整数规划的数学模型分枝定界法割平面法
- 格式:ppt
- 大小:835.00 KB
- 文档页数:67
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96m ax ,0,8.421===z x x 。
用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z ;而A 的任意可行解的目标函数值是*z的一个下界z ,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82,①② ③ ④ ⑤=0z 356(见下图)。
整数规划问题的求解策略探讨整数规划问题是指在约束条件下,目标函数为整数线性函数的优化问题。
在实际应用中,整数规划问题广泛存在于生产调度、资源分配、网络设计等领域。
由于整数规划问题的复杂性,其求解过程需要采用合适的策略和方法。
本文将探讨整数规划问题的求解策略,包括分枝定界法、割平面法、启发式算法等,并分析它们的优缺点及适用场景。
一、分枝定界法分枝定界法是求解整数规划问题最常用的方法之一。
其基本思想是通过不断地将问题分解为子问题,并对每个子问题进行求解,直到找到最优解为止。
在分枝定界法中,通常采用深度优先搜索或广度优先搜索的方式遍历搜索空间,通过对搜索树的分支进行限界,剪去一些不必要的分支,从而提高求解效率。
分枝定界法的优点在于能够确保找到最优解,尤其适用于规模较小的整数规划问题。
然而,对于规模较大的问题,分枝定界法的计算复杂度会随着搜索空间的增大而急剧增加,导致求解时间过长。
因此,在实际应用中,需要结合问题的特点和求解需求来选择是否采用分枝定界法。
二、割平面法割平面法是另一种常用的整数规划求解方法。
该方法通过引入额外的线性约束(割平面)来逐步逼近整数规划问题的最优解。
割平面法的核心思想是通过不断添加线性不等式约束,将整数规划问题的凸包逼近到凸壳,从而逐步缩小搜索空间,最终找到最优解。
割平面法的优点在于能够有效地提高求解效率,尤其适用于存在大量连续约束的整数规划问题。
然而,割平面法的实现过程较为复杂,需要对问题的线性松弛模型进行求解,并不断生成有效的割平面。
因此,对于一些特定结构的整数规划问题,割平面法可能并不是最优的求解策略。
三、启发式算法除了传统的分枝定界法和割平面法外,启发式算法也被广泛应用于整数规划问题的求解中。
启发式算法是一类基于经验和规则的启发式搜索方法,通过模拟生物进化、群体智能等自然现象,寻找最优解或近似最优解。
常见的启发式算法包括遗传算法、蚁群算法、模拟退火算法等。
这些算法在求解整数规划问题时,能够有效地避免陷入局部最优解,提高求解速度和质量。
数学建模中的整数规划与线性规划数学建模是指利用数学方法解决实际问题的过程,其中整数规划和线性规划是常用的数学建模技术。
本文将探讨数学建模中的整数规划和线性规划的基本原理、应用领域以及解决实际问题的方法。
一、整数规划整数规划是指在线性规划的基础上,将决策变量限制为整数的优化问题。
在实际问题中,有些变量只能取整数值,而不能取小数值。
整数规划的数学模型可以表示为:$max\{cx:Ax≤b,x\geq0,x为整数\}$其中,c是目标函数的系数向量,A是约束条件的系数矩阵,b是约束条件的常数向量,x是决策变量。
整数规划的应用非常广泛,比如生产调度、资源配置、旅行商问题等。
整数规划不仅可以帮助企业进行生产计划,还可以优化物流配送路线,解决旅行商的最优路径问题等。
二、线性规划线性规划是指目标函数和约束条件均为线性关系的优化问题。
线性规划的数学模型可以表示为:$max\{cx:Ax≤b,x\geq0\}$线性规划在数学建模中是最常用的优化工具之一,广泛应用于生产计划、资源分配、投资组合等领域。
通过线性规划,可以找到目标函数在约束条件下的最优解,从而为决策提供科学依据。
三、整数规划与线性规划的联系整数规划是线性规划的一个特例,即当决策变量限制为整数时,线性规划就变成了整数规划。
因此,整数规划可以通过线性规划来求解,但是整数规划的求解难度要高于线性规划。
在实际问题中,有时候整数规划难以求解,此时可以采用线性规划来近似求解。
例如,可以将决策变量限制为小数,然后通过计算得到的解来指导实际决策。
当然,这种近似解不一定是最优解,但可以提供一种可行的解决方案。
四、整数规划与线性规划的求解方法针对整数规划和线性规划问题,有多种求解方法。
其中,常用的方法包括暴力搜索、分支定界法、割平面法等。
暴力搜索是一种基础的求解方法,通过枚举所有可能的解来寻找最优解。
这种方法的好处是可以找到全局最优解,但计算时间较长,适用于问题规模较小的情况。
整数规划模型的构建及求解方法整数规划是一种数学优化问题,其目标是在给定的约束条件下,寻找能够使目标函数最大或最小的整数解。
在实际应用中,整数规划模型常被用于决策问题的求解,如生产计划、物流调度、资源分配等。
本文将介绍整数规划模型的构建方法以及常用的求解方法。
一、整数规划模型的构建方法1.确定决策变量:首先需要确定问题中的决策变量,即可用整数来表示的变量。
这些变量一般代表决策问题中的选择或分配方案。
例如,在生产计划问题中,决策变量可以是不同产品的生产数量。
2.定义目标函数:目标函数是整数规划问题中要最大化或最小化的指标。
根据问题的具体要求,可将目标函数设定为各个决策变量的线性组合或非线性函数。
例如,生产计划问题中,目标函数可以是利润的最大化或成本的最小化。
3.确定约束条件:约束条件用于限制决策变量的取值范围,以满足问题的实际限制。
约束条件可以是等式或不等式。
例如,在物流调度问题中,约束条件可以包括产品的需求量、供应量以及运输容量等。
4.完善模型:为了更准确地描述问题,还需要考虑一些特殊约束条件和问题的具体要求。
例如,某些决策变量可能需要满足某种关系或限制条件,或者需要指定某些变量的取值范围。
二、整数规划模型的求解方法1.穷举法:穷举法是最简单直接的求解方法,即将所有可能的整数解都列举出来,并计算对应的目标函数值,最后选取最优解。
然而,穷举法由于计算复杂度高,只适用于问题规模较小的情况。
2.分支定界法:分支定界法是一种逐步缩小解空间的方法。
通过将整数规划问题分解成若干个子问题,并为每个子问题设定上下界,不断迭代求解,最终找到最优解。
这种方法可以高效地搜索整数解空间,但对于规模较大的问题,计算时间可能会很长。
3.割平面法:割平面法是一种逐步划分解空间的方法。
它通过添加割平面来修正原始线性规划松弛的解,使其成为整数解。
这种方法能够快速收敛到最优解,并且具有较好的计算效率。
4.分枝定界法:分枝定界法是将分支定界法和割平面法相结合的方法。