2017_2018版高中数学第二章函数1生活中的变量关系学案北师大版必修1
- 格式:doc
- 大小:146.00 KB
- 文档页数:7
教学设计§1生活中的变量关系错误!教学分析在学生学习用集合语言刻画函数之前,学生已经把函数看成变量之间的依赖关系.生活中的变量关系一节,从高速公路的实例引入,“思考交流"则引导学生对类似的情境,如邮局、机场等进行思考并与同伴交流.安排了函数关系与非函数关系的对比.教学中一定要注意以人为本,要尊重学生,为了学生,调动学生参与到教学中.值得注意的是在本节的教学中,一定要给学生“留白”,即为学生留下必要的时间和空间让其自主地活动.当然,学生的数学活动必须以学生的思维为基础,可以是动手实践,也可以是平静的思考.思维,必须以学生独立的悟为前提,在独立思考的前提下,再强调必须与同伴的交流与合作;思维,必须以抓住知识的本质为目的,不能只求热闹.对教材中的“思考交流”应该组织学生进行讨论,不能一说而过.三维目标1.通过公路上的实际例子,引起积极的思考和交流,从而使学生认识到生活中处处可以遇到变量间的依赖关系.2.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.培养学生广泛的联想能力,树立热爱数学的态度.重点难点区分生活中的变量关系是否为函数关系.课时安排1课时错误!导入新课思路1。
现实世界中充满了变化,静止是相对的,运动是永恒的.我们的生活中存在着各种各样的变量关系,其中函数关系是描述这种变化的重要数学模型,也是数学的基本概念,函数思想是研究问题的重要数学思想之一.今天我们学习如何确定函数关系,教师引出课题.思路2。
人的体重和身高是函数关系吗?小麦的亩产量与亩施肥量是函数关系吗?正方体的体积和棱长是函数关系吗?如何判断呢?这就是本节课学习的内容,教师引出课题.推进新课错误!错误!1说出初中所学函数定义?2如何确定两个变量之间是函数关系?讨论结果:(1)函数定义:设在一个变化过程中有两个变量x 与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数,y是因变量.(2)定义法:当且仅当变量x每取一个值,另一个变量y总有唯一确定的值与之对应时,变量x,y之间具有函数关系,并且,y是x 的函数.错误!思路1例1 我国自1998年开始建设高速公路,全国高速公路通车总里程,于1998年底,位居世界第八;1999年底,位居世界第四;2000年底,位居世界第三;2001年底,超过了加拿大,跃居世界第二位.(如下表)1988—2001年全国高速公路总里程单位:千米年份1988198919901991199219931994总里程14727152257465211451603年份1995199619971998199920002001图1问:(1)高速公路里程数是年度的函数吗?(2)高速公路里程数与年度的变化有什么特点?活动:学生回顾函数的定义及确定函数关系的方法,教师适当提示或点拨.解:不难看出:(1)高速公路里程数随年度的变化而变化.所以,高速公路里程数可以看成因变量,年度看成自变量,从而高速公路里程数是年度的函数.(2)从1988年到2001年,里程数是不断增加的,其中从1999年到2000年增长得最快.点评:本题主要考查函数的定义.变式训练一辆汽车在高速公路上行驶的过程中,请指出哪些变量是时间的函数.解:一辆汽车在高速公路上行驶的过程中,每个时刻都有唯一的行驶路程与它对应.行驶路程(因变量)随时间(自变量)的变化而变化,故行驶路程是时间的函数.同样,汽车的速度、耗油量也是时间的函数.例2 图2是某高速公路加油站的图片,加油站常用圆柱体储油罐储存汽油.储油罐的长度d、截面半径r是常量;油面高度h、油面宽度ω、储油量v是变量.这些变量中,请指出哪两个具有依赖关系,哪两个变量具有函数关系.图2活动:学生结合生活经验思考.教师可提示,也可介绍相关知识.解:储油量v与油面高度h存在着依赖关系,储油量v与油面宽度ω也存在着依赖关系.并非有依赖关系的两个变量都有函数关系.只有满足对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称它们之间有函数关系.对于油面高度h的每一个取值,都有唯一的储油量v和它对应,所以,储油量v是油面高度h的函数.而对于油面宽度ω的一个值可以有两种油面高度和它对应,于是可以有两种储油量v 和它对应,所以,储油量v不是油面宽度ω的函数.点评:本题主要考查依赖关系和函数关系及其区别.由本题可见,函数关系一定是依赖关系,而依赖关系不一定是函数关系。
