统计数据的描述之分布集中趋势的测度
- 格式:ppt
- 大小:770.00 KB
- 文档页数:68
考研是一项小火慢炖的工程,切不可操之过急,得是一步一个脚印,像走长征那样走下来。
在过去的一年中,我几乎从来没有在12点之前睡去过。
也从来也没有过睡到自然醒的惬意生活,我总是想着可能就因为这一时的懒惰,一切都不同了。
所以,我非常谨小慎微,以至于有时会陷入自我纠结中,像是强迫症那样。
如今想来,这些都是不应该的,首先在心态上尽量保持一个轻松的状态,不要给自己过大的压力。
虽然考研是如此的重要,但它并不能给我们的人生下一个定论。
所以在看待这个问题上不可过于极端,把自己逼到一个退无可退的地步。
而在备考复习方面呢,好多学弟学妹们都在问我备考需要准备什么,在我看来考研大工程,里面的内容实在实在是太多了。
首先当你下定决心准备备考的时候,要根据自己的实际情况、知识准备、心理准备、学习习惯做好学习计划,学习计划要细致到每日、每周、每日都要规划好,这样就可以很好的掌握自己的学习进度,稳扎稳打步步为营。
另外,复试备考计划融合在初试复习中。
在进入复习之后,自己也可以根据自己学习情况灵活调整我们的计划。
总之,定好计划之后,一定要坚持下去。
最近我花费了一些时间,整理了我的一些考研经验供大家参考。
篇幅比较长,希望大家能够有耐心读完,文章结尾处会附上我的学习资料供大家下载。
湘潭大学应用统计的初试科目为:(101)思想政治理论(204)英语二(303)数学三和(432)统计学。
考试大纲:参考书目为:1.《统计学》(第六版),贾俊平,何晓群,金勇进,中国人民大学出版社,2015年。
统计学2020年考试大纲适用于统计学一级学科应用统计专业学位硕士研究生招生入学考试。
重点考核学生对统计学的基本概念、基本理论、基本方法和基本计算的掌握与运用能力。
考查的知识要点如下:1.统计基本概念:统计的涵义、统计学的研究对象、统计研究方法、统计数据类型;统计总体与总体单位、单位标志与标志表现、总量指标与相对指标、统计指标和指标体系等。
2.统计数据的描述:数据的计量尺度,数据的来源及整理;分布集中趋势的测度(包括众数、中位数、分位数,均值、几何平均数等);分布离散程度的测度(包括异众比率、内距、极差、平均差、方差、标准差等),分布偏度和峰度的测度。
统计学习题_第四章_数据分布特征的描述习题答案第四章静态指标分析法(⼀)⼀、填空题1、数据分布集中趋势的测度值(指标)主要有、和。
其中和⽤于测度品质数据集中趋势的分布特征,⽤于测度数值型数据集中趋势的分布特征。
2、标准差是反映的最主要指标(测度值)。
3、⼏何平均数是计算和的⽐较适⽤的⼀种⽅法。
4、当两组数据的平均数不等时,要⽐较其数据的差异程度⼤⼩,需要计算。
5、在测定数据分布特征时,如果M M e X 0==,则认为数据呈分布。
6、当⼀组⼯⼈的⽉平均⼯资悬殊较⼤时,⽤他们⼯资的⽐其算术平均数更能代表全部⼯⼈⼯资的总体⽔平。
⼆.选择题单选题:1.反映的时间状况不同,总量指标可分为()A 总量指标和时点总量指标B 时点总量指标和时期总量指标C 时期总量指标和时间指标D 实物量指标和价值量指标2、某⼚1999年完成产值200万元,2000年计划增长10%,实际完成了231万元,超额完成( )A 5.5%B 5%C 115.5%D 15.5%3、在同⼀变量数列中,当标志值(变量值)⽐较⼤的次数较多时,计算出来的平均数()A 接近标志值⼩的⼀⽅B 接近标志值⼤的⼀⽅C 接近次数少的⼀⽅D 接近哪⼀⽅⽆法判断4、在计算平均数时,权数的意义和作⽤是不变的,⽽权数的具体表现()A 可变的B 总是各组单位数C 总是各组标志总量D 总是各组标志值 5、1998年某⼚甲车间⼯⼈的⽉平均⼯资为520元,⼄车间⼯⼈的⽉平均⼯资为540元,1999年各车间的⼯资⽔平不变,但甲车间的⼯⼈占全部⼯⼈的⽐重由原来的40%提⾼到了60%,则1999年两车间⼯⼈的总平均⼯资⽐1998年()A 提⾼D 不能做结论 6、在变异指标(离散程度测度值)中,其数值越⼩,则()A 