. ±B. ±C.-D.【答案】C【解析】由题意可得x=3,y=-4,r=5,∴sinα==-,cosα==,∴sinα+cosα=-.23.已知⾓α的终边经过点P(-b,4)且cosα=-,则b的值等于()A. 3B.-3C. ±3D. 5【答案】A【解析】∵⾓α的终边经过点P(-b,4)且cosα=-,∴cosα==-,则b>0,平⽅得=,即b2=9,解得b=3或b=-3(舍).24.已知⾓α的终边过点P(-8m,-6sin 30°),且cosα=-,则m的值为() A.-B.C.-D.【答案】B=-,解得m=.25.已知⾓α的终边过点P(-4m,3m)(m<0),则2sinα+cosα的值是() A. 1B.C.-D.-1【答案】C【解析】∵⾓α的终边过点P(-4m,3m)(m<0),∴r=|OP|===-5m,则2sinα+cosα=2×+=-+=-.26.已知⾓α的终边在射线y=-3x(x≥0)上,则sinαcosα等于()A.-B.C.D.-【答案】A【解析】∵在⾓α的终边所在的射线y=-3x(x≥0)上任意取⼀点M(1,-3),则x=1,y=-3,r=|OM|=,cosα==,sinα==,则sinαcosα=·=.⼆、填空题(共40⼩题,每⼩题5.0分,共200分)27.若函数f(x)满⾜f(+x)=sin x(x∈R),则f(x)等于_____.【答案】-cos x【解析】令+x=t,,则x=t-,∴f(+x)=f(t)=sin x=sin(t-),即f(t)=sin(t-)=-cos t,∴f(x)=-cos x.28.已知=,则cos(3π-θ)=____.【答案】【解析】由已知得:=?cosθ=-,所以cos(3π-θ)=-cosθ=.【答案】-【解析】cos(α+)=sin(-α-)=-sin(α+)=-.30.已知cos(α+)=-,则sin(α-)=____.【答案】【解析】∵cos(α+)=-,∴sin=sin[(α+)-]=-sin[-(α+)]=-cos(α+)=.31.已知f(n)=sin(n∈Z),则f(1)+f(2)+…+f(100)=________.。
双基限时练(四) 任意角的正弦函数、余弦函数的定
义
一、选择题
1.sin270°的值为( )
A .0
B .1
C .-1
D.12
答案 C
2.当α为第二象限角时,|sin α|sin α-|cos α|cos α的值是( )
A .1
B .0
C .2
D .-2 解析 ∵α为第二象限角,∴sin α>0,cos α<0.
故|sin α|sin α-|cos α|cos α=sin αsin α--cos αcos α=2.
答案 C
3.如下图,直线l 的倾斜角为2π3,且与单位圆交于P 、Q 两点,
则P 点的横坐标是( )
A.12 B .-12 C.3
2 D .-3
2
解析 cos 23π=-1
2,选B.
答案 B
4.点P (sin2014°,cos2014°)位于( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
解析 2014°=5×360°+214°为第三象限角,
∴sin2014°<0,cos2014°<0.
答案 C
5.若三角形的两个内角α,β满足cos α·sin β<0,此三角形必为
( )
A .锐角三角形
B .钝角三角形
C .直角三角形
D .以上三种情况均有可能
解析 ∵α,β为三角形的内角,
∴α,β∈(0,π),∴sin β>0.
又cos α·sin β<0,∴cos α<0,
故α∈(π
2,π),故三角形为钝角三角形.
答案 B
6.若sin θ<0,cos θ<0,则θ
2是( )
A .第一象限角
B .第二象限角
C .第三或第四象限角
D .第二或第四象限角
解析 由sin θ<0,cos θ<0知θ为第三象限角,由数形结合可得θ2为二、四象限角.
答案 D
7.角α的终边上有一点P (a ,a )(a ∈R 且a ≠0),则cos α的值是
( ) A.22
B .-22
C .±22
D .1
解析 cos α=a a 2+a 2=a 2|a |.当a >0时,cos α=22;当a <0时,cos α=-22.
答案 C
二、填空题
8.设θ∈(0,2π),点P (sin θ,cos θ)在第三象限,则角θ的取值范围是________.
解析 由题意得sin θ<0,cos θ<0,又θ∈(0,2π),
∴θ∈⎝ ⎛⎭
⎪⎫π,32π. 答案 ⎝ ⎛⎭
⎪⎫π,32π 9.如果角α的终边过点(3a -9,a +2),且cos α<0,sin α>0,那么α的取值范围是__________.
解析 由cos α<0,sin α>0,得α的终边在第二象限,可得⎩⎪⎨⎪⎧
3a -9<0,a +2>0,即-2<a <3. 答案 -2<a <3
10.如果α的终边过点(2sin30°,-2cos30°),那么sin α的值等于________.
解析 ∵2sin30°=2×12=1,
-2cos30°=-2×32=-3,∴α的终边过点(1,-
3), ∴sin α=-3
12+(-3)2=-3
2.
答案 -3
2
三、解答题 11.判断下面各式的符号:
(1)sin105°·cos230°;(2)sin 7π8·cos 7π
8;(3)cos6·sin6.
解 (1)∵105°,230°分别为第二、第三象限角.
∴sin105°>0,cos230°<0,∴sin105°·cos230°<0.
(2)∵π2<7π8<π,∴7π
8是第二象限角.
∴sin 7π8>0,cos 7π8<0,∴sin 7π8·cos 7π
8<0.
(3)∵3π
2<6<2π,
∴6弧度的角为第四象限角.
∴cos6>0,sin6<0,∴cos6·sin6<0.
12.若sin2θ>0且cos θ<0,试确定θ所在的象限.。