教学设计§1生活中的变量关系整体设计教学分析在学生学习用集合语言刻画函数之前,学生已经把函数看成变量之间的依赖关系.生活中的变量关系一节,从高速公路的实例引入,“思考交流”则引导学生对类似的情境,如邮局、机场等进行思考并与同伴交流.安排了函数关系与非函数关系的对比.教学中一定要注意以人为本,要尊重学生,为了学生,调动学生参与到教学中.值得注意的是在本节的教学中,一定要给学生“留白”,即为学生留下必要的时间和空间让其自主地活动.当然,学生的数学活动必须以学生的思维为基础,可以是动手实践,也可以是平静的思考.思维,必须以学生独立的悟为前提,在独立思考的前提下,再强调必须与同伴的交流与合作;思维,必须以抓住知识的本质为目的,不能只求热闹.对教材中的“思考交流”应该组织学生进行讨论,不能一说而过.三维目标1.通过公路上的实际例子,引起积极的思考和交流,从而使学生认识到生活中处处可以遇到变量间的依赖关系.2.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.培养学生广泛的联想能力,树立热爱数学的态度.重点难点区分生活中的变量关系是否为函数关系.课时安排1课时教学过程导入新课思路 1.现实世界中充满了变化,静止是相对的,运动是永恒的.我们的生活中存在着各种各样的变量关系,其中函数关系是描述这种变化的重要数学模型,也是数学的基本概念,函数思想是研究问题的重要数学思想之一.今天我们学习如何确定函数关系,教师引出课题.思路 2.人的体重和身高是函数关系吗?小麦的亩产量与亩施肥量是函数关系吗?正方体的体积和棱长是函数关系吗?如何判断呢?这就是本节课学习的内容,教师引出课题.推进新课新知探究提出问题(1)说出初中所学函数定义?(2)如何确定两个变量之间是函数关系?讨论结果:(1)函数定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数,y是因变量.(2)定义法:当且仅当变量x每取一个值,另一个变量y总有唯一确定的值与之对应时,变量x,y之间具有函数关系,并且,y是x的函数.应用示例思路1例1 我国自1998年开始建设高速公路,全国高速公路通车总里程,于1998年底,位居世界第八;1999年底,位居世界第四;2000年底,位居世界第三;2001年底,超过了加拿大,跃居世界第二位.(如下表)1988—2001年全国高速公路总里程单位:千米年份1988198919901991199219931994总里程147271522574652 1 145 1 603年份1995199619971998199920002001总里程 2 141 3 422 4 7718 73311 60516 31419 453图1问:(1)高速公路里程数是年度的函数吗?(2)高速公路里程数与年度的变化有什么特点?活动:学生回顾函数的定义及确定函数关系的方法,教师适当提示或点拨.解:不难看出:(1)高速公路里程数随年度的变化而变化.所以,高速公路里程数可以看成因变量,年度看成自变量,从而高速公路里程数是年度的函数.(2)从1988年到2001年,里程数是不断增加的,其中从1999年到2000年增长得最快.点评:本题主要考查函数的定义.变式训练一辆汽车在高速公路上行驶的过程中,请指出哪些变量是时间的函数.解:一辆汽车在高速公路上行驶的过程中,每个时刻都有唯一的行驶路程与它对应.行驶路程(因变量)随时间(自变量)的变化而变化,故行驶路程是时间的函数.