医学统计学之集中趋势的统计描述
- 格式:pptx
- 大小:2.27 MB
- 文档页数:48
《医学统计学》单项选择题摘自:马斌荣主编、医学统计学、第5版、北京:人民卫生出版社,2008第一章1、医学统计学研究的对象就是A 、医学中的小概率事件 C 、动物与人的本质 E.有变异的医学事件医学统计中的基本概念B 、各种类型的数据 D 、疾病的预防与治疗2、用样本推论总体,具有代表性的样本指的就是A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体答案:E E D E A第二章集中趋势的统计描述1、某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标就是 A 、中位数 B 、几何均数 C 、均数 D 、 P 95百分位数E 、频数分布3、下列观测结果属于等级资料的就是A.收缩压测量值 C.住院天数 E.四种血型4、随机误差指的就是A 、测量不准引起的误差 C 、选择样本不当引起的误差 E 、由偶然因素引起的误差 5、收集资料不可避免的误差就是 A 、 随机误差C 、过失误差B.脉搏数 D.病情程度B 、由操作失误引起的误差 D 、选择总体不当引起的误差B 、系统误差 D 、记录误差2、算术均数与中位数相比,其特点就是A.不易受极端值的影响 C.抽样误差较大E.更适用于分布不明确资料3、一组原始数据呈正偏态分布,其数据的特点就是A 、数值离散度较小B 、数值离散度较大C 、数值分布偏向较大一侧D 、数值分布偏向较小一侧E 、数值分布不均匀4、将一组计量资料整理成频数表的主要目的就是A.化为计数资料 B 、便于计算C 、形象描述数据的特点D 、为了能够更精确地检验E 、提供数据与描述数据的分布特征5、6人接种流感疫苗一个月后测定抗体滴度为1:20、1:40、1:80、1:80、1:160、1:320, 求平均滴度应选用的指标就是A 、均数B 、几何均数C 、中位数D 、百分位数E 、倒数的均数答案:A B D E B第三章离散程度的统计描述1、变异系数主要用于A.比较不同计量指标的变异程度 B 、衡量正态分布的变异程度 C 、衡量测量的准确度 D 、衡量偏态分布的变异程度E 、衡量样本抽样误差的大小2、对于近似正态分布的资料,描述其变异程度应选用的指标就是A 、变异系数B 、离均差平方与C 、极差D 、四分位数间距E 、 标准差3、某项指标95%医学参考值范围表示的就是A 、检测指标在此范围,判断“异常”正确的概率大于或等于95%B 、检测指标在此范围,判断“正常”正确的概率大于或等于95%C 、在“异常”总体中有95%的人在此范围之外D 、在“正常”总体中有95%的人在此范围E 、检测指标若超出此范围,则有95%的把握说明诊断对象为“异常”B.能充分利用数据的信息4.应用百分位数法估计参考值范围的条件就是A.数据服从正态分布B.数据服从偏态分布C.有大样本数据D.数据服从对称分布E.数据变异不能太大5.已知动脉硬化患者载脂蛋白B的含量(mg/dl)呈明显偏态分布,描述其个体差异的统计指标应使用A.全距B.标准差C.变异系数D.方差E.四分位数间距答案:A E D B E第四章抽样误差与假设检验1、样本均数的标准误越小说明A、观察个体的变异越小B、观察个体的变异越大C、抽样误差越大D、由样本均数估计总体均数的可靠性越小E、由样本均数估计总体均数的可靠性越大2、抽样误差产生的原因就是A、样本不就是随机抽取B、测量不准确C、资料不就是正态分布D、个体差异E、统计指标选择不当3、对于正偏态分布的的总体,当样本含量足够大时,样本均数的分布近似为A、正偏态分布B、负偏态分布C、正态分布D、t分布E、标准正态分布4、假设检验的目的就是A、检验参数估计的准确度B、检验样本统计量就是否不同C、检验样本统计量与总体参数就是否不同D、检验总体参数就是否不同E、检验样本的P值就是否为小概率5、根据样本资料算得健康成人白细胞计数的95%可信区间为7、2X109/L〜9、1X109/L, 