线段的垂直平分线 优质课教案
- 格式:doc
- 大小:59.50 KB
- 文档页数:5
线段的垂直平分线教学目标(一)教学知识点1.经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理.2.能够利用尺规作已知线段的垂直平分线.(二)思维训练要求1.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.2.体验解决问题策略的多样性,发展实践能力和创新精神.3.学会与人合作,并能与他人交流思维的过程和结果.(三)情感与价值观要求1.能积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.能够证明线段的垂直平分线的性质定理、判定定理及其相关结论.2.能够利用尺规作已知线段的垂直平分线.教学难点写出线段垂直平分线的性质定理的逆命题并证明它.教具准备多媒体演示、直尺、圆规教学过程Ⅰ.创设现实情境,引入新课教师用多媒体演示:问题:如图,A、B、C三个村庄合建一所学校,要求校址P点距离三个村庄都相等.请你帮助确定校址.[生]校址应建在线段AB的垂直平分线与B C垂直平分线的交点上.[师]同学们认同他的看法吗?[生]是的[师]认为对的说说你的理由是什么呢?[生]我们在2.2节时学过轴对称:知道了图形的全等的。
所以线段垂直平分线上的点到线段两个端点的距离相等.所以在这个问题中,要求在“校址P点距离三个村庄都相等”利用此性质就能完成.[师](边说边用折纸的方法再现定理)这位同学分析得很好,我们在刚刚研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们曾经像这样利用折纸的方法得到“线段垂直平分线上的点到线段两个端点的距离相等”这一简单事实,但是用这种观察的方式是很难说服别人的,你能用公理或学过的定理来证明这一结论吗?下面给大家3分钟的时间自学,自学指导如下:自学指导:自学课本P45----P47页,小组完成下列问题1.线段是轴对称图形吗?线段垂直平分线的定义是什么?你能用数学符号语言描述线段垂直平分线的定义吗?2.线段垂直平分线的性质是什么?在性质的探究(2)中,对于垂直平分线上的任意一点P 分了哪两种情况?你能用几何证明的方法来说明吗?3.到线段两端距离相等的点一定在线段的垂直平分线上吗?也需要分类探究吗?请你说明一下。
线段的垂直平分线教案一、教学目标1. 让学生理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质。
2. 培养学生运用线段的垂直平分线解决实际问题的能力。
3. 培养学生的观察能力、动手操作能力和团队协作能力。
二、教学重点与难点1. 教学重点:线段的垂直平分线的性质。
2. 教学难点:线段的垂直平分线的证明和应用。
三、教学准备1. 教师准备:教学课件、尺子、圆规、直尺、三角板等教学用具。
2. 学生准备:笔记本、铅笔、橡皮、三角板、直尺等学习用具。
四、教学过程1. 导入新课:通过回顾上一节课的内容,引导学生思考线段的垂直平分线的概念。
2. 讲解新课:(1)介绍线段的垂直平分线的定义;(2)讲解线段的垂直平分线的性质;(3)举例说明线段的垂直平分线在实际问题中的应用。
3. 课堂练习:让学生独立完成教材上的练习题,巩固所学知识。
4. 课堂小结:总结本节课的主要内容,强调线段的垂直平分线的性质和应用。
五、课后作业1. 请学生完成教材上的课后习题。
2. 请学生结合所学知识,运用线段的垂直平分线解决实际问题。
3. 教师对学生的作业进行批改,及时了解学生的学习情况,并进行反馈。
六、教学拓展1. 引导学生思考:线段的垂直平分线与线段的关系是什么?2. 讲解线段的垂直平分线的性质:垂直平分线上的点到线段的两个端点的距离相等。
3. 举例说明线段的垂直平分线在几何图形中的应用,如等腰三角形的性质。
七、实践操作1. 让学生用尺子和直尺画出一条线段的垂直平分线。
2. 让学生观察并解释线段的垂直平分线如何将线段分成两个相等的部分。
3. 引导学生思考:如何找到一个线段的垂直平分线?八、课堂讨论1. 提问:线段的垂直平分线在实际生活中有哪些应用?2. 让学生分组讨论,分享各自的想法和例子。
3. 教师总结并强调线段的垂直平分线在日常生活中的重要性。
九、复习巩固1. 通过PPT或黑板,回顾本节课的主要内容和知识点。
2. 进行课堂提问,检查学生对线段的垂直平分线的理解和掌握程度。
《线段的垂直平分线》教案一、教学目标:知识与技能:1. 学生能理解线段的垂直平分线的概念。
2. 学生能运用线段的垂直平分线性质解决实际问题。
过程与方法:1. 学生通过观察、思考、交流,掌握线段的垂直平分线的判定方法。
2. 学生能运用几何画图软件或手工绘制线段的垂直平分线。
情感态度价值观:1. 学生培养对数学几何图形的美感,提高对几何学习的兴趣。
2. 学生在解决实际问题中,培养合作、交流、解决问题的能力。
二、教学重点与难点:重点:1. 线段的垂直平分线的概念及性质。
2. 线段的垂直平分线的判定方法。
难点:1. 线段的垂直平分线的证明。
2. 运用线段的垂直平分线解决实际问题。
三、教学方法与手段:教学方法:1. 采用问题驱动法,引导学生探索线段的垂直平分线性质。
2. 运用合作学习法,让学生在小组内讨论、交流、分享学习心得。
教学手段:1. 利用几何画图软件,动态展示线段的垂直平分线。
2. 采用实物模型,直观演示线段的垂直平分线特点。
四、教学过程:环节一:导入新课1. 利用生活中的实例,引出线段的垂直平分线概念。