同样,汽车的速度、耗油量也是时间的函数.例2 图2是某高速公路加油站的图片,加油站常用圆柱体储油罐储存汽油.储油罐的长度d、截面半径r是常量;油面高度h、油面宽度ω、储油量v是变量.这些变量中,请指出哪两个具有依赖关系,哪两个变量具有函数关系.图2活动:学生结合生活经验思考.教师可提示,也可介绍相关知识.解:储油量v与油面高度h存在着依赖关系,储油量v与油面宽度ω也存在着依赖关系.并非有依赖关系的两个变量都有函数关系.只有满足对于其中一个变量的每一个值,另一个变量都有唯一确定的值时,才称它们之间有函数关系.对于油面高度h的每一个取值,都有唯一的储油量v和它对应,所以,储油量v是油面高度h的函数.而对于油面宽度ω的一个值可以有两种油面高度和它对应,于是可以有两种储油量v和它对应,所以,储油量v 不是油面宽度ω的函数.点评:本题主要考查依赖关系和函数关系及其区别.由本题可见,函数关系一定是依赖关系,而依赖关系不一定是函数关系.变式训练1.进一步分析上述储油罐的问题,讨论:(1)还有哪些常量?哪些变量?(2)哪些变量之间存在依赖关系?(3)哪些依赖关系是函数关系?哪些依赖关系不是函数关系?解:(1)常量有圆柱底面积、油罐容积、油的密度等,变量有油的体积、圆柱底面上的弓形面积等;(2)依赖关系有:储油量和油的体积,储油量和圆柱底面上的弓形面积,油的体积和油面宽度;(3)储油量是油的体积的函数,油的体积也是储油量的函数,储油量是圆柱底面上的弓形面积的函数,油的体积不是油面宽度的函数.2.请列举一些与公路交通有关的函数关系.解:如修路中所花的费用和所修公路长度是函数关系等.3.请思考在其他情境下存在的函数关系,例如邮局、机场等.解:在邮局中,邮资是邮件重量的函数等.在机场,飞机票价是路程的函数等.思路2例1 在学校里你能发现哪些函数关系?活动:仔细观察,联系学校中老师、学生、师生的生活、校内物品等.解:(1)学生的学号是学生的函数;(2)教学任务是老师的函数;(3)学校的用电量是时间的函数,用水量也是时间的函数.点评:本题考查观察能力及发现问题、分析问题的能力.变式训练1.已知集合A={1,2,3,4,5},集合B={2,4,6,8}.集合A中的元素乘2.若A中的元素为自变量,B中的元素为因变量,能形成函数吗?答案:不能.因为A中的元素5的2倍为10,并没有在集合B中.2.在矩形中,若面积值作为自变量,其中一边长为因变量,能形成函数吗?答案:不能.因为面积一定时,其中一边的长不确定.3.某人骑车的速度是20千米/时.他骑1.5小时,走的路程是多少?你能写出时间与路程的函数吗?答案:1.5小时走的路程是20×1.5=30(千米).设时间为t,路程为s,则s=20t(t≥0).4.由下列式子是否能确定y是x的函数?(1)x2+y2=2;(2)x-1+y-1=1;(3)y=x-2+1-x.解:(1)由x2+y2=2,得y=±2-x2,因此由它不能确定y是x的函数;(2)由x-1+y-1=1,得y=(1-x-1)2+1,所以当x在{x|x≥1}中任取一值时,由它可以确定一个唯一的y与之对应,故由它可以确定y是x的函数;(3)由{x-2≥0,1-x≥0得x∈ ,故x无值可取,y不是x的函数.例2 新华网北京2006年3月24日电:中国卫生部24日通报,上海市确诊一例人感染高致病性禽流感病例,患者3月13日发病,后因病情加重,经抢救无效,于3月21日死亡.为了更好地对付禽流感病毒,某医药研究所开发一种新药,如果成人按规定的剂量服用,据检测,服药后每毫升血液中含药量y(毫克)与时间x(小时)之间近似满足图3所示的曲线关系.请根据图3中给出的变化曲线,试判断每毫升血液中含药量y(毫克)与时间x(小时)之间是否构成函数关系.图3解:时间的变化范围是数集A={x|x≥0},每毫升血液中含药量y(毫克)的变化范围是数集B={y|4≥y≥0},并且,对于数集A中的每一个时间x,按照图中的曲线,数集B中都有唯一确定的y与它相对应.所以每毫升血液中含药量y(毫克)是时间x(小时)的函数.