第五章 统计分布特征的描述集中趋势和离散趋势
- 格式:ppt
- 大小:1.27 MB
- 文档页数:104
数据分布特征的三个统计描述维度现如今生活处处有数据,而我们接触到的数据可以分为连续型数据或者离散型数据。
连续数据的取值范围是可以取连续值的区间,即连续值可以是区间内的任意值,一般都有度量单位。
离散数据的范围由有限数量的值或序列组成。
对数据集使用合适的描述性指标,可以帮助我们探索庞大无序的数据背后隐藏的事实。
描述数据集的三个维度是指对数据集中趋势的描述、对数据分散程度的描述和对数据分布形式的描述。
一、集中趋势描述1.算术平均数 Arithmetic Mean:所有数值的和除以数值的个数。
用于描述一组数据在数量上的平均水平。
计算公式:优缺点:算术平均数是能够充分运用已有信息的代表性数值,每个数值大小的改变都会引起其变化。
也因此容易受极值的影响,并且会掩盖数据的差异性。
示例:最近更新了2018年度深圳在岗职工的月平均工资,达到了9309元。
这就是一个算术平均值的实际应用。
还是要保持进步,争当排头兵而非吊车尾呀。
2.几何平均数 Geometric Mean:对各数值的连乘积开项数次方根。
一般用于当总成果为各个阶段(环节)的连乘积时,求各个阶段(环节)的一般成果。
计算公式:优缺点:几何平均数受极端值的影响比均值小。
但仅适用于具有等比或近似等比关系的数据。
示例:连续作业的车间求产品的平均次品率。
一个产品的生产由三个环节组成。
每个环节都会产生一定的次品。
次品率依次为5%、2%、6%,求这个产品的平均次品率。
因为每个环节都是依次发生的,需要完成上一个环节的合格产品才能进入下一个环节,所以每个环节的不良率是一个产品关系。
依照上式结果可知,该产品整个生产环节的平均次品率为3.91%。
3.中位数 Median:将数值从小到大依次排列,最中间的数值为中位数。
若数值个数为奇数个时,为中间位置的数值;若数值个数为偶数个时,为中间两个数的算术平均数。
优缺点:不受极值影响,通过丢失一些信息来换取指数的稳定性。
但对极值缺乏敏感性,样本量较小时中位数不稳定。
正态分布的集中趋势和离散统计指标在统计学中,正态分布是一种非常重要且常见的概率分布,也被称为高斯分布。
它具有许多重要特性,其中包括集中趋势和离散统计指标。
在本文中,我们将探讨正态分布的集中趋势和离散统计指标,以及它们在实际应用中的意义和重要性。
1. 集中趋势指标正态分布的集中趋势指标是描述数据集中取值位置的统计量。
常见的集中趋势指标包括均值、中位数和众数。
其中,均值是所有数据值的平均数,是最常用的集中趋势指标之一。
在正态分布中,均值通常位于分布的中心位置,并且具有对称性。
除了均值,中位数和众数也是描述集中趋势的重要指标。
中位数是将数据集等分为两部分的数值,而众数则是数据集中出现最频繁的数值。
在实际应用中,集中趋势指标可以帮助我们理解数据分布的中心位置,判断数据的平均水平,并做出相应的决策。
在财务报表分析中,我们可以利用均值来评估企业的盈利水平,进而制定财务策略和规划预算。
在医学研究中,研究人员也常用中位数来描述疾病的发病率,以便做出治疗方案和预防措施。
2. 离散统计指标除了集中趋势指标外,正态分布还具有离散统计指标,用于描述数据的分散程度和波动性。
常用的离散统计指标包括标准差、方差和极差。
标准差是数据偏离均值的平均距离,是描述数据离散程度的重要统计量。
方差则是标准差的平方,用于衡量数据的波动性和离散程度。
另外,极差是描述数据取值范围的统计量,可以帮助我们了解数据的最大和最小取值之间的差异程度。
在实际应用中,离散统计指标可以帮助我们评估数据的波动性和风险程度,从而制定相应的风险管理和控制策略。