环节二:探究线段的垂直平分线性质1. 学生分组讨论,探究线段的垂直平分线性质。
2. 各小组汇报讨论成果,教师点评并补充。
环节三:判定线段的垂直平分线1. 学生根据线段的垂直平分线性质,尝试判定线段的垂直平分线。
环节四:运用线段的垂直平分线解决实际问题1. 学生分组解决实际问题,运用线段的垂直平分线性质。
2. 各小组汇报解题过程,教师点评并指导。
环节五:课堂小结2. 教师点评学生表现,布置课后作业。
五、课后作业:1. 绘制本节课学习的线段垂直平分线图形,并标注性质。
3. 预习下一节课内容,了解线段垂直平分线的拓展应用。
六、教学评价:1. 知识与技能:学生能熟练掌握线段的垂直平分线的概念和性质,并能运用其解决几何问题。
2. 过程与方法:学生在探究和解决实际问题的过程中,培养了观察、思考、交流和合作的能力。
13.5.2 线段垂直平分线导学案一、【教学目标】:理解线段垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题; 了解线段垂直平分线的证明过程。
结合教学内容培养学生的抽象思维能力。
(学生课后体会)二、重难点:线段垂直平分线性质定理及逆定理的引入证明及运用;线段垂直平分线性质定理及逆定理的关系。
(学生课后检测是否到达要求) 三、课前预习:阅读课本94-95页(学生自行安排时间) 四、学前准备:多媒体课件、教学案 五、教学过程:一、情境导入如图,某渔村主要出口秋刀鱼,所有的出口货物集中在A 、B 两个仓库,为了改善物流情况,村里决定建设一个国际化的新码头,新码头到两个仓库的距离要相等,问新码头应建在何处?你的方案是什么?二、动手操作:1、作线段AB 的中垂线MN ,垂足为C ; 在MN 上任取一点P ,连结PA 、PB ; 量一量:PA 、PB 的长,你能发现什么? 由此可得:命题:线段垂直平分线上的点到 线段两端的距离相等.2.试证明上述命题.已知,如图直线MN ⊥AB ,垂足是C ,且AC=CB.点P 在MN 上 求证:PA=PB (抽学生做)证明:∵MN AB (已知) ∴PCA=PCB(垂直的定义) 在PCA 和PCB 中,AC=CB(已知), PCA=PCB(已证)PABMCPABMCE DCBAPC=PC(公共边) ∴PCA ≌PCB(SAS)∴PA=PB(全等三角形的对应边相等)在学生交流发言基础上,教师板书:线段垂直平分线的性质定理,即线段垂直平分线上的点到线段两端的距离相等.例1、如图,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D,交AC 于点E,△BCE 的周长等于50,求BC 的长.【互动探索】(引发学生思考)已知AC 的长和△BCE 的周长,要求BC 的长,先求什么?再求什么? 解:∵AD=BD,DE ⊥AB∴EA=EB(垂直平分线性质定理) ∵AC=27 ∴EA+EC=27 ∴EB+EC=27 ∵ EB+EC+BC=50∴BC=23四、讲授新知 1、“线段垂直平分线上的点到线段两个端点的距离相等.”写成“如果……那么”的形式应该是怎样的?它的逆命题呢?如果一个点在线段的垂直平分线上,那么这个点到线段两端的距离相等t 条 件 结 论变式练习:在△ABC,PM,QN 分别垂直平分AB,AC ,则: (1)若BC=10cm 则△APQ 的周长=__10___cm;(2)若∠BAC=100°则∠PAQ=__20°____. 【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质定理,可以实现线段间的相互转化,从而求出未知线段的长.【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质定理,可以实现线段间的相互转化,还可以实现角之间的相互转化,性质定理一个点在线段的垂直平分线上这个点到线段两端的距离相等逆命题一个点到线段两端的距离相等这个点在线段的垂直平分线上逆命题:如果一个点到线段两端的距离相等,那么这个点在线段的垂直平分线上.2、已知,如图QA=QB.求证:点Q在线段AB的垂直平分线上证明:过点Q作MN AB,垂足为C.故∠QCA=∠QCB=900在Rt △QCA和Rt△QCB中∵QA=QB,QC=QC∴△QCA ≌△QCB (H.L.)∴AC=BC∴点Q在线段AB的垂直平分线MN上.教师提问这个命题与线段垂直平分线的性质定理有何关系?(为互逆命题)教师板书.线段垂直平分线的判定定理到线段两端距离相等的点,在线段的垂直平分线上.例2.已知:△ABC中,∠C=90o,∠A=30o,BD平分∠ABC交AC于D.求证:D点在AB的垂直平分线上.证明:∵∠C=90o, ∠A=30o (已知)∴∠ABC=60o (三角形内角和定理)∵BD平分∠A BC (已知)∴∠ABD=30o (角平分线的定义)∴∠A= ∠ABD (等量代换)∴ AD=BD (等角对等边)∴ D点在AB的垂直平分线上. (垂直平分线判定定理)【互动总结】(学生总结,老师点评)证明线段的垂直平分线可以用定义法,也可用线段垂直平分线的判定定理。
《线段的垂直平分线》教案一、教学目标1. 让学生理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质。
2. 培养学生运用线段的垂直平分线解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 线段的垂直平分线的定义2. 线段的垂直平分线的性质3. 线段的垂直平分线的判定4. 线段的垂直平分线的应用三、教学重点与难点1. 重点:线段的垂直平分线的定义、性质和应用。