其含义就是A、估计总体中有95%的观察值在此范围内B、总体均数在该区间的概率为95%C、样本中有95%的观察值在此范围内D、该区间包含样本均数的可能性为95%E、该区间包含总体均数的可能性为95%答案:E D C D E第五章t检验1、两样本均数比较,检验结果P 0.05说明A、两总体均数的差别较小B、两总体均数的差别较大C、支持两总体无差别的结论D、不支持两总体有差别的结论E、可以确认两总体无差别2、由两样本均数的差别推断两总体均数的差别,其差别有统计学意义就是指A、两样本均数的差别具有实际意义B、两总体均数的差别具有实际意义C、两样本与两总体均数的差别都具有实际意义D、有理由认为两样本均数有差别E、有理由认为两总体均数有差别3、两样本均数比较,差别具有统计学意义时,P值越小说明A、两样本均数差别越大B、两总体均数差别越大C、越有理由认为两样本均数不同D、越有理由认为两总体均数不同E、越有理由认为两样本均数相同4、减少假设检验的H类误差,应该使用的方法就是A、减少I类错误B、减少测量的系统误差C、减少测量的随机误差D、提高检验界值E、增加样本含量5.两样本均数比较的t检验与u检验的主要差别就是A、t检验只能用于小样本资料B、u检验要求大样本资料C、t检验要求数据方差相同D、t检验的检验效能更高E、u检验能用于两大样本均数比较答案:D E D E B第六章方差分析1、方差分析的基本思想与要点就是A.组间均方大于组内均方B.组内均方大于组间均方C.不同来源的方差必须相等D.两方差之比服从F分布E.总变异及其自由度可按不同来源分解2、方差分析的应用条件之一就是方差齐性,它就是指A、各比较组相应的样本方差相等B、各比较组相应的总体方差相等C、组内方差二组间方差D、总方差二各组方差之与E、总方差二组内方差+组间方差3、完全随机设计方差分析中的组间均方反映的就是A 、随机测量误差大小B 、某因素效应大小C 、处理因素效应与随机误差综合结果D 、全部数据的离散度E 、各组方差的平均水平4、对于两组资料的比较,方差分析与t 检验的关系就是A 、t 检验结果更准确B 、方差分析结果更准确C 、t 检验对数据的要求更为严格D 、近似等价E 、完全等价5.多组均数比较的方差分析,如果P 0.05,则应该进一步做的就是A.两均数的t 检验B.区组方差分析C.方差齐性检验D. q 检验E.确定单独效应答案:E B C E D第七章相对数及其应用1、如果一种新的治疗方法能够使不能治愈的疾病得到缓解并延长生命则应发生的情 况就是A 、该病患病率增加B 、该病患病率减少C 、该病的发病率增加D 、该病的发病率减少E 、该疾病的死因构成比增加2、计算乙肝疫苗接种后血清学检查的阳转率,分母为A 、乙肝易感人数 C 、乙肝疫苗接种人数E 、 乙肝疫苗接种后的阳转人数4、影响总体率估计的抽样误差大小的因素就是A 、总体率估计的容许误差B 、样本率估计的容许误差C 、检验水准与样本含量D 、检验的把握度与样本含量E 、总体率与样本含量B 、平均人口数 D 、乙肝患者人数3、计算标准化死亡率的目的就是A 、减少死亡率估计的偏倚C 、便于进行不同地区死亡率的比较E 、便于进行不同时间死亡率的比较B 、减少死亡率估计的抽样误差 D 、消除各地区内部构成不同的影响5、研究某种新药的降压效果,对100人进行试验,其显效率的95%可信区间为0、862〜0、 926,表示A.