说明变量值越分散,平均数代表性越低B 说明变量值越集中,平均数代表性越⾼C 说明变量值越分散,平均数代表性越⾼D 说明变量值越集中,平均数代表性越低7、有甲、⼄两数列,已知甲数列:07.7,70==甲甲σX ;⼄数列:41.3,7==⼄⼄σX 根据以上资料可直接判断( )A 甲数列的平均数代表性⼤B ⼄数列的平均数代表性⼤C 两数列的平均数代表性相同D 不能直接判别8、杭州地区每百⼈⼿机拥有量为90部,这个指标是()A 、⽐例相对指标B 、⽐较相对指标C 、结构相对指标D 、强度相对指标9、某组数据呈正态分布,计算出算术平均数为5,中位数为7,则该数据分布为() A 、左偏分布 B 、右偏分布 C 、对称分布 D 、⽆法判断10、加权算术平均数的⼤⼩() A 主要受各组标志值⼤⼩的影响,与各组次数多少⽆关; B 主要受各组次数多少的影响,与各组标志值⼤⼩⽆关; C 既与各组标志值⼤⼩⽆关,也与各组次数多少⽆关; D 既与各组标志值⼤⼩有关,也受各组次数多少的影响11、已知⼀分配数列,最⼩组限为30元,最⼤组限为200元,不可能是平均数的为() A 、50元 B 、80元 C 、120元 D 、210元12、⽐较两个单位的资料,甲的标准差⼩于⼄的标准差,则()A 两个单位的平均数代表性相同B 甲单位平均数代表性⼤于⼄单位C ⼄单位平均数代表性⼤于甲单位D 不能确定哪个单位的平均数代表性⼤ 13、若单项数列的所有标志值都增加常数9,⽽次数都减少三分之⼀,则其算术平均数() A 、增加9 B 、增加6 C 、减少三分之⼀ D 、增加三分之⼆ 14、如果数据分布很不均匀,则应编制 ( )A 开⼝组B 闭⼝组C 等距数列D 异距数列 15、计算总量指标的基本原则是:( )A 总体性B 全⾯性16、某企业的职⼯⼯资分为四组:800元以下;800-1000元;1000—1500元;1500以上,则1500元以上这组组中值应近似为 ( )A1500元 B 1600元 C 1750元 D 2000元 17、统计分组的⾸要问题是 ( )A 选择分组变量和确定组限B 按品质标志分组C 运⽤多个标志进⾏分组,形成⼀个分组体系D 善于运⽤复合分组18、某连续变量数列,其末组为开⼝组,下限为200,⼜知其邻组的组中值为170,则末组组中值为 ( )A 230B 260C 185D 215 19、分配数列中,靠近中间的变量值分布的次数少,靠近两端的变量值分布的次数多,这种分布的类型是 ( )A 钟型分布B U 型分布C J 型分布D 倒J 型分布 20、要了解上海市居民家庭的开⽀情况,最合适的调查⽅式是:() A 普查 B 抽样调查 C 典型调查 D 重点调查21、已知两个同类企业的职⼯平均⼯资的标准差分别为5元和6元,⽽平均⼯资分别为3000元,3500元则两企业的⼯资离散程度为 ( )A 甲⼤于⼄B ⼄⼤于甲C ⼀样的D ⽆法判断 22、加权算术平均数的⼤⼩取决于 ( )A 变量值B 频数C 变量值和频数D 频率23、如果所有标志值的频数都减少为原来的1/5,⽽标志值仍然不变.那么算术平均数 ( ) A 不变 B 扩⼤到5倍 C 减少为原来的1/5D 不能预测其变化 24、计算平均⽐率最好⽤ ( )A 算术平均数B 调和平均数C ⼏何平均数D 中位数25、若两数列的标准差相等⽽平均数不同,在⽐较两数列的离散程度⼤⼩时,应采⽤ ( ) A 全距 B 平均差 C 标准差 D 标准差系数26、若n=20,∑∑==2080,2002x x ,标准差为 ( )A 2B 4C 1.5D 327、已知某总体3215,3256==eMM,则数据的分布形态为( )A左偏分布 B 正态分布 C 右偏分布 D U型分布28、⼀次⼩型出⼝商品洽谈会,所有⼚商的平均成交额的⽅差为156.25万元,标准差系数为14.2%,则平均成交额为( )万元A11 B 177.5 C 22.19 D 8826、欲粗略了解我国钢铁⽣产的基本情况,调查了上钢、鞍钢等⼗⼏个⼤型的钢铁企业,这是()A普查B重点调查C典型调查D抽样调查多选题:1.某企业计划2000年成本降低率为8%,实际降低了10%。
