C O E B
A
D
课
堂
小
结
1、相交线的概念。
2、对顶角的定义。 3、对顶角的性质:对顶角相等
ቤተ መጻሕፍቲ ባይዱ
布置作业
1、作业本 2、课后练习
C E D
A
B
62°
O
1、已知两条直线相交所成的四个角中有一 个角是55度,则其余三个角的度数分别是 ________,________,________。 2、如图三条直线相交于一点,则
∠1+∠2+∠3=________。 1
3 2
3、如图直线AB,CD相交于点O,OB平分 ∠DOE,若∠DOE=64°,求∠AOC的度数
O
2
B
A
1 2
D
O
1、顶点相同
C
B
2、角的两条边互为反向延长线
例1.如图,三条直线相交于一点O,说出
图中的对顶角.
解: 对顶角有
∠BOD ∠AOC与______; ∠DOF ∠COE与______; ∠FOA ∠EOB与______; ∠BOF ∠AOE与______; ∠EOD ∠FOC与______; ∠AOD与______; ∠BOC
有6组对顶角.
为什么?
1 2
B
C
2.如图,∠1=∠2,∠3=∠4,它们是对顶角吗?
3
4
做一做
3、如图,点O是直线AB上的一点, ∠COD=179°,∠1和∠2是对顶角吗?
请说明理由。
C
1
B O
2
A
D
例2.如图,已知直线AD与BE相交于点
O,∠DOE与∠COE互余,∠COE=62°,求 ∠AOB的度数.