点评:本题主要考查实际问题中的函数关系.变式训练从20世纪70年代开始,我国就致力于控制人口过快增长,并逐步制定和完善了严格控制人口增长的政策措施.2002年我国颁布了第一部《人口与计划生育法》,将计划生育从一项基本国策上升为国家法律.根据国家统计局普查资料显示,我国人口再生产类型已经转入低生育、低死亡、低增长的发展阶段,进入了世界低生育水平国家行列.2005年底,我国总人口为13.075 6亿人,约占世界人口的20.12%.自实行计划生育以来,全国累计少生人口近3.1个亿.图4请根据图4中给出的我国人口出生率变化曲线,试判断我国人口出生率p和时间t(年)是否构成函数关系.解:时间t 的变化范围是数集A ={t |t ≥1950},我国人口出生率p 的变化范围是数集B ={p |p ≥0},并且,对于数集A 中的每一个时间t ,按照图中的曲线,数集B 中都有唯一确定的p 与它相对应,所以我国人口的出生率p 是时间t (年)的函数.知能训练1.自由落体运动中,有哪几个常量,哪几个变量?这些变量之间有怎样的关系? 答案:常量有:自由落体的质量和重力加速度;变量有:时间t 、速度v 和位移s ,其中,速度依赖时间变化,关系是v =gt ;位移也依赖时间变化,关系是s =12gt 2.2.银行的存款利息表算不算函数? 答案:是函数关系.拓展提升思考:字母一定是变量吗?探究:一般地,在研究一个问题的变化过程中,变量通常是一个字母,也就是说,只有字母才可以取不同的值来表示不同的量,那就是变量.但能否这样说,在变化过程中,字母就一定是变量呢?答案是否定的.例如,我们所熟悉的二次函数y =ax 2(a ≠0),它表示y 与x 之间存在依赖关系,这时,x 、y 都是变量,它表示的是y 关于x 的函数.虽然函数随着a 的变化而表示不同的函数,但它是二次项的系数,是一个常量.如果把y =ax 2看作表示y 与a 只存在依赖关系,则y =ax 2=x 2a 在x ≠0时是一个y 关于a 的一次函数,这里y ,a 是变量,x 是常量.课堂小结本节课学习了:用定义法判断变量之间的函数关系.作业习题2—1 A 组1,2.设计感想本节课内容比较简单,在设计过程中,注重了与下节函数概念的联系.备课资料【例1】 下表展示了我国从1998年到2002年每年的国内生产总值.年份生产总值(亿元)答案:是函数关系.【例2】农业科学家研究玉米的生长过程,把生长过程分为32个时间段,通过实验得到了各时间段与植株高度之间的相关数据,如图5所示.图5观察上图,植株高度是时间的函数吗?答案:是函数关系.。
生活中的变量关系【教材分析】现实世界充满着变量,一些变量之间存在着依赖关系,函数是揭示变量间依赖关系的重要的数学概念,它是现代数学最基本的概念,在解决实际问题中发挥着重要作用.本节内容主要学生更好的认识到生活处处有数学,只要做个有心人,我们可以随时随地学习数学【教学目标与核心素养】一、教学目标:1.通过生活中的实际例子,引起学生积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系与函数关系的联系与区别。
2.培养学生类比分析问题的能力,并通过对现实生活中依赖关系的观察、分析归纳和比较来提高学生的实践能力.二、核心素养1.数学抽象:初中对函数概念的理解2.逻辑推理:借助初中所学的变量之间的关系,分析生活中变量的关系,将函数运用于实际生活中,更能体现数学知识无处不在3.数学运算:根据变量之间的关系,列出相应函数关系式,从而解决实际问题4.直观想象:通过有些函数图像的画法,了解什么是分段函数。
5.数学建模:利用函数变量的关系,对于生活中,牵扯到有关变量的实际问题,我们都可以构建数学模型,更好的解决一些问题。