样本显效率在0、862〜0、926之间的概率就是95% B 、有95%的把握说总体显效率在此范围内波动 C 、有95%的患者显效率在此范围D 、样本率估计的抽样误差有95%的可能在此范围E 、该区间包括总体显效率的可能性为95%答案:A C D E E第八章 X 2检验1、利用X 2检验公式不适合解决的实际问题就是A 、比较两种药物的有效率B 、检验某种疾病与基因多态性的关系C 、两组有序试验结果的药物疗效D 、药物三种不同剂量显效率有无差别E 、两组病情“轻、中、重”的构成比例2.欲比较两组阳性反应率,在样本量非常小的情况下(如勺< 10,n 2 < 10 ),应采用A 、四格表X 2检验B 、校正四格表X 2检验C 、Fisher 确切概率法D 、配对X 2检验E 、校正配对X 2检验从甲、乙两文中,查到同类研究的两个率比较的X 2检验,甲文X 2 > X ;0i'i ,乙文X 2 >X 2,可认为0.05,1A 、两文结果有矛盾 C 、甲文结果更为可信 E 、甲文说明总体的差异较大5、下列哪一项不就是两组有效率比较检验功效的相关因素(原题的选项设置不合适,已 进行了修改)A 、1型错误B 、理论频数C 、样本含量D 、总体率差别E 、11型错误3.进行四组样本率比较的X 2检验,如X 2 > X O.01,3 ,可认为A 、四组样本率均不相同 C 、四组样本率相差较大E.至少有两组总体率不相同B 、四组总体率均不相同 D 、 至少有两组样本率不相4、 B 、两文结果完全相同 D 、乙文结果更为可信答案:C C E C B第九章非参数检验1.对医学计量资料成组比较,相对参数检验来说,非参数秩与检验的优点就是A、适用范围广B、检验效能高C.检验结果更准确D、充分利用资料信息E、不易出现假阴性错误2、对于计量资料的比较,在满足参数法条件下用非参方法分析,可能产生的结果就是A、增加I类错误B、增加H类错误C、减少I类错误D、减少II类错误E、两类错误都增加3、两样本比较的秩与检验,如果样本含量一定,两组秩与的差别越大说明A、两总体的差别越大B、两总体的差别越小C、两样本的差别可能越大D、越有理由说明两总体有差别E、越有理由说明两总体无差别4、多个计量资料的比较,当分布类型不清时,应选择的统计方法就是A、方差分析B、Wilcoxon T检验C、Kruskal-Wallis H检验D、u检验1、X 2检验5.在一项临床试验研究中,疗效分为“痊愈、显效、有效、无效”四个等级现欲比较试验组与对照组治疗效果有无差别,宜采用的统计方法就是A、Wilcoxon秩与检验B、2 x 4列联表X 2检验C、四格表X2检验D、Fisher确切概率法E、计算标准化率答案:A B D C A第十章线性相关与回归1、使用最小二乘法确定直线回归方程的原则就是A、各观察点距回归直线的纵向距离之与最小B、各观察点距回归直线的横向距离之与最小C、各观察点距回归直线的垂直距离平方与最小D、各观察点距回归直线的纵向距离平方与最小E、各观察点距回归直线的横向距离平方与最小2、两数值变量相关关系越强,表示A、相关系数越大B、相关系数的绝对值越大B、回归系数越大C、回归系数的绝对值越大E、相关系数检验统计量的t值越大3、回归分析的决定系数R 2越接近于1,说明A、相关系数越大B、回归方程的显著程度越高C、应变量的变异越大D、应变量的变异越小E、自变量对应变量的影响越大4、两组资料作回归分析,直线回归系数b较大的一组,表示A.两变量关系密切的可能性较大B.检验显著的可能性较大C.决定系数R2较大D.决定系数R2可能大也可能小E.数量依存关系更密切6、1—7岁儿童可以用年龄(岁)估计体重(市斤),回归方程为Y = 14 + 4X ,若将体重换成国际单位kg,则此方程A.常数项改变B.回归系数改变C.常数项与回归系数都改变D.