同态滤波与时谱技术
- 格式:ppt
- 大小:617.00 KB
- 文档页数:18
第10章 数字信号处理的几个前沿课题前面介绍了数字信号处理的基本知识,本章我们将介绍时谱分析、小波变换、地震观测系统仿真与地面运动恢复等几个数字信号前沿课题,以便大家在实际工作中参考。
10.1 时谱(倒谱)分析时谱分析(Cepstrum analysis)是一种非线性信号处理技术,它在语言、图像、和噪声处理领域中都有广泛的应用。
时谱可分为两类:复时谱和功率时谱。
MATLAB 信号处理工具箱提供复时谱分析的工具函数。
复时谱(Complex cepstrum )的定义为:[]{}ωπωππωd ee X n xnj j ⎰-=)(ln 21)(ˆ (10-1)由上式可见,复时谱实际上是序列x(n)的Fourier 变换取自然对数,再取Fourier 逆变换,得到的复时谱仍然是一个序列。
也就是说,复时谱是x(n)从时间域至频率域、频率域至频率域、频率域至时间域的三次变换。
MATLAB 信号处理工具箱函数cceps 用于估计一个序列x 的复时谱,调用格式为:xhat=cceps(x)式中,x 为输入序列(实序列);xhat 为复时谱(复序列)。
MATLAB 信号处理工具箱还提供了序列实时(倒)谱的计算程序rceps ,调用格式为Y=rceps(x),其中x 为实序列;y 为实时谱,执行的操作为:ωπππωd eX C j x ⎰-=)(ln 21 (10-2)由此可知,我们不能从序列x 的实时谱重构原始序列,因为实时谱是根据序列Fourier变换的幅值计算的,丢失了相位方面的信息。
但如果需要,可采用最小相位模式估计原始序列。
由于复时谱从复频谱计算得到,不损失相位信息,因此复时谱是可逆的,实时谱过程是不可逆的。
时谱分析技术广泛地应用于语言信号分析、同态滤波技术中。
这里举一个说明复时谱在具有回声信号测量中的应用。
【例10-1】设原信号是一个45Hz 的正弦波,在传播过程中遇到障碍产生回声,回声振幅衰减为原信号的0.5,并与原信号有0.2s 的延迟。
同态滤波的原理
嘿,朋友!今天咱来聊聊同态滤波的原理,保证让你觉得超有趣!
想象一下,你在一个昏暗的房间里,想要看清房间里的东西,这时候你打开了一盏灯,一下子,一切都变得清晰可见了!同态滤波就有点像这盏灯呢!
同态滤波啊,它主要是针对图像或者信号来处理的。
比如说,你有一张照片,可能因为光线不好啥的,有些地方很暗,看不清细节。
这时候同态滤波就出马啦!它就像一个神奇的魔法师,能把暗的地方变亮,把亮的地方适当调整,让整个图像变得更加清晰、漂亮!
再比如,你在听音乐的时候,可能有些声音很嘈杂,让你根本听不清主要的旋律。
而同态滤波就好像能把那些嘈杂的声音给过滤掉,让好听的旋律更加突出!是不是很厉害?
咱具体说说它的原理哈。
同态滤波会把图像或者信号分成两个部分,一个是光照的部分,就好像白天的太阳,决定了整体的明亮程度;另一个是反射的部分,就像物体本身的颜色和质地。
然后呢,对这两个部分分别进行处
理,最后再合到一起。
这就像给一幅画先打底色,再仔细描绘细节一样,最后呈现出的效果那可就大不一样啦!
我跟你说,我上次处理一张老照片的时候,哇塞,用了同态滤波后,那照片简直就跟新拍的一样!原来模糊不清的人脸一下子就清楚了,我高兴得都要跳起来了!
