双样本t检验
- 格式:ppt
- 大小:135.00 KB
- 文档页数:22
Excel 中双样本t 检验之等方差异方差假设成组资料(非配对资料)的t 检验,是生物统计中必须掌握的基本技能贮备之一。
在Excel 完全安装情况下,加载“分析工具库”,之后会在菜单上出现“数据分析”选项,我们会发现“分析工具”中有两个选项,分别是:“t 检验:双样本等方差假设”、“t 检验:双样本异方差假设”。
那么,对于成组资料t 检验,什么时候用等方差,什么时候用异方差呢?最好的办法就是进行“F 检验 双样本方差”齐性检验。
如果通过检验,两个样本方差差异不显著,则选用“t 检验:双样本等方差假设”,如果两样本方差差异显著,则选用“t 检验:双样本异方差假设”。
例:有人曾对公雏鸡作了性激素效应试验。
将22只公雏鸡完全随机地分为两组,每组11只。
一组接受性激素A (睾丸激素)处理;另一组接受激素C (雄甾烯醇酮)处理。
在第15天取它们的鸡冠个别称重,所得数据如下表。
题解:在excel 中录入数据,在菜单“数据分析”中,选择“F 检验 双样本方差”,选择A1:A12”所在区域为“变量1的区域”,选择“B1:B12”区域为“变量2 的区域”。
勾选标志“a (A )”,默认为0.05,在输出区域中随便找一个单元格(如单元格D1), “确定”(见图1)。
图1 双样本方差的F-检验图2 t-检验:双样本等方差假设检验 从上图可以看出,p=0.4452221﹥0.05,表示激素A 与激素C 的对应的鸡冠,方差差异不显著。
换言之,就是样本A 与样本B 为等方差,在t 检验时,就选择“t 检验:双样本等方差假设”,得到图2结果。
从图2输出结果可以看出,t检验的结果是p=0.003000143﹤0.01,表明差异极显著。
也就是说,激素A 处理的鸡冠重(97mg )极显著地高于激素C 处理的鸡冠重(56mg )。
目前不管是本科教材,还是高职高专教材,生物统计仍是以公式手动计算为主,所采用的基本都是按照“t 检验:双样本等方差假设”,而且很多资料也表示,如果双样本都来源于同一总体,可以采用“t 检验:双样本等方差假设”。
利用SAS解决两个独立样本的t检验班级:学号:指导教师:姓名:目录1. SAS简介 (2)1.1 SAS的设计思想 (2)1.2 SAS的功能 (2)1.3 SAS的特点 (3)2. 方法及原理——两个独立样本的t检验 (4)2.1假设检验的思想和步骤 (4)2.2 t检验的原理与方法 (4)2.3 检验统计量t的公式 (5)2.4两个独立样本的t检验的步骤 (5)3.SAS常用命令 (6)4.题目与解答 (6)4.1题目 (6)4.2解答与分析 (6)1. SAS简介SAS是美国使用最为广泛的三大著名统计分析软件(SAS,SPSS和SYSTAT)之一,是目前国际上最为流行的一种大型统计分析系统,被誉为统计分析的标准软件。
SAS为“Statistical Analysis System”的缩写,意为统计分析系统。
它于1966年开始研制,1976年由美国SAS软件研究所实现商品化。
1985年推出SAS PC 微机版本,1987年推出DOS下的SAS6.03版,之后又推出6.04版。
以后的版本均可在WINDOWS下运行,目前最高版本为SAS6.12版。
SAS集数据存取,管理,分析和展现于一体,为不同的应用领域提供了卓越的数据处理功能。
它独特的“多硬件厂商结构”(MV A)支持多种硬件平台,在大,中,小与微型计算机和多种操作系统(如UNIX,MVS WINDOWS 和DOS等)下皆可运行。
SAS 采用模块式设计,用户可根据需要选择不同的模块组合。
它适用于具有不同水平于经验的用户,处学者可以较快掌握其基本操作,熟练者可用于完成各种复杂的数据处理。
