《线段的垂直平分线》教学设计复习过程
- 格式:doc
- 大小:58.00 KB
- 文档页数:7
《线段的垂直平分线》教案一、教学目标:知识与技能:1. 学生能理解线段的垂直平分线的概念。
2. 学生能运用线段的垂直平分线性质解决实际问题。
过程与方法:1. 学生通过观察、思考、交流,掌握线段的垂直平分线的判定方法。
2. 学生能运用几何画图软件或手工绘制线段的垂直平分线。
情感态度价值观:1. 学生培养对数学几何图形的美感,提高对几何学习的兴趣。
2. 学生在解决实际问题中,培养合作、交流、解决问题的能力。
二、教学重点与难点:重点:1. 线段的垂直平分线的概念及性质。
2. 线段的垂直平分线的判定方法。
难点:1. 线段的垂直平分线的证明。
2. 运用线段的垂直平分线解决实际问题。
三、教学方法与手段:教学方法:1. 采用问题驱动法,引导学生探索线段的垂直平分线性质。
2. 运用合作学习法,让学生在小组内讨论、交流、分享学习心得。
教学手段:1. 利用几何画图软件,动态展示线段的垂直平分线。
2. 采用实物模型,直观演示线段的垂直平分线特点。
四、教学过程:环节一:导入新课1. 利用生活中的实例,引出线段的垂直平分线概念。
环节二:探究线段的垂直平分线性质1. 学生分组讨论,探究线段的垂直平分线性质。
2. 各小组汇报讨论成果,教师点评并补充。
环节三:判定线段的垂直平分线1. 学生根据线段的垂直平分线性质,尝试判定线段的垂直平分线。
环节四:运用线段的垂直平分线解决实际问题1. 学生分组解决实际问题,运用线段的垂直平分线性质。
2. 各小组汇报解题过程,教师点评并指导。
环节五:课堂小结2. 教师点评学生表现,布置课后作业。
五、课后作业:1. 绘制本节课学习的线段垂直平分线图形,并标注性质。
3. 预习下一节课内容,了解线段垂直平分线的拓展应用。
六、教学评价:1. 知识与技能:学生能熟练掌握线段的垂直平分线的概念和性质,并能运用其解决几何问题。
2. 过程与方法:学生在探究和解决实际问题的过程中,培养了观察、思考、交流和合作的能力。
线段的垂直平分线数学教案
标题:线段的垂直平分线
一、教学目标
1. 知识与技能目标:理解并掌握线段的垂直平分线的概念,能够通过作图找出线段的垂直平分线。
2. 过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何直觉,提高学生的问题解决能力。
3. 情感态度价值观目标:激发学生对几何学习的兴趣,培养学生的合作精神和探索精神。
二、教学重点难点
1. 教学重点:线段垂直平分线的概念及性质。
2. 教学难点:如何准确地找出线段的垂直平分线。
三、教学过程
1. 导入新课:
通过回顾旧知识(如线段、直线、垂线等)引出新课主题——线段的垂直平分线。
2. 新知讲解:
(1) 定义:通过一个图形的所有点都到线段两端距离相等的直线叫做这条线段的垂直平分线。
(2) 性质:线段垂直平分线上的点到线段两端的距离相等。
3. 实践操作:
(1) 学生自己动手画图,找出给定线段的垂直平分线。
(2) 讨论并分享各自的方法和步骤,老师点评和总结。
4. 应用练习:
设计一些练习题,让学生运用所学知识解决问题,巩固知识点。
5. 小结:
回顾本节课的主要内容,强调重点和难点,解答学生的疑问。
四、作业布置
设计一些相关习题,包括基础题和提升题,供学生课后练习。
五、教学反思
根据课堂情况和学生反馈,反思本次教学的优点和不足,为下次教学改进提供参考。
《线段的垂直均分线》教课设计教课目的1、经历研究、猜想、证明的过程,进一步发展学生的推理证明意识和能力2、能够证明线段垂直均分线的性质定理、判断定理及其有关结论教课要点和难点要点:线段的垂直均分线性质与逆定理及其的应用难点:线段的垂直均分线的逆定理的理解和证明教课方法察看实践法,分组谈论法,讲练联合法,自主研究法教课手段多媒体课件教课过程设计一、从学生原有的认知构造提出问题这节课,我们来研究线段的垂直均分线的尺规作图和性质。
二、师生共同研究形成观点1、线段垂直均分线的性质1) 猜想:我们看看上边我们所作的线段的垂直均分线有什么性质?指引学生自主发现线段垂直均分线的性质。
2)想想书籍 P 24 上边应先让学生自己思虑据明的思路和方法,并试试写出证明过程。