【教学重点】在于让学生领悟生活中处处有变量,变量之间充满了关系【教学难点】依赖关系和函数关系的差别【教学准备】PPT【教学过程】1.知识探究:例1:图2-1是某高速公路加油站的图片,加油站在地下常用圆柱体储油罐储存汽油等燃料.储油罐的长度d、截面半径r是常量,油面高度h,油面宽度w、储汕量V是变量.思考:V,h,w之间是否具有关系结论:储油量V与油面高度h存在着依赖关系,也与油面宽度w存在着依赖关对于油面高度h的每一个取值,都有唯一的储油量V和它对应.但是,取一个油面宽度w的值,却对应着两个储汕量V例2自2008年京津城际列车开通运营以来,高速铁路在中国大陆迅猛发展.截至2017年年底,中国高铁运营里程突破25 000 km.图2-2表示的是中国高铁年运营里程的变化.思考:高铁运营里程与年份的关系结论:观察图2-2,不难看出:(1)随着时间的变化,高铁运营里程在变化,它与年份存在着依赖关系;(2)从2008年到2017年,高铁年运营里程是不断增加的,与前一年相比,2014年增长得最多同学回顾初中如何定义函数概念:有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,那么y就是x的函数,其中x是自变量,y是因变量.函数概念中需注意:凡是要确定两个变量具有函数关系,就要判断“对于变量x的每一个值,变量y都有唯一确定的值和它对应”.同学思考:例1中,V与h是否具有函数关系;V与w是否具有函数关系例3弹簧的伸长量x与弹力y满足函数关系y kx,其中k为劲度系数.对于变量“伸长量”的每一个值,变量“弹力”都有唯一确定的值和它对应,弹力y是伸长量x的函数.例4表2-1记录了几个不同气压下水的沸点:表2-1对于变量“气压”的每一个值,变量“沸点”都有唯一确定的值和它对应,沸点是气压的函数.例5绿化可以改变小环境气候.某市有甲、乙两个气温观测点,观测点甲的绿化优于观测点乙,图2-3是这两个观测点某一天的气温曲线图.为了方便比较,将两条曲线画在了同一直角坐标系中.每一条曲线都表示了一个函数关系,反映的都是对于“时间”的每一个值,都有唯一确定的“气温”值和它对应.例6国内某快递公司邮寄普通货物限重30 kg,从A城市到B城市的快递资费标准是:质量1 kg及以下收费12元,以后质量每增加1 kg收费增加8元,质量不足1 kg按1 kg计算.请写出邮件的质量6kg与邮资M元的函数解析式,并画出局部图象.解依题意知邮件的质量6 kg与邮资M元的函数解析式为形如上述的函数,一般叫作分段函数.生活中存在着许许多多的函数关系.正是函数概念中的关键词“每一个”“唯一”“对应”恰当地反映了事物特征.【课堂探讨】1.举出生活中具有函数关系的一些实例2.找出一个生活实例,说明两个变量之间存在依赖关系,但不是函数关系【教学反思】1.判断量与量之间的关系:是函数关系还是依赖关系2.函数关系理解:每一个自变量有惟一确定因变量的值。
2.1生活中的变量关系一、教学目标:1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.2.培养广泛联想的能力和热爱数学的态度.二、教学重点:在于让学生领悟生活中处处有变量,变量之间充满了关系教学难点:培养广泛联想的能力和热爱数学的态度三、教学方法:探究交流法四、教学过程(一)、知识探索:阅读课文P25页。
实例分析:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?问题小结:1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有唯一确定的值与之对应,才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有唯一确定的y值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。
(二)、新课探究——函数概念2.从集合的观点出发,函数定义:给定两个非空数集 A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A 上的函数,记作或 f:A→B,或y=f(x),x∈A. ;此时x叫做自变量,集合A叫做函数的定义域,集合 {f(x)︱x∈A}叫作函数的值域。
习惯上我们称y是x的函数。