目前SAS已在全球100多个国家和地区拥有29000多个客户群,直接用户超过300万人。
在我国,国家信息中心,国家统计局,卫生部,中国科学院等都是SAS系统的大用户。
SAS以被广泛应用于政府行政管理,科研,教育,生产和金融等不同领域,并且发挥着愈来愈重要的作用。
SPSS统计分析示例2(两样本均值t检验)例一:对两个品系株高、穗长和穗重进行平均值t检验:Analyze →Compare Means → Independent-samples T test…按品系不同分组’Grouping’,分别比较株高、穗长、穗重SPSS输出:汇总表:品系I 品系II t 株高cm(M±SD) 121.80±16.98 96.40±5.89 4.468**穗长cm(M±SD) 41.50±4.48 38.40±9.74 0.914穗重g (M±SD) 1.54±0.28 1.45±0.48 0.511**:P<0.01从t检验的结果看:(1)株高数据不满足方差齐性,用近似t检验,t=4.468 (df=11.136), 双侧检验P=0.001<<0.01,两品系的株高具有极显著差异,品系I株高显著大于品系II(2)穗长数据不满足方差齐性,用近似t检验,t=0.914 (df=12.640), 双侧检验P=0.378>0.05,两品系的穗长无显著差异(3)穗重数据满足方差齐性,用t检验,t=0.511 (df=18), 双侧检验P=0.615>0.05,两品系的穗重无显著差异例二:将20名某病患者随机分为两组,分别用甲乙两药治疗,测得治疗前后的血沉(mm/小时)如下表:试分甲乙两药是否有疗效?两药疗效是否有差异?并用图或表对数据和结果进行描述。
1.对两种药物治疗效果比较的统计分析(以下结果均使用SPSS统计软件获得)(1)对甲药疗效做配对t检验:治疗前后血沉值的差值的配对检验SPSS结果显示:t=5.237(df=9),单侧检验P=0.001/ 2 = 0.0005<0.01,结论甲药疗效极显著。
(2)对乙药疗效做配对t检验:治疗前后血沉值的差值的配对检验SPSS结果显示:t=5.303(df=9),单侧检验P<<0.01,结论乙药疗效极显著。
excel双样本t检验法的计算方法摘要:1.Excel双样本T检验的概念与原理2.准备工作:数据准备与输入3.执行双样本T检验:步骤与操作4.解读结果:假设检验与结论5.实际应用案例与注意事项正文:在数据分析和统计研究中,Excel双样本T检验法被广泛应用于比较两组数据的均值是否存在显著差异。
本文将详细介绍Excel双样本T检验的计算方法,包括操作步骤、结果解读以及实际应用案例。
1.Excel双样本T检验的概念与原理双样本T检验是一种统计分析方法,用于检验两个独立样本的均值是否存在显著差异。
它基于t分布理论,通过计算t统计量及其对应的p值来判断假设检验的结果。
2.准备工作:数据准备与输入在进行双样本T检验之前,需要首先准备好两组要分析的数据。
这两组数据可以来自不同来源、不同时间或不同条件下收集。
确保数据具有可比性,例如单位、尺度等要保持一致。
将数据输入Excel,建议将两组数据分别放在两个工作表中,以便于进行数据分析。
通常,第一列表示样本编号或组别,后续列表示各样本的观测值。
3.执行双样本T检验:步骤与操作在Excel中进行双样本T检验,可以遵循以下步骤:步骤1:打开Excel,点击“数据”菜单,选择“数据分析”。
步骤2:在“数据分析”对话框中,选择“t-检验:双样本假设检验”模块。
步骤3:分别选取两组数据所在的工作表和输出区域。
步骤4:点击“确定”,等待Excel计算结果。
4.解读结果:假设检验与结论Excel会输出双样本T检验的结果,包括t统计量、p值以及结论。