常数项与回归系数都不改变E.决定系数改变答案:D B E D C第十一章多元线性回归与多元逐步回归1、在疾病发生危险因素的研究中,采用多变量回归分析的主要目的就是A.节省样本B.提高分析效率C.克服共线影响D.减少异常值的影响E.减少混杂的影响2、多元线性回归分析中,反映回归平方与在应变量Y的总离均差平方与中所占比重的统计量就是A、简单相关系数B、复相关系数C、偏回归系数D、回归均方E、决定系数R 23、对同一资料作多变量线性回归分析,若对两个具有不同个数自变量的回归方程进行比较,应选用的指标就是A.决定系数B、相关系数C、偏回归平方与D、校正决定系数E、复相关系数4、多元线性回归分析,对回归方程作方差分析,检验统计量F值反映的就是A.所有自变量与应变量间就是否存在线性回归关系B.部分自变量与应变量间就是否存在线性回归关系C.自变量与应变量间存在的线性回归关系就是否较强D.自变量之间就是否存在共线E、回归方程的拟合优度5、在多元回归分析中,若对某个自变量的值都乘以一个常数c(。
数据的集中趋势与离散程度统计学中,描述和衡量数据分布特征的两个重要方面是集中趋势和离散程度。
集中趋势指的是数据集中在哪个数值附近,而离散程度描述了数据的分散程度。
在本文中,我将详细介绍集中趋势和离散程度的定义、常用的衡量指标和如何应用。
一、集中趋势集中趋势是指数据集中在哪个数值处的趋势或位置,常用的衡量指标包括均值、中位数和众数。
1. 均值均值是数据集所有观测值的算术平均数。
它是最常用的衡量集中趋势的指标。
计算均值的方法是将所有观测值相加,再除以观测值的个数。
均值受极端值的影响较大。
2. 中位数中位数是将数据集按照大小排序后,位于中间位置的观测值。
如果数据集的个数是奇数,则中位数就是排序后位于中间的观测值;如果数据集的个数是偶数,则中位数是中间两个观测值的平均数。
中位数对极端值不敏感,更能反映数据的典型情况。
3. 众数众数是数据集中出现频率最高的观测值。
一个数据集可能存在一个众数,也可能存在多个众数,或者没有众数。
众数主要用于描述离散型数据。
二、离散程度离散程度是描述数据分散程度的指标,常用的衡量指标包括极差、方差和标准差。
1. 极差极差是数据集中最大观测值和最小观测值之间的差值。
极差越大,表示数据的离散程度越大;极差越小,表示数据的离散程度越小。
极差对极端值非常敏感。
2. 方差方差是数据集观测值与均值之差的平方的平均值。
方差衡量了数据与其均值之间的离散程度,数值越大表示数据的离散程度越大,反之亦然。
方差对极端值非常敏感。
3. 标准差标准差是方差的平方根,用于衡量数据集的离散程度。
标准差具有与原始数据相同的度量单位,比方差更容易解释和理解。
标准差越大,表示数据的离散程度越大,反之亦然。
三、应用集中趋势和离散程度的概念和指标在各个领域具有广泛的应用。
在金融领域,通过分析股票价格的均值和离散程度,可以评估股票的风险和收益。
在市场调研中,通过分析产品价格的中位数和标准差,可以了解市场需求和产品价值的稳定性。
医学统计学第七版课后答案及解析目录第一章医学统计中的基本概念 (1)第二章集中趋势的统计描述 (2)第三章离散程度的统计描述 (5)第四章抽样误差与假设检验 (8)第五章 t检验 (10)第六章方差分析 (14)第七章相对数及其应用 (19)第八章2检验 (22)第九章非参数检验 (26)第一章医学统计中的基本概念练习题一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。
要尽量查明其原因,必须克服。
(2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。
譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差。
对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。
正态分布的集中趋势和离散统计指标在统计学中,正态分布是一种非常重要且常见的概率分布,也被称为高斯分布。
它具有许多重要特性,其中包括集中趋势和离散统计指标。
在本文中,我们将探讨正态分布的集中趋势和离散统计指标,以及它们在实际应用中的意义和重要性。
1. 集中趋势指标正态分布的集中趋势指标是描述数据集中取值位置的统计量。
常见的集中趋势指标包括均值、中位数和众数。
其中,均值是所有数据值的平均数,是最常用的集中趋势指标之一。
在正态分布中,均值通常位于分布的中心位置,并且具有对称性。
除了均值,中位数和众数也是描述集中趋势的重要指标。
中位数是将数据集等分为两部分的数值,而众数则是数据集中出现最频繁的数值。
在实际应用中,集中趋势指标可以帮助我们理解数据分布的中心位置,判断数据的平均水平,并做出相应的决策。
在财务报表分析中,我们可以利用均值来评估企业的盈利水平,进而制定财务策略和规划预算。
在医学研究中,研究人员也常用中位数来描述疾病的发病率,以便做出治疗方案和预防措施。
2. 离散统计指标除了集中趋势指标外,正态分布还具有离散统计指标,用于描述数据的分散程度和波动性。
常用的离散统计指标包括标准差、方差和极差。
标准差是数据偏离均值的平均距离,是描述数据离散程度的重要统计量。
方差则是标准差的平方,用于衡量数据的波动性和离散程度。
另外,极差是描述数据取值范围的统计量,可以帮助我们了解数据的最大和最小取值之间的差异程度。
在实际应用中,离散统计指标可以帮助我们评估数据的波动性和风险程度,从而制定相应的风险管理和控制策略。
在金融投资中,我们可以利用标准差来衡量资产价格的波动性,进而评估投资风险并调整投资组合。
在生产制造中,研究人员也常用方差来评估生产过程的稳定性和一致性,以便提高生产效率和质量。
个人观点和理解对于正态分布的集中趋势和离散统计指标,我认为它们在数据分析和决策制定中起着至关重要的作用。
集中趋势指标可以帮助我们理解数据的中心位置,从而判断平均水平和典型取值。
集中趋势名词解释统计学
在统计学中,集中趋势是用来描述数据集中程度的概念。
它帮
助我们了解数据的平均水平或中心位置。
常用的集中趋势指标包括
均值、中位数和众数。
1. 均值(Mean)是一组数据的算术平均值。
它通过将所有数据
值相加,然后除以数据的个数来计算得到。
均值对异常值比较敏感,因为它受到每个数据值的影响。
2. 中位数(Median)是将一组数据按照大小顺序排列后,位于
中间位置的数值。
如果数据个数为奇数,则中位数就是中间的那个数;如果数据个数为偶数,则中位数是中间两个数的平均值。
中位
数对异常值不敏感,因为它只关注数据的位置而不考虑数值大小。
3. 众数(Mode)是一组数据中出现次数最多的数值。
一个数据
集可以有一个或多个众数,或者没有众数。
众数对异常值不敏感,
因为它只关注出现频率最高的数值。
这些集中趋势指标可以帮助我们了解数据的整体特征和分布情况。
它们在统计分析、数据处理和决策制定中都有广泛的应用。
需
要注意的是,选择合适的集中趋势指标取决于数据的性质和分布,以及具体问题的要求。
此外,还有其他一些指标如加权平均数、调和平均数等,它们在特定情况下也可用于描述数据的集中趋势。
第二章1.答:在统计学中用来描述集中趋势的指标体系是平均数,包括算术均数,几何均数,中位数。
均数反映了一组观察值的平均水平,适用于单峰对称或近似单峰对称分布资料的平均水平的描述。