线段垂直均分线上的点到这条线段两个端点的距离相等要证明一个图形上每一点都拥有某种性质,只需要在图形上任取一点作代表。
这一思想方法应让学生理解。
3)符号语言∵ P 在线段 AB 的垂直均分线 CD 上PA=PB4)定理解说:P 为 CD 上的随意一点,只需P 在 CD 上,总有 PA = PB。
5)此定理应用于证明两条线段相等2稳固练习1)如图,已知直线 AD 是线段 AB 的垂直均分线,则 AB = 。
2)如图,AD 是线段 BC 的垂直均分线, AB = 5 ,BD = 4 ,则 AC = ,CD= ,AD= 。
3)如图,在△ ABC 中, AB = AC ,AED = 50,则 B 的度数为。
2、线段垂直均分线的逆定理1)想想书籍 P 24 想想困为这个命题不是假如那么的形式,因此学生说出或写出它的抗命题时可能会有必定的困难帮助学生剖析它的条件和结论,再写出其抗命题,最后应要修业生按证明的格式将证明过程书写出来。
2)猜想:我们说线段垂直均分线上的点到这条线段两个端点的距离相等,那么,到一条线段两个端点距离相等的点,在这条线段的垂直均分线上有什么性质 ?指引学生自主发现线段垂直均分线的判断。
《线段垂直平分线的性质》精品教案【教学目标】1.知识与技能(1)掌握线段垂直平分线的性质和判定。
(2)能运用线段垂直平分线的性质和判定解决实际问题。
2.过程与方法探究线段垂直平分线的性质,培养学生认真探究、积极思考的能力。
3.情感态度和价值观在探究的过程中,更大程度的激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。
【教学重点】线段垂直平分线的性质【教学难点】线段垂直平分的性质的运用【教学方法】自学与小组合作学习相结合的方法【课前准备】教学课件。
【课时安排】1课时【教学过程】一、复习导入展示垂直平分线的图片。
【过渡】上节课我们学习了轴对称,在最后了解了垂直平分线的概念,那么垂直平分线到底有什么性质呢?今天我们就来探究一下。
二、新课教学1.线段的垂直平分线的性质【过渡】现在,请同学们自己在纸上按照课本图13.1-6画一条横线和其垂直平分线,然后选取不同的点,判断到AB两点的距离是否相等。
如果将纸对折,点会重合吗?学生进行探究,并请同学回答。
猜想结论:距离相等且重合。
通过动手去验证结论是否正确。
最终得到结论。
【结论】线段垂直平分线上的点与这条线段两个端点的距离相等。
【过渡】有同学可以用理论证明一下这个结论呢?利用判定两个三角形全等。
如图,在△APC和△BPC中,⇒△APC≌△BPC⇒PA=PB【过渡】如果把我们刚刚得到的结论反过来,即PA=PB时,P是否位于线段垂直平分线上呢?学生动手,验证结论。
用数学法证明结论。
【结论】与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上。
所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合。
2.线段垂直平分线的尺规作图按照课本例题,进行讲解。
【过渡】对于尺规作图,我们需要掌握的是所用的原理即为垂直平分线的性质,现在,大家来试一下解决实际问题吧。
《线段的垂直平分线》教学设计第2课时一、教学目标1.会证明三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,并解决相关的问题.2.掌握三角形三条边的垂直平分线的性质,能利用尺规作出符合条件的三角形.3.能用尺规做出已知直线的垂线,培养尺规作图的技能.4.经历探索、猜测、证明的过程,进一步体会证明的必要性,增强证明意识和能力.二、教学重难点重点:会证明三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,并解决相关的问题.难点:掌握三角形三条边的垂直平分线的性质,能利用尺规作出符合条件的三角形.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师提出问题,引导学生思考回答.问题1:线段的垂直平分线的性质定理是什么?它有哪些应用?预设:线段垂直平分线上的点到这条线段两个端点的距离相等.