3.函数的三要素:定义域,值域,对应法则; 4.函数值当x=a时,我们用f(a)表示函数y=f(x)的函数值。
(三)、知识体验(课堂练习及课外作业)1.某电器商店以2000元一台的价格进了一批电视机,然后以2100元的价格售出,随着售出台数的变化,商店获得的收入是 ,它们之间是______关系.【函数 y=100x,x∈D 】2.现实生活中,与时间存在函数关系的量_______________________ .(三个以上)【路程与时间;炮弹的射高与时间的变化关系问题;用电量与时间的关系。
《生活中的变量关系》◆教材分析在学生学习用集合语言刻画函数之前,学生已经把函数看成变量之间的依赖关系.生活中的变量关系一节,从高速公路的实例引入,“思考交流”则引导学生对类似的情境,如邮局、机场等进行思考并与同伴交流.安排了函数关系与非函数关系的对比.教学中一定要注意以人为本,要尊重学生,为了学生,调动学生参与到教学中.◆教学目标【知识与能力目标】通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.【过程与方法目标】培养学生类比分析问题的能力,并通过对现实生活中依赖关系的观察、分析归纳和比较来提高学生的实践能力.【情感态度价值观目标】培养学生合作交流的意识及广泛联想的能力和热爱数学的态度.【教学重点】生活中变量之间有依赖关系,掌握变量之间的函数关系.【教学难点】变量之间的依赖关系不一定都是函数关系.教学课件、图表、清单。
一、导入新课多媒体展示“神舟七号”发射的电脑模拟动画,提出问题:在“神七”发射升空的过程中,随着时间的变化,你能发现哪些量也在变化?从而导出课题生活中的变量关系. 【设计意图】通过举例子,设置疑问,引入新课讲授,做到承上启下的作用。
二、新课讲授1、温故知新:初中学习的函数定义是什么?函数是描述变量之间依赖关系和集合之间关系的一个基本的数学模型,是研究客观世界变化规律和集合之间关系的一个最基本的数学工具.几乎所有的科学研究领域都使用函数语言,大到宇宙起源、天体的运动,小到原子、分子的运动,以及研究人口的增长,金融市场的变化,国民经济的发展,工程技术的创新等等,都需要使用函数语言来描述.我们日常生活中碰到的各种各样的问题,也需要用变量的观点去思考.由此可见,我们学习函数的有关知识是多么的重要.【设计意图】使学生认识到函数的重要性,更加重视学习。
2、变量间的依赖关系变量及变量之间的依赖关系在生活中随处可见,初中学习过的函数就描述了因变量随变量而变化的依赖关系.3、两个变量间的函数关系(1)并非具有依赖关系的两个变量都有函数关系;(2)函数关系是指满足对于其中一个变量的每一个值,另一个变量都有唯一确定的值与之对应.。
2.1 生活中的变量关系一、教材的地位与作用《生活中的变量关系》一节是北师大版必修一第二章第一节的教学内容,函数是中学数学的核心内容,生活中的变量关系是函数一章的开篇课,为函数的学习提供必要的知识铺垫.通过本节的学习,学生将明析依赖关系与函数关系的区别和联系,体会生活与数学的密切联系,掌握研究方法激发学生学习数学的兴趣。
二、教学目标:1.知识与能力目标:辨析依赖关系和函数关系,根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系2.过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。
3.情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
三、教学重难点教学重点:依赖关系与函数关系的区别和联系教学难点:根据关系式找自变量和因变量之间的对应关系四、教法学法与教具采用自主学习、合作探究、引领提升的方式展开教学,从实例出发,通过创设情境,引导学生自主探究、思考、归纳、应用,激发学生的好奇心,调动学生的求知欲。
在新知识学习中,给学生提供足够的思考时间和空间,教师始终以引导者的形象出现并在恰当的时候给予点拨、归纳。