总之啊,同态滤波就是这么神奇又好用的东西!它能让那些不怎么完美的图像和信号变得焕然一新,让我们能更好地欣赏和理解它们。
所以呀,可千万别小瞧了这个同态滤波哦!它真的能给我们带来很多惊喜呢!。
数字语音信号处理实验指导书前言语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。
通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。
同时,语言也是人与机器之间进行通信的重要工具,它是一种理想的人机通信方式,因而可为信息处理系统建立良好的人机交互环境,进一步推动计算机和其他智能机器的应用,提高社会的信息化程度。
语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。
虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。
20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。
随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。
近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。
为了深入理解语音信号数字处理的基础理论、算法原理、研究方法和难点,根据数字语音信号处理教学大纲,结合课程建设的需求,我们编写了本实验参考书。
本本参考书针对教学大纲规定的四个研究设计型实验,每个实验给出了参考程序,目的是起一个抛砖引玉的作用,学生在学习过程中,可以针对某一个实验进行延伸的创新学习,比如说,语音端点的检测、语音共振峰提取、基于HMM或DTW的有限词汇或大词汇的特定人、非特定人的语音识别、识别率的提高(如何提高有噪环境下的识别率)、以及编码问题等,同时在学习中还可深入思考如何将有关的方法在嵌入式系统或DSP 下的实现问题等。
燕山大学课程设计说明书题目:同态滤波器设计及实现学院(系):里仁学院年级专业:仪表10-2学号:学生姓名:指导教师:王志斌林洪彬教师职称:副教授讲师燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
年月日摘要在图像采集过程中,由于实际环境中成像条件的限制,造成图像的背景光照不均匀,当照度不均匀时,图像上对应照度暗的部分,其细节就较难分辨。
为了消除数字图像中的照度不均匀性(即图像增强),本报告对数字图像的照度不均匀校正技术(即图像增强处理技术)进行了分析,分析了这些方法在计算误差上的内在原因,并在此基础上研究了基于同态滤波的数字图像照度不均匀校正技术。
该技术兼顾了数字图像的频域和空域,使得采用本方法校正后的图像既消除了不足照度的影响而又不损失图像的细节。
结果表明:经处理后的图像,局部对比度增强效果明显,较好地保持了图像的原始面貌,取得了预期的理想滤波效果。
该方法能有效恢复不均匀光照背景,为实际图像处理应用提供了有效的前期处理。
关键词:同态滤波;图像增强;光照不均匀目录摘要-----------------------------------------------------------------------------------------------------2 关键字--------------------------------------------------------------------------------------------------2 第一章MATLAB的简介及应用----------------------------------------------------------------41.1 MA TLAB简介------------------------------------------------------------------------------41.2 MA TLAB应用------------------------------------------------------------------------------4第二章同态滤波器设计原理----------------------------------------------------------------------5 第三章matlab程序----------------------------------------------------------------------------------8 第四章课程设计总结-------------------------------------------------------------------------------10 参考文献资料------------------------------------------------------------------------------------------11第一章MATLAB的简介及应用1.1 MATLAB简介MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进行处理。