几何语言:如图,直线MN⊥AB,垂足是点C,且AC=BC,P是MN上的点,则P A=PB.应用:经常用来证明两条线段相等.问题2:线段的垂直平分线的判定定理是什么?它有哪些应用?预设:到线段两个端点距离相等的点在这条线段的垂直平分线上.几何语言:如图,线段AB,P A=PB,则点P在线段AB的垂直平分线上(即PC⊥AB且AC=CB).应用:经常用来证明点在直线上或直线经过某一点.问题3:如何作已知线段的垂直平分线?预设:已知:线段AB,如图.求作:线段AB的垂直平分线.作法:1.分别以点A和B为圆心,以大于线段AB 长度的一半为半径作弧,两弧交于点C和D.2. 作直线CD.则直线CD就是线段AB的垂直平分线.的学生适当点拨,最终教师展示答题过程.例1求证:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.分析:两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.证明前要先将题目转化为几何语言,画出图形.然后结合前面学过的线段垂直平分线的判定定理和性质定理进行证明.求解过程:已知:如图,在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在边AC的垂直平分线上,且P A =PB=PC.证明:∵点P在边AB的垂直平分线上,∴P A=PB(线段垂直平分线上的点到这条线段两个端点的距离相等).同理,PB=PC.∴P A=PB=PC.∴点P在边AC的垂直平分线上(到线段两个端点距离相等的点在这条线段的垂直平分线上).【议一议】分别作出锐角三角形、直角三角形、钝角三角形三边的垂直平分线,说说你的发现.⊥ 锐角三角形三边的垂直平分线交于三角形内部一点;⊥ 直角三角形三边的垂直平分线交于三角形斜边中点处.⊥ 钝角三角形三边的垂直平分线交于三角形外部一点.【归纳】教师活动:结合上面的例题讲授及作图内容,鼓励学生先自主思考并讨论总结三角形外心的相关内容,然后做整体归纳总结.三角形的外心:三角形三边的垂直平分线交于一点,这一点称为三角形的外心.三角形的外心到三角形三个顶点的距离相等.三角形外心的位置:(1)锐角三角形三边的垂直平分线交于三角形内部一点;(2)直角三角形三边的垂直平分线交于三角形斜边中点处;(3)钝角三角形三边的垂直平分线交于三角形外部一点.【议一议】(1)已知三角形的一条边及这条边上的高,你能做出满足条件的三角形吗?如果能,能作几个?所作出的三角形都全等吗?预设:能作出无数个,所作出的三角形不都全等.(2)已知等腰三角形的底边及底边上的高,你能用尺规作出满足条件的一个等腰三角形吗?分析:先作出底边的垂直平分线,再截取已知长度的高,即可作出满足条件的三角形.预设:能作出两个三角形,所作出的两个三角形全等.【典型例题】教师活动:先帮学生回忆前面学习的尺规作图的基本内容,然后和学生一起分析具体作图方法,在学生作图过程中,引导学生体会每一作图步骤的作用及其理论依据.例2 已知底边及底边上的高,求作等腰三角形.已知:如图,线段a,h.求作:△ABC,使AB=AC,且BC=a,高AD= h.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线l,交BC于点D.(3)在l上截取DA= h.(4)连接AB,AC.△ABC就是所求作的等腰三角形.【做一做】已知直线l和l上一点P,用尺规作l 的垂线,使它经过点P 呢.小明的作法如下,你能明白他的作法吗?分析:先在直线l上截取A、B两点,且这两点到点P的距离相等;接着分别以点A、B为圆心,大于线段AB的一半的长为半径画弧,交于两点;最后连接得到的两个交点,得到直线m即为所求.你是怎样作的?和同学们交流讨论一下.【议一议】如果点P是直线l外一点,那么怎样用尺规作l的垂线,使它经过点P呢?说说你的作法,并与同伴进行交流.分析:应先依据题意写出已知、求作.可以在直线l的另一侧取点K,过P点以PK长为半径作弧,与直线l相交于两点,即构造出等腰三角形,则问题就转化为等腰三角形作底边垂直平分线的问题,得以解决.已知:直线l,及l外一点P .求作:直线m垂直于直线l,且经过点P.作法:1. 任取一点K,使点K与点P在直线l 两旁;2.以点P为圆心,以PK的长为半径作弧,交直线l于点A和点B;3.