第五章数据分布特征的描述第一节集中趋势指标概述一、集中趋势指标及其特点集中趋势(Central tendency),是指一组数据向某一中心值靠拢的倾向,测度集中趋势也就是要寻找数据一般水平的代表值或是心值。
在现象的同质总体中,各个单位的标志值是不尽相同的。
如果我们的目的是要对总体的数量水平有一个概括地、一般地认识,显然不能用某一单位的标志值表示。
统计平均数就是用来反映总体的一般水平和集中趋势的指标。
通俗的理解就是,在不变更总体总量的情况下,对总体内的全部标志值进行“截长补短”,使得总体各单位拥有同一水平的数量表现,这个同一水平的数量表现就是平均数,即集中趋势指标。
统计平均数有两个重要的特点:第一,平均数是一个代表值,表示被研究总体的一般水平。
例如,某企业职工的工资水平有高有低,有的职工月工资1680元,有的职工月工资1900元,有的职工月工资1870元,有的职工月工资2200元,等等。
若根据该企业各个职工月工资额综合计算出职工月平均工资为1860元,那么,1860元就是一个代表值。
它反映了该企业职工月工资的—般水平。
第二,平均数把被研究总体各单位的标志值的数量差异抽象化了。
例如,某企业职工的月平均工资为1860元,但是各个职工的工资水平有高有低,高于1860元的工资和低于1860元的工资互相抵消了,从而得出平均工资1860元。
由此可见,平均工资(1860元)已把各职工月工资水平的差别抽象化了。
二、集中趋势指标的作用集中趋势指标——统计平均数,在统计研究中被广泛应用,平均数的作用可以归纳为以下几点:1.利用平均数对比不同总体的一般水平。
平均数可以用来对同类现象在各单位、各部门、各地区之间进行比较,以说明生产水平的高低或经济效果的好坏。
例如,要比较不同的生产企业生产水平的好坏,仅对比企业的产品总产量是不足以说明问题的,因为产品总产量受到企业规模大小的影响。
要比较,需要计算各企业生产人员的平均产品产量,即劳动生产率,并分析不同的生产条件,才能做出正确的判断。
中级经济师-经济基础知识-基础练习题-第二十四章描述统计-一、集中趋势的测度[单选题]1.某小学六年级8个班的学生人数由少到多依次为34人、34人、34人、34人、36人、36人、37人、37人(江南博哥),其中位数为()。
A.34B.35C.36D.37正确答案:B参考解析:此题考查集中趋势测度值,已排序,居中的是34人36人,则中位数是(34+36)÷2=35人。
[单选题]5.下面一组数据为9个家庭在2017年的人均月收入数据(单位:元):750、780、850、960、1080、1250、1500、1650、2000,则中位数为()元,均值为()元。
A.750,1250B.1080,1202.2C.1500,1080D.2000,1500正确答案:B参考解析:本题考查集中趋势的测度。
先把上述数据按顺序排列,由于有9个数据,是奇数,中位数的位置为(9+1)/2=5,中位数是1080元。
均值=(750+780+850+960+1080+1250+1500+1650+2000)/9=1202.2(元)。
[单选题]6.某直辖市下辖8个县,每个县的面积如下(单位:平方公里):1455、2019、912、1016、1352、1400、1792、2000,则该直辖市下辖县面积的中位数是()。
A.1400B.1455C.1427.5D.1428正确答案:C参考解析:本题考查中位数的具体应用。
把一组数据按从小到大或从大到小的顺序进行排列,位置居中的数值叫作中位数。
Me=(1400+1455)÷2=1427.5[单选题]7.下面是抽样调查的10个学生的考试分数等级,分别为:不及格,中,中,良,良,良,良,优,优,优。
这10个学生分数的众数为()。
A.优B.中C.良D.不及格正确答案:C参考解析:此题考查集中趋势测度值中的众数。
众数是指一组数据中出现次数(频数)最多的变量值,题目中良的出现次数最多,所以应为良。