根据p 值与预设的显著性水平(通常为0.05)进行比较,可以得出以下结论:- 如果p值小于显著性水平,说明两组数据的均值存在显著差异;- 如果p值大于显著性水平,不能拒绝原假设,即两组数据的均值之间没有显著差异。
5.实际应用案例与注意事项实际应用中,双样本T检验可用于比较不同实验组之间的效果、评估干预措施的有效性等。
在进行双样本T检验时,请注意以下几点:- 确保数据具有可比性,如单位、尺度一致;- 检查数据是否存在异常值,如有需要,进行数据清洗;- 选择合适的显著性水平,根据实际情况调整;- 注意样本容量,确保样本足够大以获得可靠结果。
两样本t检验计算公式1.对于两个独立样本的t检验:t=(x1-x2)/√(s1^2/n1+s2^2/n2)其中t表示t值;x1和x2分别表示两个样本的均值;s1和s2分别表示两个样本的标准差;n1和n2分别表示两个样本的样本容量。
2.对于两个相关样本的t检验:t = (x1 - x2) / (sdiff / √n)其中t表示t值;x1和x2分别表示两个样本的均值差;sdiff表示两个样本的均值差的标准差;n表示样本容量。
接下来,我们将具体介绍两个不同情况下的两样本t检验计算过程。
一、独立样本t检验计算过程:1.收集两个样本的数据并计算样本均值和样本标准差;2.计算两个样本的样本容量;3.计算两个样本的方差;4.根据计算得到的数据,带入公式计算t值;5.查表或使用统计软件计算得到的t值对应的P值;6.对比P值与设定的显著性水平(通常为0.05),如果P值小于显著性水平,则可以拒绝原假设,即认为样本均值存在显著差异;反之,接受原假设,即认为样本均值不存在显著差异。
二、相关样本t检验计算过程:1.收集两个样本的相关数据并计算样本均值差;2.计算样本均值差的标准差;3.计算样本容量;4.根据计算得到的数据,带入公式计算t值;5.查表或使用统计软件计算得到的t值对应的P值;6.对比P值与设定的显著性水平(通常为0.05),如果P值小于显著性水平,则可以拒绝原假设,即认为样本均值存在显著差异;反之,接受原假设,即认为样本均值不存在显著差异。
需要注意的是,在进行两样本t检验前,需要满足以下前提条件:1.数据来自正态分布的总体;2.数据具有相同的方差;3.对于独立样本t检验,两个样本之间应相互独立;4.对于相关样本t检验,两个样本之间应具有相关性。
总结起来,两样本t检验是一种比较两个样本均值是否有显著差异的统计方法,通过计算t值和P值来进行假设检验。
根据计算得到的P值是否小于设定的显著性水平,判断两个样本的均值是否存在显著差异。
双样本t检验
双样本t检验是一种用于比较两个独立样本均值差异的统计方法。
它的假设是两个样本来自于正态分布总体,并且两个样本方差相等。
双样本t检验的步骤如下:
1. 建立假设:
- 零假设(H0):两个样本的均值相等。
- 备择假设(H1):两个样本的均值不相等。
2. 计算样本均值:
- 计算第一个样本的均值(X1)和标准差(s1)。
- 计算第二个样本的均值(X2)和标准差(s2)。
3. 计算t统计量:
- 计算t统计量(t)= (X1 - X2) / sqrt(sp^2/n1 + sp^2/n2),其中sp^2 = ((n1-1)s1^2 + (n2-1)s2^2) / (n1 + n2 - 2),n1和n2分别为第一个和第二个样本的样本容量。
4. 计算p值:
- 根据计算得到的t统计量和自由度(n1 + n2 - 2),查找t分布表,找到相应的临界值。
- 根据临界值和双侧检验或单侧检验的要求,计算p值。
5. 做出决策:
- 如果p值小于设定的显著性水平(通常为0.05),则拒绝零假设,认为两个样本均值存在显著差异。
- 如果p值大于设定的显著性水平,则接受零假设,认为两个样本均值无显著差异。