2. 难点:线段的垂直平分线的判定。
四、教学方法1. 采用问题驱动法,引导学生主动探究线段的垂直平分线的性质。
2. 运用实例分析法,让学生通过实际问题体会线段的垂直平分线在几何中的应用。
3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:通过生活中的实例,如剪刀剪纸、尺子测量等,引出线段的垂直平分线概念。
2. 新课讲解:讲解线段的垂直平分线的定义、性质和判定。
3. 实例分析:分析实际问题,运用线段的垂直平分线解决问题。
4. 小组讨论:让学生分组讨论,探索线段的垂直平分线在实际问题中的应用。
5. 课堂小结:总结本节课的主要内容和知识点。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学策略1. 运用多媒体课件,直观展示线段的垂直平分线的性质和判定。
2. 设计丰富多样的教学活动,激发学生的学习兴趣。
3. 注重个体差异,针对不同程度的学生提供不同程度的辅导。
4. 创设问题情境,培养学生解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况:检查学生课后作业的完成质量,评估学生对知识的掌握程度。
3. 小组讨论:评价学生在小组讨论中的表现,包括沟通能力、团队协作能力等。
八、教学实践活动1. 制作线段的垂直平分线手工作品,展示线段的垂直平分线的性质。
2. 开展线段长度测量比赛,提高学生运用线段的垂直平分线解决问题的能力。
北师大版数学九年级上册1.3《线段的垂直平分线》教案1一. 教材分析《线段的垂直平分线》是北师大版数学九年级上册1.3节的内容。
本节课主要介绍了线段的垂直平分线的性质和判定方法。
通过学习,学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对于图形的性质和判定方法有一定的了解。
但是,对于线段的垂直平分线的概念和性质可能较为抽象,需要通过实例和操作来加深理解。
三. 教学目标1.了解线段的垂直平分线的概念。
2.掌握线段的垂直平分线的性质和判定方法。
3.能够运用线段的垂直平分线解决实际问题。
四. 教学重难点1.线段的垂直平分线的概念。
2.线段的垂直平分线的性质和判定方法的运用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过实例讲解,让学生直观地理解线段的垂直平分线的性质;通过小组合作学习,培养学生的合作能力和解决问题的能力。
六. 教学准备1.教学PPT。
2.实例图片和图形。
3.练习题。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾已学的平面几何知识,为新课的学习做好铺垫。
2.呈现(15分钟)a.介绍线段的垂直平分线的概念。
b.通过实例展示线段的垂直平分线的性质。
c.讲解线段的垂直平分线的判定方法。
3.操练(15分钟)a.学生分组讨论,总结线段的垂直平分线的性质和判定方法。
b.学生独立完成练习题,巩固所学知识。
4.巩固(5分钟)通过问题驱动,让学生运用线段的垂直平分线解决实际问题。
5.拓展(5分钟)引导学生思考:线段的垂直平分线在实际应用中的意义和作用。
6.小结(5分钟)对本节课的主要内容进行总结,强调线段的垂直平分线的性质和判定方法。
7.家庭作业(5分钟)布置练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点。
教学过程每个环节所用时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
12.1.2 线段的垂直平分线【课题】:线段的垂直平分线(平行班)【教学时间】:40分钟【学情分析】:(适用于平行班)学习本课内容时,学生已经掌握“轴对称图形”、“关于直线成轴对称”这两个概念,也掌握了“轴对称的性质——对应角相等,对应线段相等”,已经具备了的动手操作能力、分析归纳能力、合作探究能力,可以让学生通过折叠的方式认识和归纳“线段的对称性”、“线段的垂直平分线的性质”.【教学目标】:(1)探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察;(2)探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力.【教学重点】:探索轴对称的性质,并总结出线段垂直平分线的性质.【教学难点】:探索并总结出线段垂直平分线的性质,能运用其性质解答简单的几何问题.【教学突破点】:通过折叠的方式认识线段的对称性,对线段的垂直平分线的性质让学生自己归纳,这一方面可以给学生自主探索留下更多的空间,另外也有利于培养学生的归纳能力和数学语言表达能力.【教法、学法设计】:通过折叠的方式认识线段的对称性,对线段的垂直平分线的性质让学生自己归纳,这一方面可以给学生自主探索留下更多的空间,另外也有利于培养学生的归纳能力和数学语言表达能力. 【课前准备】:课件教学环节教学活动设计意图一、复习引入1、图中的点A的对称点是,点B的对称点是,点C的对称点是,点P的对称点是2、(1)点A和F的连线与直线MN有什么样的关系?(2)点P和Q的连线与直线l有什么样的关系?回忆旧知识,为探索新知识做准备.二、探究新知1.垂直平分线的定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线.2.轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线。
