运筹学-3割平面法
- 格式:ppt
- 大小:296.00 KB
- 文档页数:11
3 割平面法割平面法是通过生成一系列的平面割掉非整数部分来得到最优整数解的方法。
目前,割平面法有分数割平面法,原始割平面法,对偶整数割平面法,混合割平面法等。
我们介绍Gomory割平面法(纯整数规划割平面法)用例子说明割平面法基本思想。
例5-8求下列问题:Max Z=2x 1+ 3x 2s.t.2x 1+4x 2 ≤25x 1≤82x 2 ≤10x 1,x 2 ≥0,且取整数值化成标准问题Max Z=2x 1+ 3x 2s.t.2x 1+4x 2 + x 3 =25x 1+ x 4=82x 2 + x 5 =10x j 0,且取整数值松驰问题(P)Max Z=2x 1+ 3x 2s.t.2x 1+4x 2 + x 3 =25x 1+ x 4=82x 2 + x 5 =10x j 0松驰问题(P)用单纯形法求解得到最优解:B(8,9/4)Z=22(3/4)但不是原问题(IP)的解,(IP)可行域是OABDE内的全部方格点组成。
BD E O 1 2 3 4 5 6 7 A 8 9 10 11 1210987654321X 1X 2引进割平面法l 1: x 1+ x 2=10割去非整数部分FBG l 2: x 1+2x 2=12 割去非整数部分HDGFGB F D E l 1O 1 2 3 4 5 6 7 A 8 9 10 11 1210987654321X 12l 2G B F H D E O 1 2 3 4 5 6 7 A 8 9 10 11 1210987654321X 12GH E O 1 2 3 4 5 6 7 A 8 9 10 11 1210987654321X 12形成新的凸可行域OAGHE (整点凸包),它的极点G (方格点)是原规划(IP )的最优解(8,2)Z=22。
约束条件:l 1: x 1+ x 2≤10l 2: x 1+2x 2≤12称为割平面。
问题是如何寻找割平面?松驰问题(P)Max Z=2x 1+ 3x 2s.t.2x 1+4x 2 + x 3 =25x 1+ x 4=82x 2 + x 5 =10x j 0初始单纯形表C 2 3 0 0 0bΘC B X B X1X2X3X4X50 X3 2 4 1 0 0 250 X4 1 00 1 0 80 X50 20 0 1 10σC2 3 0C B X B X 1 X 2 X 3 X 4 X 5 bΘ2 X 1 1 0 0 1 0 8 0 X 5 0 0 -1/2 1 1 11/2 3X 2 0 1 1/4 -1/20 9/4 σ0 -3/4 -1/20 91/4最终单纯形表:最优解(8,9/4,0,0,11/2)Z =91/4C2 3 0C B X B X 1 X 2 X 3 X 4 X 5 bΘ2 X 1 1 0 0 1 0 8 0 X 5 0 0 -1/2 1 1 11/2 3X 2 0 1 1/4 -1/20 9/4 σ0 -3/4 -1/20 91/4X 2相应的方程:x 2+(1/4)x 3 –(1/2) x 4 =9/4x 2+(1/4)x 3 –(1/2) x 4 =9/4把所有系数分解成整数和非负真分数之和。
§3割平面法割平面法也是求解整数规划问题常用方法之一。
3.1基本思路用割平面法求解整数规划的基本思路是:先不考虑整数约束条件,求松弛问题的最优解,如果获得整数最优解,即为所求,运算停止。
如果所得到最优解不满足整数约束条件,则在此非整数解的基础上增加新的约束条件重新求解。
这个新增加的约束条件的作用就是去切割相应松弛问题的可行域,即割去松弛问题的部分非整数解(包括原已得到的非整数最优解)。
而把所有的整数解都保留下来,故称新增加的约束条件为割平面。
当经过多次切割后,就会使被切割后保留下来的可行域上有一个坐标均为整数的顶点,它恰好就是所求问题的整数最优解。
即切割后所对应的松弛问题,与原整数规划问题具有相同的最优解。
下面以全整数规划问题的割平面法为例,介绍割平面的求解过程。
3.2求解步骤与举例割平面法的具体求解步骤如下:1.对于所求的整数规划问题(4.2),先不考虑整数约束条件,求解相应的松弛问题(4.6)2.如果该问题无可行解或已取得整数最优解,则运算停止;前者表示原问题也无可行解,后者表示已求得整数最优解。
如果有一个或更多个变量取值不满足整数条件,则选择某个变量建立割平面。
3.增加为割平面的新约束条件,用前面介绍的灵敏分析的方法继续求解,返回1。
下面介绍割平面的建立方法及其求解过程。
例1 求解下列整数规划问题(4.7)解引入松弛变量,写成标准形式:(4.8)对上述模型不考虑整数条件,用单纯形法求解相应松弛问题的最终单纯形表为(表4-2)表4-215/38/3-13/3显然,为非整数解。
为求得整数解,我们想办法在原约束条件的基础下引入一个新的约束条件,以保证一个或几个变量取值为整数。
为此,在表4-2中任选一个取值非整数的变量,如,写出用基变量表示基变量的表达式:(4.9)将上式的所有变量的系数及右端常数均改写成一个整数与一个非负真分数之和的形式。
据此,(4.9)式可以改写成若将带有整数系数的变量整数项留在方程的左边,其余移到方程的右边,则有, (4.10) 由于要求变量取值为正整数,方程(4.10)的左边必为整数。
割平面法的基本思想割平面法主要用于求解整数规划问题的方法。
1958年由美国格莫理提出。
基本思路是:先不考虑整数性约束,求解相应的线性规划问题。
若线性规划问题的最优解恰好是整数解,则此解即为整数规划问题的最优解。
否则,就增加一个新的约束条件,称为割平面。
割平面必须具有两条性质:(1)从线性规划问题的可行域中至少割掉目前的非整数最优解;(2)不割掉任何整数可行域,然后在缩小的可行域上继续解线性规划问题。
重复以上做法,经有限次切割后,必可在缩小的可行域的一个整数极点上达到整数规划问题的最优解。
混合整数线性规划(MILP)的割平面法通过将整数问题线性松弛为非整数线性问题,并对其进行求解,来求解MILP 问题。
线性规划理论说明,在温和的假定下(如果线性规划存在最优解,并且可行域不包含一条线),总存在一个极值点或顶点是最优的。
检验所获的最优解是否为整数解。
如否,则必然存在一线性不等式将最优点和真可行集的凸包分离。
找到这样的不等式是分离问题,而这样的不等式就是切割。
切割可以被加入到被松弛的线性规划中,使得当前的非整数解对松弛不再可行。
该过程不断重复,直到找到最优整数解。
用于普遍的凸连续优化和变体的割平面法有不同的名称:Kelley 法,Kelley-Cheney-Goldstein 法和捆绑法。
它们常用于不可微的凸最小化问题。
对于这类问题,通常的可微优化的梯度法无法使用,而使用这些方法可以高效地得到凸目标函数及其次梯度。
这种情况最常出现在双拉格朗日函数的凹优化中。
另一种常见情形是Dantzig-Wolfe分解应用于结构优化问题中,这类问题通常有含有指数级变量的表达式。
通过延迟列生成法按需生成这些变量等同于在对应的对偶问题上切割平面。
图1.割平面法例,如上图1,单位立方体与切割平面。
在三节点的旅行推销员问题中,该(弱)不等式表明每次旅行必须连接至少两个点。
2Gomory 切割切割平面法由Ralph Gomory 在19 世纪50 年代提出,用于解决整数规划和混合整数规划问题。