频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。
图像变换:对图像进行正交变换,以便进行处理。
图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。
图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。
图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。
图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。
图像识别:找到图像的特征,以便进一步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:灰度:使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像.像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。
通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。
同态滤波处理在语音处理中的应用作者:焦红霞来源:《科学与财富》2014年第07期摘要:语音处理中基音检测和共振峰检测是极为重要的环节之一,然而浊音中的基音往往会受到声道特性和噪声的影响而导致检测结果的误差。
通常利用滤波处理来减小噪声的影响,但在滤波处理中不可避免地会对语音信号产生影响。
同态滤波处理可以将浊音中的激励信号和声道特性进行分离,然后再对分离的激励信号和声道特性分别进行处理,可以较精确地检测出基音频率和声道的共振峰频率,从而减小噪声的影响,也能减小激励和声道特性的相互影响。
关键词:同态滤波,语音处理,基音频率,声道特性,共振峰频率1 引言语音信号从语音形成的机理上来看,可以分为两大类。
一类是发声时声带周期性地开启和闭合,在声门处产生一个准周期的脉冲序列空气流,这种语音叫“浊音”(如声音“啊”)。
还有一类是在发声时,声门是开启的,气流在声道中摩擦或口唇的爆破而发生,这类语音叫做“清音”(如声音“咝”)。
显然,浊音具有周期性,这个周期称为基音周期,而清音不具有周期性。
气流通过声道时,在声道中会产生共振,共振谐振频率称为共振峰。
在语音处理中,一个很重要的任务就是对基音周期的检测和共振峰频率的确定。
基音检测和共振峰频率检测的难点在于声道特性和基音激励的相互影响难以去除。
本文采用同态滤波处理,将声门激励信号和声道特性进行分离,然后分别对激励和声道特性进行频谱分析,从而减小声道特性、基音激励、噪声的相互影响,以提高基音检测和共振峰频率检测的精度。
2 语音的基本处理语音信号是随时间变化的,是一个非平稳的随机过程,即具有时变特性,不能直接采用数字信号处理的方法来进行处理。
但是语音信号在较短的时间范围内可以看作是特性保持不变的,即具有短时平稳性。
因此在语音处理中,“短时分析”贯穿始终。
所谓短时分析,就是将语音分成一段一段,然后对每一段进行分析。
语音通常在10~30ms内保持相对平稳,所以语音帧时长一般取10~30ms。
《语音信号处理》课程笔记第一章语音信号处理的基础知识1.1 语音信号处理的发展历程语音信号处理的研究起始于20世纪50年代,最初的研究主要集中在语音合成和语音识别上。
在早期,由于计算机技术和数字信号处理技术的限制,语音信号处理的研究进展缓慢。
随着技术的不断发展,尤其是快速傅里叶变换(FFT)的出现,使得语音信号的频域分析成为可能,从而推动了语音信号处理的发展。
到了20世纪80年代,随着全球通信技术的发展,语音信号处理在语音编码和传输等领域也得到了广泛应用。
近年来,随着人工智能技术的快速发展,语音信号处理在语音识别、语音合成、语音增强等领域取得了显著的成果。
1.2 语音信号处理的总体结构语音信号处理的总体结构可以分为以下几个部分:(1)语音信号的采集和预处理:包括语音信号的采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
(2)特征参数提取:从预处理后的语音信号中提取出能够反映语音特性的参数,如基频、共振峰、倒谱等。
(3)模型训练和识别:利用提取出的特征参数,通过机器学习算法训练出相应的模型,并进行语音识别、说话人识别等任务。
(4)后处理:对识别结果进行进一步的处理,如语法分析、语义理解等,以提高识别的准确性。
1.3 语音的发声机理和听觉机理语音的发声机理主要包括声带的振动、声道的共鸣和辐射等过程。
声带振动产生的声波通过声道时,会受到声道形状的影响,从而产生不同的音调和音质。
听觉机理是指人类听觉系统对声波的感知和处理过程,包括外耳、中耳、内耳和听觉中枢等部分。
1.4 语音的感知和信号模型语音的感知是指人类听觉系统对语音信号的识别和理解过程。
语音信号模型是用来描述语音信号特点和变化规律的数学模型,包括时域模型、频域模型和倒谱模型等。
这些模型为语音信号处理提供了理论基础和工具。
第二章语音信号的时域分析和短时傅里叶分析2.1 语音信号的预处理语音信号的预处理主要包括采样、量化、预加重等操作,目的是提高语音信号的质量,便于后续处理。