即对称点的连线被对称轴垂直平分.3.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.4.动动手,你也会有发现!画线段AB的垂直平分线L,在L上取任意点P,•量一量点P到A与B的距离,你有什么发现?再取几个点试试,你能说明理由吗?5.归纳通过几何作图,体会数学的严谨性;锻炼学生的动手画图能力,面向全体,调动学生的积极参与.(1)线段垂直平分线上的点到线段的两个端点的距离.如图,直线CD⊥AB,垂足是C,AC=BC,点M在CD上,求证:MA=MB.若MA=MB,则M在线段AB的垂直平分线上吗?(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.练习一:1、因为,所以AB=AC.理由:2、因为,所以A在线段BC的中垂线上.理由:3、如图,NM是线段AB的中垂线,下列说法正确的有:.①AB⊥MN,②AD=DB,③MN⊥AB,④MD=DN,⑤AB是MN的垂直平分线.4、下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有()A.1个B.2个 C.3个D.4个例题:如图4,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D.BE=6,求△BCE的周长.(第2题)EDCBA练习二1.如图,△ABC中,AD垂直平分边BC,AB=5,那么AC=_________.2.如图,在△ABC中,AB的中垂线交BC于点E,若BE=2则A、E两点的距离是().A.4B.2C.3D.123.如图,AB垂直平分CD,若AC=1.6cm,BC=2.3cm,则四边形ABCD的周长是()cm.A.3.9B.7.8C.4D.4.64.如右图所示,直线MN和DE分别是线段AB、BC的垂直平分线,它们交于P点,请问PA和PC相等吗?为什么?5.在△ABC中,用刻度尺和量角器画出线段AB、BC、CA的垂直平分线,看看三条垂直平分线的位置有什么关系.在运用中巩固线段的垂直平分线的认识.培养学生的分析、推理能力.三、归纳小结,小结:1.线段轴对称图形(填“是”,“不是”);有条对称轴.2.线段的垂直平分线的点到线段的两个端点的距离.(第1题)(第8题)EDCBA四、课后作业作业:(A 组)1.线段是轴对称图形,它有 条对称轴,对称轴是2.三角形的三边 的交点到三角形的三个顶点的距离相等.3.下列图形中只有一条对称轴的是( ) A.圆 B.正方形 C.等腰直角三角形 D.等边三角形4. 如图,BC 的垂直平分线交AB 于点D ,若AB=6cm ,AC=5cm. (1)DE 所在的直线是△ 的对称轴; (2)△ADC 的周长是 cm.5.如图,直线MN 垂直平分线段CD ,点,A B 分别是直线MN 上的任意两点,则图中相等的线段有 . (B 组)6.如图,△ABC 中,BC=10cm ,若MP 、NQ 分别垂直平分AB 、AC ,交BC 于P、Q,(1)写出图中相等的线段 ; (2)△APQ 的周长是 cm .7.如图,在直线AB 上找一点P ,使PC =PD .8.如图,△ABC 中,AB=AC=16cm ,AB 的垂直平分线ED 交AC 于D 点. (1)当AE=13cm 时,BE= cm ;(2)当△BEC 的周长为26cm 时,则BC= cm ; (3)当BC=15cm ,则△BEC 的周长是 cm.巩固知识,培养技能.9.如图,△ABC 中,DE 是线段AC 的垂直平分线,AE=5cm ,△ABD 的周长为17cm , 求:△ABC 的周长.10.利用工具在△ABC 中找一点O ,使OA=OB=OC.(C 组)11.如图,已知:在△ABC 中,AB <AC , BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,AC =8 cm ,△ABE 的周长是14 cm ,求AB 的长.12.已知,如图,ABC ∆中,边BC 的垂直平分线分别交ABC 于点ED,且AEC ∆的周长为13,又AC AB -=3,求AB 与AC 的长.13.如图,ABCD 是一个长方形的台球桌面,有黑白两球分别位于点E 、F ,试问:怎样撞击黑球E 才能使E 先碰上台边BC 反弹后再击中白球F.作业答案:1.1 线段的垂直平分线2.中垂线3.C4.(1)△DBC;(2)115.AD=AC,BD=BC,DE=CE6.(1)AM=BM,AP=BP,AN=CN,AQ=CQ;(2)107.8.(1)13;(2)10;(3)319. △ABC的周长是27 cm10.O为△ABC三边中垂线的交点11. AB的长为6cm12. AB与AC的长分别为8和513. 沿绿色路径击球。
线段垂直平分线教案第一章:线段垂直平分线的概念引入1.1 教学目标让学生理解线段垂直平分线的定义。
培养学生利用垂直平分线性质解决实际问题的能力。
1.2 教学内容引导学生通过观察线段垂直平分线的图形,发现线段垂直平分线的性质。
讲解线段垂直平分线的定义,即线段垂直平分线是线段的中垂线,且垂直于线段。
1.3 教学活动利用实际例子,让学生感受线段垂直平分线的性质在解决实际问题中的作用。
引导学生通过观察、思考、交流,发现线段垂直平分线的性质。
1.4 教学评价通过课堂提问,检查学生对线段垂直平分线定义的理解程度。
通过课后作业,检查学生运用线段垂直平分线性质解决实际问题的能力。
第二章:线段垂直平分线的性质探究2.1 教学目标让学生掌握线段垂直平分线的性质。
培养学生利用垂直平分线性质解决实际问题的能力。