第四部分统计——第二十四章描述统计本章重点:1.集中趋势的测度指标:均值、中位数和众数。
2.离散程度的测度指标:方差、标准差和离散系数。
3.分布形态的测度:偏态系数、标准分数。
4.变量相关关系的分类、散点图、相关系数。
知识点一:集中趋势的测度1.均值。
均值也叫做平均数,就是数据组中所有数值的总和除以该组数值的个数。
设一组数据为X1,X2,…,X n,平均数`X的计算公式为:【注意1】:均值主要适用于数值型数据,但不适用于分类和顺序数据。
【注意2】:均值容易受到极端值的影响,极端值会使得均值向极大值或极小值方向倾斜,使得均值对数据组的代表性减弱。
2.中位数。
把一组数据按从小到大或从大到小的顺序进行排列,位置居中的数值叫做中位数,用M e表示:【注意1】:中位数是一个位置代表值,主要用于顺序数据和数值型数据,但不适用于分类数据。
【注意2】:中位数的优点是不受极端值的影响,抗干扰性强。
3.众数:指一组数据中出现次数(频数)最多的变量值。
适用于描述分类数据和顺序数据,不适用于定量数据。
【注意】:有些情况下可能出现双众数、多众数或者没有众数,难以描述数据的集中趋势。
总结:均值VS中位数VS众数:【例题·单选题】在对数据集中趋势的测度中,适用于偏斜分布的数值型数据的是()。
A.中位数B.均值C.标准差D.方差『正确答案』A『答案解析』本题考查中位数。
中位数主要适用于顺序数据,也适用于数值型数据,但不适用于分类数据,中位数不受极端值的影响,抗干扰性强,尤其适用于收入这类偏斜分布的数值型数据。
【例题·单选题】(2015年)下列统计量中,适于描述分类数据集中趋势的是()。
A.均值B.众数C.中位数D.变异系数『正确答案』B『答案解析』本题考查集中趋势的测度。
众数适于描述分类数据和顺序数据的集中趋势,不适用于定量数据。
【例题·单选题】在某企业中随机抽取7名员工来了解该企业2013年上半年职工请假情况,这7名员工2013年上半年请假天数分别为1、5、3、10、0、7、2,这组数据中的位数是()。
统计分析技术统计分析技术是指运用数学、统计等方法和理论,对数据进行收集、整理、分析和解释,以揭示数据背后的规律和趋势,为科学决策和预测未来提供必要的依据。
随着计算机技术的快速发展,统计分析已成为各种应用领域中不可或缺的技术手段。
一、统计分析技术的分类统计分析技术主要分为描述统计和推断统计两大类。
1. 描述统计描述统计是对数据的基本特征进行测度和描述,包括数据集中趋势、变异程度和分布形态等。
描述统计技术常用的方法包括:(1)测度集中趋势的方法:如平均数、中位数、众数等。
(2)测度变异程度的方法:如标准差、方差等。
(3)描述分布形态的方法:如直方图、箱形图等。
描述统计主要应用于数据的初步分析和概括,并可为后续推断性分析提供参考。
2. 推断统计推断统计是通过从样本数据中推断总体数据的参数和特征,从而对总体做出推断性结论的一种统计方法。
推断统计技术常用的方法包括:(1)参数估计:通过样本数据对总体参数进行估计。
(2)假设检验:根据样本数据对总体的某些假设进行检验,以此推断总体参数。
(3)方差分析:用于比较两个或多个总体均值是否相等。
推断统计主要应用于数据的深入分析和推断,可为科学决策和预测未来提供必要的依据。
二、统计分析技术在实践中的应用统计分析技术具有广泛的应用领域,主要包括生物统计、经济统计、市场统计、金融统计、社会学统计等。
其中,以下三个领域具有广泛的应用:1. 生产统计生产统计是工业领域中常用的统计分析技术。
通过对生产过程中的数据进行统计分析,可以了解生产情况,找出生产中存在的问题,提高生产效率和质量水平。
生产统计的主要分析内容包括:生产效率、生产成本、生产质量等。
2. 经济统计经济统计是宏观经济政策制定和实施的重要手段。
通过对经济数据进行统计分析,可以了解国家经济发展状况、发展趋势及存在的问题。
经济统计的主要分析内容包括:国内生产总值、物价水平、就业率等。
3. 市场统计市场统计是对市场行情和市场规律的研究和分析,为企业市场决策提供科学依据。