需要注意的是,以上步骤基于一些前提条件,如正态分布的假设和方差相等的假设。
如果数据不满足这些假设,可以考虑使用非参数方法进行比较,如Wilcoxon秩和检验或Mann-Whitney U检验。
统计学两样本均数比较的t检验统计学中,两样本均数比较是一种常见的数据分析方法。
这种方法又称为t检验,主要用于比较两组数据的均值是否有显著差异。
t检验分为独立样本t检验和配对样本t检验两种。
独立样本t检验用于比较两组独立样本的均值;配对样本t检验则用于比较同一组样本在不同时间或者不同条件下均值的变化。
本文将重点介绍独立样本t检验的原理、假设检验及其应用。
独立样本t检验的原理独立样本t检验的原理基于中心极限定理,即当样本大小足够大时,样本均数的分布近似正态分布。
在均值比较问题中,我们对两个总体做出如下假设:- 零假设:两个总体的均值相等。
- 备择假设:两个总体的均值不相等。
考虑两个独立的样本,样本容量分别为n1和n2。
我们可以计算出两个样本的样本均数和样本标准差,分别记作x1、s1和x2、s2。
接下来,我们根据两个样本均数和方差的差异,计算t值。
t值可以用以下公式表示:t= (x1 - x2) / (√(s1²/n1 + s2²/n2))如果t值比较大,则说明两个样本的均值差异比较显著,从而我们可以拒绝零假设。
在独立样本t检验中,我们需要进行假设检验,以确定两个总体均值是否相等。
在进行假设检验时,我们通常会采用0.05的显著性水平,即拒绝零假设的概率为5%。
具体做法如下:1. 建立假设在进行独立样本t检验时,我们需要建立零假设和备择假设。
零假设指两个总体的均值相等,备择假设指两个总体的均值不相等。
通常,我们会先假设两个总体的均值相等,即零假设为H0: μ1 = μ2,备择假设为H1: μ1 ≠μ2。
2. 计算t值计算t值时,我们需要用到样本数据的均数、标准差和样本量。
根据公式计算出t 值。
3. 确定自由度自由度是指在样本数据中自由变动的部分,通常计算方法为自由度=(样本量1-1)+(样本量2-1)。
4. 查找t分布表在t分布表中查找对应的临界值,以确定t值是否显著。
查找时需要指定显著性水平和自由度。
双样本t检验的原假设
双样本t检验是一种常用的假设检验方法,用于比较两个样本的均值是否存在显著差异。
在进行双样本t检验时,我们需要先制定原假设和备择假设。
本文将讨论双样本t检验的原假设,包括其定义、意义和应用场景。
定义
原假设是指在假设检验中所提出的关于总体参数的某种假设,通常用H0表示。
在双样本t检验中,原假设通常是指两个样本的均值相等,即μ1 = μ2。
这意味着两个样本来自同一总体,其均值没有显著差异。
意义
原假设的设定是为了进行假设检验,以验证某种假设是否成立。
在双样本t检验中,如果我们无法拒绝原假设,就意味着两个样本的均值没有显著差异。
这可能有多种原因,例如两个样本来自同一总体,或者两个样本在总体均值上存在一定的差异,但是这种差异并不显著。
应用场景
双样本t检验通常应用于以下两种情况:
1.比较两个独立样本的均值是否有显著差异。
例如,我们想要比较男性和女性在身高方面是否存在显著差异。
我们可以分别抽取一组男性和女性的样本,然后进行双样本t检验,检验两组样本的身高均值是否有显著差异。
2.比较两个相关样本的均值是否有显著差异。
例如,我们想要比较一组学生在两次考试中的成绩是否存在显著差异。
我们可以抽取一组学生的两次考试成绩,然后进行双样本t检验,检验两次考试成绩的均值是否有显著差异。
双样本t检验的原假设通常是指两个样本的均值相等,如果我们无法拒绝原假设,就意味着两个样本的均值没有显著差异。
双样本t 检验通常应用于比较两个独立或相关样本的均值是否存在显著差异。