作线段AB的垂直平分线m.直线m垂直于直线l,且经过点P.教师活动:进行总结说明,给出简要证明,因为P A=PB,根据线段垂直平分线的判定定理可证得.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.【随堂练习】1.三角形三边的垂直平分线的交点() A.到三角形三边的距离相等B.到三角形三个顶点的距离相等C.到三角形三个顶点与三条边的距离相等D.不能确定2. 如图,D是线段AC,AB的垂直平分线的交点,若∠ACD=30°,∠BAD=50°,则∠BCD 的大小是()A.10°B.20°C.30°D.40°3.如图,O为△ABC三边垂直平分线的交点,点O到顶点A的距离为 5 cm,则AO+BO+CO=cm.4.如图,在△ABC中,∠BAC=52°,O为AB,AC的垂直平分线的交点,连接OB,OC,那么∠OCB=______.5.如图,在△ABC中,BC=2,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,请找出图中相等的线段,并求△AEF的周长.答案:1.B2.A3.154.38°5.解:如果设AB的中点为D,AC的中点为G,那么图中相等的线段有:AD=BD(已知),AG=CG(已知),BE=AE(线段垂直平分线上的点到这条线段两个端点的距离相等),同理AF=CF.思维导图的形式呈现本节课的主要内容:。
练习课教案设计 教师 :袁芃 学校:横道中学课 题13.1线段的垂直平分线的性质 (练习课) 授课时间教学目标 1. 复习线段的垂直平分线的定义及性质 2. 体会几何说理证明问题的思路和方法。
3. 进一步发展说理论证能力,能够有条理地思考、解决问题 教学重点线段垂直平分线的定义及性质 教学难点 研究几何问题的思路和方法。
教学过程(师生活动)一.创设情境:如图是一块三角形的草坪,想要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边交点的距离相等,凉亭的位置应选在哪?二.出示学习目标:1.复习线段的垂直平分线的定义及性质2.能利用线段垂直平分线的定义和性质解决实际问题。
三.知识回顾:1.线段垂直平分线的定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线2.线段垂直平分线的性质线段垂直平分线上的点与这条线断两个端点的距离相等3.线段垂直平分线的性质的逆定理线段垂直平分线上的点与这条线段两个端点的距离相等四.知识巩固(一)基础练习:1、如图,△ABC 中,AD 是BC 边的垂直平分线,BD=2,AB =5,那么AC =____ DC =_____.(第1题) (第2题) (第3题)2、如图,AB 是CD 的垂直平分线,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD 的周长是( )cm.A.3.9B.7.8C.4D.4.6C D A B3、如图,NM是线段AB的中垂线,下列说法正确的有: .①AB⊥MN, ②AD=DB,③MN⊥AB,④MD=DN,⑤AB是MN的垂直平分线.4、下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有()A.1个 B.2个C.3个 D.4个(二)生活实践:1、有特大城市A及两个小城市B、C,这三个城市共建一个污水处理厂,使得该厂到B、C两城市的距离相等,且使A市到该厂的管线最短,试确定污水处理厂的位置。
1.3 线段的垂直平分线 第1课时 线段的垂直平分线1.掌握线段垂直平分线的性质;(重点) 2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,你能帮测量人员计算BC 的长吗?二、合作探究 探究点一:线段的垂直平分线的性质定理【类型一】 应用线段垂直平分线的性质定理求线段的长如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为()A .5cmB .10cmC .15cmD .17.5cm 解析:∵△DBC 的周长=BC +BD +CD =35cm ,又∵DE 垂直平分AB ,∴AD =BD ,故BC +AD +CD =35cm.