2.2 教学内容讲解线段垂直平分线的性质,即线段垂直平分线上的任意一点,到线段的两个端点的距离相等。
2.3 教学活动引导学生通过观察、思考、交流,发现线段垂直平分线的性质。
利用实际例子,让学生感受线段垂直平分线的性质在解决实际问题中的作用。
2.4 教学评价通过课堂提问,检查学生对线段垂直平分线性质的理解程度。
通过课后作业,检查学生运用线段垂直平分线性质解决实际问题的能力。
第三章:线段垂直平分线的作图与应用3.1 教学目标让学生学会如何作线段的垂直平分线。
培养学生利用垂直平分线性质解决实际问题的能力。
3.2 教学内容讲解如何作线段的垂直平分线,即通过线段的一个端点,作线段的垂直平分线。
讲解线段垂直平分线在实际问题中的应用,如线段的长度计算、线段的垂直平分线方程等。
3.3 教学活动引导学生通过实际操作,学会如何作线段的垂直平分线。
利用实际例子,让学生感受线段垂直平分线在解决实际问题中的作用。
3.4 教学评价通过课堂提问,检查学生对线段垂直平分线作图方法的掌握程度。
通过课后作业,检查学生运用线段垂直平分线性质解决实际问题的能力。
线段的垂直平分线教案4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!线段的垂直平分线教案4篇线段的垂直平分线教案1教学内容:教学目的:1、使学生理解的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。
《线段的垂直平分线》教案一、教学目标:1. 知识与技能:(1)理解线段的垂直平分线的概念;(2)学会如何作线段的垂直平分线;(3)掌握线段垂直平分线的性质。
2. 过程与方法:(1)通过观察和思考,培养学生的空间想象能力;(2)利用工具(如直尺、圆规),提高学生的动手操作能力;(3)通过小组讨论,培养学生的合作能力。
3. 情感态度与价值观:(1)激发学生对几何学科的兴趣;(2)培养学生的观察能力、思考能力和创新能力;(3)培养学生的团队合作精神。
二、教学重点与难点:1. 教学重点:(1)线段的垂直平分线的概念;(2)线段垂直平分线的性质;(3)如何作线段的垂直平分线。
2. 教学难点:(1)线段垂直平分线的性质的理解与应用;(2)如何作线段的垂直平分线的方法。
三、教学准备:1. 教具:直尺、圆规、三角板、多媒体设备等;2. 学具:学生用直尺、圆规、三角板等。
四、教学过程:1. 导入新课:(1)教师通过生活中的实例,引导学生思考线段的垂直平分线;(2)学生分享思考成果,教师总结并引入线段的垂直平分线概念。
2. 探究线段的垂直平分线:(1)教师引导学生观察线段的垂直平分线的特点,引导学生发现性质;(2)学生通过小组讨论,总结线段垂直平分线的性质;(3)教师进行讲解,明确线段垂直平分线的性质。
3. 学习如何作线段的垂直平分线:(1)教师示范如何作线段的垂直平分线,讲解作图方法;(2)学生跟随教师一起作图,巩固作图方法;(3)学生独立完成作图练习,教师进行点评。
4. 课堂练习:(1)教师布置练习题,让学生巩固线段垂直平分线的性质和作图方法;(2)学生独立完成练习题,教师进行讲解和点评。
五、课后作业:1. 请学生总结本节课所学的线段垂直平分线的性质和作图方法;2. 请学生完成课后练习题,巩固所学知识。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况、小组合作表现等,了解学生的学习状态和掌握程度。
1.3线段的垂直平分线第1课时线段的垂直平分线1.掌握线段垂直平分线的性质;(重点)2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC 于D,交AB于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?二、合作探究探究点一:线段的垂直平分线的性质定理【类型一】应用线段垂直平分线的性质定理求线段的长如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC 于D,若△DBC的周长为35cm,则BC的长为()A.5cmB.10cmC.15cmD.17.5cm解析:∵△DBC的周长=BC+BD+CD =35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20,∴BC=35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】线段垂直平分线的性质定理与全等三角形的综合运用如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可.证明:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF,AD =CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段的垂直平分线的判定定理如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .理由如下:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠F AD ,∠AED =∠AFD .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,DE =DF ,∴直线AD 垂直平分线段EF . 