语音信号的滤波处理胡勇200921011003一、概述语音信号的滤波处理是数字信号处理领域目前发展最为迅速的信息科学研究领域的核心技术之一,通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。
简单的语音信号滤波处理的基本流程如下框图:二、语音信号预处理(一)信号采样利用麦克风录制一段语音1,在MATLAB中,利用函数wavread.m将其转化为数字向量,并使用函数sound.m进行处理前声音回放,以便比对。
(二)频率确定人的语音信号频率一般集中在200 Hz到4.5 kHz之间,通过将信号从时域到频域的变换,以确定语音信号频率实际范围,来决定滤波器的设计类型。
若噪声为加性的,采用简单的频谱分析即可确定语音信号频率范围;但若噪声为乘性的或卷积性的,则需利用倒谱进行分析,此时采用同态滤波器(homomorphic filtering),即广义线性滤波器的基本思路来去噪。
如Figure 1频谱图所示,该语音信号中人的语音频率主要集中在0—700Hz 之间,而相对的大于700Hz的几个凸起则为噪声;在倒谱图中,除开始和结束1语音文件可从/u/ish?uid=1713628781处获得,信号采样频率为11025Hz,采样大小8Bit,单声道.有一定的卷积性噪声影响外,其他时间可以确定为加性噪声的影响。
三、滤波器设计数字滤波器(Digital Filter)根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为四种,即低通(LP, Low Pass)、高通(HP, High Pass)、带通(BP, Band Pass)和带阻(BS ,Band Stop)滤波器。
一般而言,大多数噪声都存在于高频部分。
本文拟采用Butterworth滤波器,Chebyshev I型滤波器,窗函数,Chebyshev 一致逼近法等设计的滤波器进行除噪处理。
(一) Butterworth滤波器信号频率集中在0—700Hz之间,于是将低通滤波器技术要求,定为通带截止频率为700Hz,阻带下限截止频率为1000Hz,通带衰减为0.25dB,阻带衰减为50dB。
朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉等方向努力,其中高精度、小体积、多功能、稳定可靠成为70年代以后的主攻方向,导致数字滤波器、RC有源滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展。
到70年代后期,上述几种滤波器的单片集成己被研制出来并得到应用,90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。
当然,对滤波器本身的研究仍在不断进行。
目前,国外有许多院校和科研机构在研究基于FPGA的DSP应用,比较突出的有Denmark大学的研究小组正在从事FPGA实现数字滤波器的研究。
由于FPGA实现乘法器有困难,因此他们重点研究开发无乘法的滤波器算法。
加州大学洛杉矶分校的研究小组采用运行时重构技术开发了一种视频通讯系统,该系统用一片FPGA可每帧重构四次完成视频图像压缩和传送的操作。
此外,他们还在进行Mojave项目的开发工作,力图采用运行时重构技术来实现自动目标识别应用。
我国在DSP技术起步较早,产品的研究开发成绩斐然,基本上与国外同步发展,而在FPGA方面起步较晚。
全国有100来所高等院校从事DSP&FPGA 的教学和科研,除了一部分DSP芯片需要从国外进口外,在信号处理理论和算法方面,与国外处于同等水平.而在FPGA信号处理和系统方面,有了喜人的进展,正在进行与世界先进国家同样的研究.如,西北工业大学和国防科学技术大学的ATR实验室采用了FPGA可重构计算系统进行机载图像处理和自动目标识别,主要是利用该系统进行复杂的卷积运算,同时利用它的可变柔性来达到自适应的目的。
北京理工大学研究利用FPGA提高加解密运算的速度,等等。
数字信号处理是利用数值计算方法对数字序列进行各种处理,把信号变换成符合人们需要的各种形式。
在数字信号处理过程中,无论是信号的获取和传输,还是信号的处理和交换,都离不开滤波技术。
因此, 本论文在分析了国内外数字滤波器技术的现状与发展趋势及数字滤波器设计方法的基础上,改进了传统的数字滤波器设计方法过程复杂、计算量大、调整滤波特性困难等不足,研究了:1、利用窗函数法设计了低通、带通和多通带数字滤波器,并使用MATLAB软件进行仿真实现;2、使用MATLAB软件实现了利用频率取样法设计的低通滤波器;3、利用优化法设计了等波纹低通滤波器,并使用MATLAB软件进行仿真实现;4、以加噪声音和加噪图像为例,展示良好的滤波器设计能大力改善声音和图像的清晰化处理程度。
同态滤波法
同态滤波法是一种数字图像处理技术,在图像增强和恢复方面应用广泛。
该方法可以处理存在照明不均匀、噪声、模糊等问题的图像。
同态滤波法基于信号的幅度和相位的分离,通过对信号进行对数变换,将幅度和相位分离开来。
然后,对幅度进行低通滤波,对相位进行高通滤波,最后通过逆变换将图像恢复。
同态滤波法可以应用于医学图像处理、纹理分析和图像增强等领域。
它能够减少图像中噪声的影响、降低图像的对比度、增加图像的清晰度和细节等。
- 1 -。