X(0) (b1,b2 , ,br, ,bm,0, ,0)T
目标函数Z 最 (0.其 ) 优b 中 i(值 i1,为 2, ,m)不全为
2、定界:
记( IP )的目标函数最优值为Z* ,以Z(0) 作为Z* 的上界,
记为 =ZZ(0) 。再用观察法找出一个整数可行解 X′,
并以其相应的目标函数值 Z′作为Z* 的下界,记为Z= Z′,
无 B6可: 行解
z5 308
2
1
B5
01234567
分支定界的全过程:
x1 4
B : x1 4 .81 x 2 1 .82
z0,z 356
z 0 356
x1 5
B1 : x1 4.00 x2 2.10 z1 349
B2 : x1 5.00 x2 1.57 z 2 341
z 0 z 349
——混合整数规划(Mixed Interger Programming,MIP) 全部决策变量取0或1的规划问题:
——0-1规划(Binary Interger Programming,BIP) 整数规划中不考虑整数条件所对应的规划问题:
——该整数规划的松弛问题
整数线性规划一般形式:
n
max(min) z c j x j j 1
14
x1 6x
9x2 1 3x
2
51 1
x1 , x 2 0
max Z x1 x 2
14
x1 6x
9x2 1 3x
2
51 1
(1) (2)
x1 , x 2 0
用图解法求出最优解 x1=3/2, x2 = 10/3 且有Z = 29/6
x2
⑴
3 2