方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.3.1 图形的平移 第1课时 平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究探究点一:平移的定义下列各组图形可以通过平移互相得到的是()A. B.C. D.解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】利用平移的性质进行计算如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=32,△ABC与△A1B1C1重叠部分面积为2,则BB1等于()A.1 B. 2 C. 3 D.2解析:设B1C=2x,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴12×x×2x=2,解得x=2(舍去负值),∴B1C=22,∴BB1=BC-B1C= 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC方向平移线段BE的距离,就得到此图形,下列结论正确的有()①AC∥DF;②HE=5;③CF=5;④阴影部分面积为55 2.A .1个B .2个C .3个D .4个解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计 1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移. 2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.第2课时一元一次不等式的应用1.会在实际问题中寻找数量关系列一元一次不等式并求解;2.能够列一元一次不等式解决实际问题.(重点,难点)一、情境导入如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?二、合作探究探究点:一元一次不等式的应用【类型一】商品销售问题某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x折该商品获得的利润=该商品的标价×x10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x的值即可.解:设可以打x折出售此商品,由题意得:180×x10-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.方法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.【类型二】竞赛积分问题某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?解析:设小明答对x道题,则答错或不答的题目为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设小明答对x道题,则他答错或不答的题目为(25-x)道.根据他的得分要超过80分,得:4x -2(25-x )>80,解得x >2123.因为x 应是整数而且不能超过25,所以小明至少要答对22道题. 答:小明至少要答对22道题.方法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“至多”“至少”等.【类型三】 安全问题采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域.导火线燃烧速度是每秒1厘米,工人转移的速度是每秒5米,导火线至少要多少米?解析:根据时间列不等式,导火线燃烧时间>工人要在爆破前转移到400米外的安全区域时间.解:设导火线的长度需要x 米,1厘米/秒=0.01米/秒,由题意得x 0.01>4005,解得x >0.8.答:导火线至少要0.8米.【类型四】 分段计费问题小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?解析:当每月用水5立方米时,花费5×1.8=9元,则可知小明家每月用水超过5立方米.设每月用水x 立方米,则超出(x -5)立方米,根据题意超出部分每立方米收费2元,列一元一次不等式求解即可.解:设小明家每月用水x 立方米. ∵5×1.8=9<15,∴小明家每月用水超过5立方米.则超出(x -5)立方米,按每立方米2元收费, 列出不等式为5×1.8+(x -5)×2≥15, 解不等式得x ≥8.答:小明家每月用水量至少是8立方米. 方法总结:分段计费问题中的费用一般包括两个部分:基本部分的费用和超出部分的费用.根据费用之间的关系建立不等式求解即可.【类型五】 调配问题有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?解析:设安排x 人种甲种蔬菜,则种乙种蔬菜为(10-x )人.甲种蔬菜有3x 亩,乙种蔬菜有2(10-x )亩.再列出不等式求解即可.解:设安排x 人种甲种蔬菜,则种乙种蔬菜为(10-x )人. 根据题意得0.5×3x +0.8×2(10-x )≥15.6, 解得x ≤4.答:最多只能安排4人种甲种蔬菜.方法总结:调配问题中,各项工作的人数之和等于总人数.【类型六】 方案决策问题为了保护环境,某企业决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.A 型B 型 价格(万元/台) 12 10 处理污水量(吨/月) 240 200 年消耗费(万元/台)11(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案.