高一数学 正弦函数图像
- 格式:ppt
- 大小:815.50 KB
- 文档页数:12
高一数学春季班(教师版)教师日期学生课程编号课型同步复习课课题正弦、余弦函数图像及其性质教学目标1.理解正弦、余弦函数的概念以及图像;2.掌握其奇偶性、单调性、值域及最值;3.学会从研究函数的角度解决实际问题.教学重点1.掌握正余弦函数的各种性质及应用;2.学会从多个角度分析函数.教学安排版块时长1 知识梳理102 例题解析603 巩固训练304 师生总结205 课后练习30 ……1、正弦线:设任意角α的终边与单位圆相交于点),(y x P ,过P 作x 轴的垂线,垂足为M ,则有MP ry==αsin ,向线段MP 叫做角α的正弦线. 2、用单位圆中的正弦线作正弦函数x y sin =,]2,0[π∈x 的图象(几何法):y=sin x, x ∈[0, 2π]M 1P 1M 2P 2M 1’P 1’M 2’P 2’1-1π2π xyO 2π32π'O3、用五点法作正弦函数的简图(描点法):正弦函数x y sin =,]2,0[π∈x 的图象中,五个关键点是:)0,0( )1,2(π )0,(π )1,23(-π)0,2(π4、正弦函数R x x y ∈=,sin 的图像:把x y sin =,]2,0[π∈x 的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为π2,就得到R x x y ∈=,sin 的图像,此曲线叫做正弦曲线。
正弦、余弦函数的图像与性质知识梳理由正弦函数图像可知: (1)定义域:R(2)值域:[]1,1- ; 正弦线的长度小于或等于单位圆的半径的长度,所以1|sin |≤x , 即1sin 1≤≤-x ,也就是说,正弦函数的值域是]1,1[-亦可由正弦图像直接得出。
(3)奇偶性:奇函数由x x sin )sin(-=-可知:x y sin =为奇函数,正弦曲线关于原点O 对称 (4)单调递增区间:z k k k ∈⎥⎦⎤⎢⎣⎡+-,22,22ππππ; (5)单调递减区间:z k k k ∈⎥⎦⎤⎢⎣⎡++,232,22ππππ; (6)对称中心:(0,πk ); (7)对称轴:2ππ+=k x(8)最值:当且仅当,22ππ+=k x y 取最大值1max =y ;当且仅当,232ππ+=k x y 取最小值1min -=y 。