几何均数:有些医学资料,如抗体的滴度,细菌计数等,其频数分布呈明显偏态,各观察值之间呈倍数变化(等比关系),此时不宜用算术均数描述其集中位置,而应该使用几何均数(geometric mean)。
几何均数一般用G表示,适用于各变量值之间成倍数关系,分布呈偏态,但经过对数变换后成单峰对称分布的资料。
中位数和百分位数:中位数(median)就是将一组观察值按升序或降序排列,位次居中的数,常用M表示。
理论上数据集中有一半数比中位数小,另一半比中位数大。
中位数既适用于资料呈偏态分布或不规则分布时集中位置的描述,也适用于开口资料的描述。
所谓“开口”资料,是指数据的一端或者两端有不确定值。
百分位数(percentile)是一种位置指标,以P X表示,一个百分位数P X将全部观察值分为两个部分,理论上有X%的观察值比P X小,有(100-X)%观察值比P X大。
故百分位数是一个界值,也是分布数列的一百等份分割值。
显然,中位数即是P50分位数。
即中位数是一特定的百分位数。
常用于制定偏态分布资料的正常值范围。
2.答:常用来描述数据离散程度的指标有:极差、四分位数间距、标准差、方差、及变异系数,尤以方差和标准差最为常用。
极差(range,记为R),又称全距,是指一组数据中最大值与最小值之差。
极差大,说明资料的离散程度大。
用极差反映离散程度的大小,简单明了,故得到广泛采用,如用以说明传染病、食物中毒等的最短、最长潜伏期等。
其缺点是:1.不灵敏; 2.不稳定。
四分位数间距(inter-quartile range)就是上四分位数与下四分位数之差,即:Q=Q U-Q L,其间包含了全部观察值的一半。
所以四分位数间距又可看成中间一半观察值的极差。
其意义与极差相似,数值大,说明变异度大;反之,说明变异度小。
医学统计学基本概念与常用统计描述指标在医学研究领域中,统计学是一门重要的方法学科,它通过对研究对象进行数据收集、整理和分析,揭示事实真相,为医学研究提供支持。
本文将就医学统计学的基本概念以及常用的统计描述指标进行介绍和分析。
一、基本概念1.1 总体与样本在医学统计学中,研究对象可以是人群、器官、细胞等,被称为总体。
由于总体往往庞大,无法直接进行研究,因此需要从总体中抽取一部分个体,构成样本进行研究。
1.2 参数与统计量参数是总体的数学指标,如总体均值、总体方差等。
由于总体无法直接观察到,所以我们需要通过样本来估计总体的参数,这些样本的数学指标称为统计量。
1.3 假设检验假设检验是医学统计学中常用的方法之一,旨在通过对样本数据的分析,对某个研究问题的假设进行验证。
假设检验通常包括原假设和备择假设,通过对样本数据进行统计推断,判断原假设是否成立。
1.4 显著性水平与P值显著性水平是假设检验中的一个重要参数,通常用α表示,表示犯第一类错误的概率。
P值是指在给定原假设条件下,观察到的样本结果或更极端结果的概率。
当P值小于显著性水平时,我们拒绝原假设。
二、常用统计描述指标2.1 集中趋势指标集中趋势指标用于描述数据的中心位置,常用的统计描述指标包括均值、中位数和众数。
2.1.1 均值均值是一组数据总和除以数据个数的算术平均值,它能够反映数据的平均水平。
在医学研究中,常用均值来描述人群的平均生理指标或临床症状。
2.1.2 中位数中位数是将一组数据按照大小顺序排列后,位于中间位置的数值。
与均值相比,中位数更能反映数据的中间位置,不受异常值的影响。
2.1.3 众数众数是一组数据中出现次数最多的数值,可以反映数据的分布情况。
在医学研究中,常用众数来描述疾病的发病特点或患者的临床表现。
2.2 离散程度指标离散程度指标用于描述数据的分散程度,常用的统计描述指标包括标准差、方差和极差。
2.2.1 方差和标准差方差是一组数据与其均值的偏差平方和与数据个数之比,它能够反映数据的波动程度。