∵AC =AD +DC =20,∴BC =35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质定理与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD . 解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段的垂直平分线的判定定理如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .理由如下:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠F AD ,∠AED =∠AFD .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,DE =DF ,∴直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.。
《线段的垂直平分线》教学设计
线段的垂直平分线教学设计
教学内容分析:
这节课是把电子白板与几何画板结合的一节新授课。
线段的垂直平分线是对前一课时关于轴对称图形性质的再认识,又是今后几何作图、证明、计算的基础。
学习过程中渗透的转化、探索、归纳等数学思想方法对学生今后的数学学习也有重要的意义。
学习线段垂直平分线相关知识是为学生创造了一次探究的机会,是学习几何学的一次磨练。
教学程序师生活动设计意图
创设情境,引入课题
二、
探究新知
实际问题导入:
(1)某地由于居民增多,要在公路边增加一个卫
生所, A,B是公路边两个村庄,这个卫生所建在什
么位置,能使两个村庄到卫生所的路程一样长?
爱心大道
A
B
(2)以弓箭图形为例,弓的形状和我们学习的那
种几何图形比较相似?它是轴对称图形码?如果
是,请你大概描述出对称轴的位置,并且在弓身找
出几组对称的点?
开弓时图形仍然是轴对称的吗?
此时图形和我们学习过什么几何图形比较相似呢?
此时的箭和弓是什么位置关系呢?
利用轴对称相关知识你发现那些线段相等呢
活动1:
木条l与AB钉在一起,l垂直平分AB,点P是
l上的点,当点P在l上移动时,分别量出点P到
通过这个实际问
题,引发学生思
考
这仍然是学生感
兴趣的话题,可
以让学生白板上
找出对称点,并
利用直线工具作
出对应点连线,
和弓的对称轴。
仍以弓为例,通
过一系列的问
题,引起学生注
意。
这是本节课的重A
B
C O
A、B的距离,你有什么发现?你能证明你的结论吗?
学生用文字语言说明发现的结论
出示性质1:
线段垂直平分线上的点到线段两端点距离相等
∵直线l垂直平分线段AB,点P在l上
∴PA=PB
怎样证明?
活动2:
用一跟木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎样才能保持射出箭的方向与木棒垂直垂直呢?为什么?点之一,要让学生体会到当P在AB的垂直平分线上时,无论点P 怎样移动,
PA=PB,先让学生大胆猜想,再用几何画板演示。
大胆让学生说,锻炼学生的语言表达能力和归纳概括能力。
注意几何语言的规范
证明过程可在白板上完成,提醒学生可转化为证三角形全等,渗透转化思想。
学生可用准备好的材料操作,发现当AC=BC时,就能保证箭的方向与木棒。
引发
三、应用新知总结:
到一条线段两个端点距离相等的点在这条线段的垂直
平分线上
几何语言
∵AP=BP
∴点P在AB的垂直平分线上
证明过程略
巩固练习:
1、AD⊥BC,BD=DC,点C在AE的垂直平分线上,
AB,AC,CE的长度有什么关系?AB+BD与DE有什
么关系?
2、AB=AC,MB=MC,直线 AM 是线段BC的垂直平分线
吗?
想一想我们如何去作一条线段的垂直平分线呢,通过
本题你得到了什么启示了吗?
学生继续探究的
欲望。
证明过程仍可借
助三角形全等。
让学生口述完成
有了前面的基础
学生很容易完成
学生口述
两个练习是课后
习题,巩固所学
新知,而第2题
又为后面的应
用,怎样作线段
的垂直平分线做
了铺垫。
需要确定两个
点。
出示给学生,对
学生来说难度较A
B
C
O。