让学生在解决问题的过程中获得感悟,深化认识,形成技能。
教具:多媒体五、教学过程:温故知新1.说出初中所学函数的概念?设在某一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数,y是因变量.2.如何确定两个变量之间是函数关系?定义法:当且仅当变量x每取一个值,另一个变量y总有唯一确定的值与之对应时,变量x、y之间具有函数关系,并且,y是x的函数.(一)、知识探索:例1.我国自1988年开始建设高速公路,全国高速公路通车总里程,于1998年底,位居世界第八;1999年底,位居世界第四;2000年底,位居世界第三;2001年底,超过了加拿大,跃居世界第二位.在高速公路情景下,你能发现哪些函数关系?设计意图:通过问题情境,引出数学与生活的联系,感受生活中处处有数学,激发学生的学习兴趣。
1 生活中的变量关系
学习目标 1.了解生活中两个变量之间的依赖关系现象.2.了解生活中两个变量之间的函数关系现象.3.能辨析依赖关系和函数关系的区别和联系.
知识点一依赖关系
思考某人坐摩天轮一圈用时8分钟.若摩天轮匀速转动,则他的海拔高度与摩天轮转动时间有依赖关系吗?当他位于摩天轮一半高度时,摩天轮转了多少分钟?
梳理在某变化过程中有两个变量,如果其中一个变量的值发生了变化,另一个变量的值也会随之发生变化,那么就称这两个变量具有依赖关系.
知识点二函数关系
思考某人坐摩天轮一圈用时8分钟.若摩天轮匀速转动,若把摩天轮的转动时间t当作自变量,他的海拔高度h为因变量,则每取一个t值,有几个h值与之对应?
梳理当变量x每取一个值,另一个变量y总有唯一确定的值与之对应时,变量x、y之间具有函数关系,并且y是x的函数.
知识点三依赖关系与函数关系
思考在知识点二的思考中,h是t的函数吗?t是h的函数吗?h,t有依赖关系吗?
梳理函数关系一定是依赖关系,而依赖关系不一定是函数关系.要确定变量的函数关系,需先分清谁是自变量,谁是因变量.
类型一依赖关系与函数关系的辨析
例1 下列各组中两个变量之间是否存在依赖关系?其中哪些是函数关系?
①圆的面积和它的半径;
②速度不变的情况下,汽车行驶的路程与行驶时间;
③家庭收入愈多,其消费支出也有增长的趋势;
④正三角形的面积和它的边长.
反思与感悟判断两个变量有无依赖关系,主要看其中一个变量变化时,是否会导致另一个变量随之变化.而判断两个具有依赖关系的变量是否具有函数关系,关键是看两个变量之间的关系是否具有确定性,即考察对于一个变量的每一个值,另一变量是否都有唯一确定的值与之对应.
跟踪训练1 下列过程中,各变量之间是否存在依赖关系?若存在依赖关系,则其中哪些是
函数关系?
(1)将保温瓶中的热水倒入茶杯中缓慢冷却,并将一温度计放入茶杯中,每隔一段时间,观察温度计示数的变化,冷却时间与温度计示数的关系;
(2)家庭的食品支出与电视价格之间的关系;
(3)在高速公路上行驶的汽车所走的路程与时间的关系.
类型二变量关系的表示
例2 声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:
(1)
(2)用x表示y的关系式为________.
(3)气温为22℃时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地约相距________米.
反思与感悟借助图表可以直观地显现两个变量的关系,便于我们分析和猜想,从而发现规律.
跟踪训练2 心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系:(其中0≤x≤20)
(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?
(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?
(4)从表格中可知,当时间x在什么范围内时,学生的接受能力逐步增强?当时间x在什么范围内时,学生的接受能力逐步降低?