解析:(1)设购买污水处理设备A 型x 台,则B 型为(10-x )台,列出不等式求解即可,x 的值取整数;(2)如图表列出不等式求解,再根据x 的值选出最佳方案.解:(1)设购买污水处理设备A 型x 台,则B 型为(10-x )台.12x +10(10-x )≤105,解得x ≤2.5,∵x 取非负整数,∴x 可取0,1,2,有三种购买方案:购A 型0台,B 型10台;A 型1台,B 型9台;A 型2台,B 型8台; (2)240x +200(10-x )≥2040,解得x ≥1, ∴x 为1或2.当x =1时,购买资金为12×1+10×9=102(万元); 当x =2时,购买资金为12×2+10×8=104(万元). 答:为了节约资金,应选购A 型1台,B 型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.3.1 图形的平移 第1课时 平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究探究点一:平移的定义下列各组图形可以通过平移互相得到的是()A. B.C. D.解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】利用平移的性质进行计算如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=32,△ABC与△A1B1C1重叠部分面积为2,则BB1等于()A.1 B. 2 C. 3 D.2解析:设B1C=2x,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B1C边上的高为x,∴12×x×2x=2,解得x=2(舍去负值),∴B1C=22,∴BB1=BC-B1C= 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】 平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有( )①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552. A .1个 B .2个 C .3个 D .4个解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.六、词语点将(据意写词)。
A 小区
B 小区
C 小区
线段的垂直平分线
【教学目标】
1.经历线段垂直平分线性质的发现过程,初步掌握线段垂直平分线的性质定理及其逆定理,体会辨证思想;
2.能运用线段垂直平分线性质定理及其逆定理解决简单的几何问题; 3.通过从操作实验到演绎推理的数学活动,认识实验归纳和演绎推理的作用。
【教学重难点】
重点:线段垂直平分线性质定理及其逆定理;难点:线段垂直平分线性质定理及其逆定理的应用。
【教学准备】
课件,三角尺,学案
【教学过程】一、情景引入1.引例:
区政府为了方便居民日常生活,计划开一家大超市,为了使该超市到A ,B ,C 三个居民小区的距离相等,请同学们设计一下,这个超市应该建在哪里呢?
2.回顾,导入
提问1:线段是不是轴对称图形? 如果是,那么请说明它的对称轴在哪里?
提问2:如图,线段AB 关于直线MN 对称,在直线MN 上任取一点P ,分别联结PA 、PB ,那么线段PA 与PB 一定相等吗?
揭示课题:线段的垂直平分线 二、学习新知
(一)探究新知
1.线段的垂直平分线的性质定理
操作:以直线MN 为折痕将这个图形翻折,观察点P 的位置动不动?
P
M N
C B
A
点A与点B是否重合?你得到哪些线段相等?
归纳:如果一个点在一条直线的垂直平分线上,那么分别联结这点与线段两个端点所得的两条线段相等。
验证:证明这个命题,写出已知和求证。
已知:如图,直线MN是线段AB的垂直平分线,垂足为点C,点P在直线MN上。
求证:PA=PB.
分析:如图,当点P不在线段AB上时,要证明PA=PB,只需要
证△PCA≌△PCB.由直线MN是线段AB的垂直平分线,可知CA=CB,
∠PCA=∠PCB,再加上PC为公共边,三角形全等即可得到。
特别地,当点P在线段AB上时,P点与C点重合,此时PA=PB
当然也成立。
证明:
∵MN是线段AB的垂直平分线(已知)
∴MN⊥AB,AC=BC(线段垂直平分线的定义)
设点P在线段AB外时,
∵MN⊥AB(已证)
∴∠PCA=∠PCB=90º(垂直的定义)
在△PCA和△PCB中,
AC=BC(已证)
∠PCA=∠PCB(已证)
PC=PC(公共边)
∴△PCA≌△PCB(S.A.S)
∴PA=PB(全等三角形对应边相等)
当点P在线段AB上时,
点P与点C重合,即PA=PB
归纳线段垂直平分线的性质定理:
文字语言:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
符号语言:∵点P在线段AB的垂直平分线上
∴ PA=PB
辨析练习:
1.如图(1):若AC垂直平分BD,则AB=____________
2.如图(2):若BD垂直平分AC,则AB=____________
3.如图(3):若AC、BD互相垂直平分,则AB=__________
4.如图(4):PD、PE分别垂直平分线段AB、BC,则PA_______PC P
M
N
C B
A
C
C
(1)(2)
(3) (4)
2.逆定理:
提问:线段垂直平分线的逆命题是什么?逆命题正确吗?