1.下列说法不正确的是( )
A.圆的周长与其直径的比值是常量
B.任意四边形的内角和的度数是常量
C.发射升空的火箭高度与发射的时间之间是函数关系
D.某商品的广告费用与销售量之间是函数关系
2.下列各量间不存在依赖关系的是( )
A.扇形的圆心角与它的面积
B.某人的体重与其饮食情况
C.水稻的亩产量与施肥量
D.某人的衣着价格与视力
3.一人骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;图中与这件事正好吻合的图像是(其中x轴表示时间,y轴表示行驶的路程)( )
4.给出下列关系:
①人的年龄与他(她)拥有的财富之间的关系;
②抛物线上的点与该点坐标之间的关系;
③橘子的产量与气候之间的关系;
④某同学在6次考试中的数学成绩与他的考试号之间的关系.
其中不是函数关系的有________.
5.自变量x与因变量y之间的关系如下表:
x 01234…
y 02468…
(1)写出x与y
(2)当x=2.5时,y=________.
1.依赖关系和非依赖关系
在某变化过程中有两个变量,如果其中一个变量的值发生了变化,另一个变量的值也会随之发生变化,那么就称这两个变量具有依赖关系.在某变化过程中有两个变量,如果其中一个变量的值发生了变化,另一个变量的值不受任何影响,那么就称这两个变量具有非依赖关系.2.函数关系
如果变量x,y具有依赖关系,对于其中一个变量x的每一个值,另一个变量y都有唯一确定的值时,那么称变量y是变量x的函数,即这两个变量之间具有函数关系.
3.借助图表可使两个变量间的关系直观化,从而更便于我们从中发现规律.
答案精析
问题导学 知识点一
思考 该人的海拔高度与摩天轮转动时间有依赖关系.当他位于摩天轮一半高度时,摩天轮转了2分钟或6分钟. 知识点二
思考 每取一个t 值,有唯一一个h 值与之对应. 知识点三
思考 h 是t 的函数;t 不是h 的函数;h ,t 有依赖关系. 题型探究
例1 解 ①中,圆的面积S 与半径r 之间存在S =πr 2
的关系;
②中,在速度不变的情况下,行驶路程s 与行驶时间t 之间存在正比例关系; ③中,家庭收入与其消费支出之间存在依赖关系,但具有不确定性; ④中,正三角形的面积S 与其边长a 间存在S =
34
a 2
的关系. 综上,①②③④中两个变量间都存在依赖关系,其中①②④是函数关系.
跟踪训练1 解 (1)冷却时间与温度计示数具有依赖关系,根据函数定义知,二者之间是函数关系;
(2)家庭的食品支出与电视价格之间没有依赖关系;
(3)在高速公路上行驶的汽车所走的路程与时间这两个变量存在依赖关系,且具有确定性,是函数关系.
综上可知,(1)(3)中的变量间具有依赖关系,且是函数关系;(2)中两个变量不存在依赖关系. 例2 (1)音速 气温 (2)y =3
5x +331 (3)1 721
解析 (1)此图反映的是变量音速随气温的变化.
(2)由表中数据可知,气温每升高5℃,音速加快3米/秒,又过点(0,331), 故所求函数关系式为y =3
5x +331.
(3)由(2)可知气温为22℃时音速y =3
5
×22+331,
故此人与燃放的烟花所在地约相距为5×(3
5×22+331)=66+1 655=1 721(米).
跟踪训练2 解 (1)画出图如下:
反映了提出概念所用的时间x 和对概念接受能力y 两个变量之间的关系;其中x 是自变量,y 是因变量.
(2)由题中表格可知,当提出概念所用时间为10分钟时,学生接受能力是59. (3)提出概念所用的时间为13分钟时,学生的接受能力最强.
(4)当x 在2分钟至13分钟的范围内时,学生的接受能力逐步增强;当x 在13分钟至20分钟的范围内时,学生的接受能力逐步降低. 当堂训练 1.D 2.D 3.A
4.①③④ 5.(1)y =2x (2)5。