原命题:如果有一个点为线段垂直平分线上的任意一点,那么这个点到线段的两个端点距离相等。
逆命题:如果一个点到线段的两个端点距离相等,那么这个点是这条线段垂直平分线上的一点。
简写为:和一条线段两个端点距离相等的点,在这条线段的直平分线上。
符号语言:∵PA=PB
∴点P在线段AB的垂直平分线上
验证:
已知:如图,PA=PB
证明:点P在线段AB的垂直平分线上。
分析:为了证明点P在线段AB的垂直平分线上,可以先经过点
P作线段AB的垂线MN,然后证明直线MN平分线段AB.
证明:
过点P作MN⊥AB,垂足为点C
∵PA=PB(已知)PC⊥AB(已作)
∴AC=BC(等腰三角形底边上的高平分底边)
∴PC是线段AB的垂直平分线
即点P在线段AB的垂直平分线上
特别地,当P就在AB的中点上时,结论正确吗?
综上所述,这条逆命题是正确的,也就是说,线段的垂直平分线有它的逆定理。
P
M
N
C B
A
3.线段的垂直平分线性质定理和逆定理的区别:
性质定理是归纳线段垂直平分线上点到线段两端点的距离的数量关系。
逆定理是归纳和一条线段两端点距离相等的点与线段的位置关系。
(二)应用新知,尝试反馈 例题1
已知:如图,AB=AC ,DB=DC ,E 是AD 上一点。
求证:BE=CE 。
证明:联结BC . ∵ AB =AC ,DB =DC .
∴点A 、D 在线段BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)
∴AD 是线段BC 的垂直平分线, ∵点E 在AD 上,
∴BE=CE (线段垂直平分线上的任意一点到这条线段两个端点的距离相等)。
【说明】
1.本例综合运用了线段垂直平分线的性质定理及其逆定理,通过本例让学生学会灵活运用这两个定理解决几何问题,并且明确这两个定理各自的作用,性质定理可以用来证明线段相等,学生原有证明线段相等的思维模式包括利用全等三角形和等角对等边,通过本例知道证明线段相等又多了一种途径。
2.对于线段垂直平分线性质定理的逆定理的应用,部分学生可能错误地认为“因为到线段两端距离相等的点在线段垂直平分线上,所以过到线段两端距离相等的点的直线是这条线段垂直平分线”,在本例教学中要引导学生认识过一点不能确定一条直线,判定一条直线是已知线段的垂直平分线,必须有和已知线段两端距离相等的的两个点才能确定这条直线。
同步练习:
如图,已知AB=AC ,∠ABD=∠ACD ,求证:AD 是线段BC 证明:∵AB=AC (已知) ∴∠ABC=∠ACB(等边对等角) 又∵∠ABD=∠ACD (已知)
∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质) 即∠DBC=∠DCB
∴DB=DC (等角对等边)
∵AB=AC (已知)DB=DC (已证)
∴ 点A 和点D 都在线段BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)
∴ AD 是线段BC 的垂直平分线。
(三)实际应用,拓展新知
现在我们可以来解决之前引例中的问题,启发学生讨论得出只需要画出三角形其中两边的垂直平分线,得到它们的交点即为所求,并且第三边的垂直平分线也必过这个交点。
由此自然引出例题2的教学,证明上述结论成立。
例题2
已知:如图,在△ABC 中,OM 、ON 分别是AB 、AC 的垂直平分线,OM 与ON 相交与点O 。
求证:点O 在BC 的垂直平分线上。
分析:要引导学生想到本例的关键在于分别联结OB 、OA 、OC . 证明:分别联结OB 、OA 、OC .
∵OM 、ON 分别是AB 、AC 的垂直平分线(已知)
∴OA=OB ,OA=OC (线段垂直平分线上的任意一点到这条线段两个端点的距离相等) ∴OB=OC (等量代换)
∴点O 在BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)
【说明】在经过前一题的学习之后,同学们对本题的综合运用的将会更加的自如。
归纳:三角形三条边的垂直平分线交于同一点,且这点到三角形三个顶点的距离相等。
三、课堂小结
这节课我们学习了线段垂直平分线定理和逆定理的知识,请同学们谈一下你对本节课学习的体会。
M
N
O
C
B
A。