在金融投资中,我们可以利用标准差来衡量资产价格的波动性,进而评估投资风险并调整投资组合。
在生产制造中,研究人员也常用方差来评估生产过程的稳定性和一致性,以便提高生产效率和质量。
个人观点和理解对于正态分布的集中趋势和离散统计指标,我认为它们在数据分析和决策制定中起着至关重要的作用。
集中趋势指标可以帮助我们理解数据的中心位置,从而判断平均水平和典型取值。
第五章数据分布特征的描述习题参考答案一、名词解释集中趋势指标:集中趋势指标是指一组数据向某一中心值靠拢的倾向,测度集中趋势指标就是寻找数据一般水平的代表值或中心值。
这个代表值或中心值就是集中趋势指标。
数值平均数:数值平均数是将总体各单位数量标志值通过一定的数学公式计算出来所得到的集中趋势指标。
具体有算术平均数、调和平均数和几何平均数三种。
位置平均数:位置平均数是通过查找位置,所找到位置对应的数值作为集中趋势指标。
具体有众数和中位数两种。
离中趋势指标:离中趋势指标又称标志变动度,是反映总体各单位数量标志值差异程度的综合指标,用来反映总体各单位数量标志值的变动范围和离散程度。
极差:极差也称全距,是总体各单位数量标志值的最大值与最小值之差,反映总体各单位数量标志值的变动范围,常用R表示。
平均差:平均差是总体各单位数量标志值与其算术平均数离差绝对值的算术平均数。
常用“A.D”表示。
它综合反映了总体各单位数量标志值的变动程度。
方差:方差是总体各单位数量标志值与其算术平均数离差平方的算术平均数,通常以2σ表示。
标准差:标准差是方差的平方根,也是测度数量标志值的差异程度的指标。
标准差又称均方差,一般用σ表示。
离散系数:离散系数通常指标准差系数,是一组数据的标准差与其相应的算术平均数之比,是测度数据离散程度的相对指标。
偏态:偏态是指数据分布的偏斜方向和程度。
峰度:峰度是指次数分布曲线顶峰的尖平程度,是次数分布的又一重要特征。
二、单项选择题1~5:D C D C C 6~10:B C C D A三、判断题(正确的打“√”,错误的打“×”)1~5:√××××6~10:√√×四、简答题1、计算和应用集中趋势指标时应注意哪些问题?答:众数是一种位置代表值,易理解,不受极端值的影响。
任何类型的数据资料都可以计算,但主要适合于作为定类数据的集中趋势测度值,即使资料有开口组仍然能够使用众数。
数据的集中趋势和离散程度笔记一、知识点梳理知识点1:表示数据集中趋势的代表平均数、众数、中位数都是描述一组数据集中趋势的特征数,只是描述的角度不同,其中平均数的应用最为广泛。
(1)平均数算术平均数(简称为平均数):121()n xx x x n(公式一)①一般地,如果在一组数据中,x 1出现f 1次,x 2出现f 2次,……,x k 出现f k 次,(f 1,f 2,…f k 为正整数),则这组数据的平均数:当n 个数据中某些数据反复出现时,用该公式较简洁; f 1+f 2+…+f k =n (数据的总个数)。
②一般地,如果一组数据都在某个数a 上下波动时,就可以采用把原来每个数据都减去a ,得一组新数据,再算得这组新数据的平均数'x ,这样原来数据的平均数是:x =a +'x (公式三)平均数定义公式和两个简化计算公式都很重要,应根据具体情况,恰当选用。
特别的:一组数据x 1,x 2,…,x n 的平均数为x ,①若每个数据都扩大a 倍,即ax 1,ax 2,…,ax n ,则平均数也扩大a 倍,即a x ; ②若每个数据都增加b ,即x 1+b ,x 2+b ,…,x n +b ,则平均数增加b ,即x +b ; ③若每个数据都扩大a 倍后又都增加b ,则平均数也扩大a 倍后增加b ,即a x +b . 当数据组中数据较大又在某个数值左右波动或数据之间存在某种倍数关系时,利用这些规律求平均数比较直接、简便。
加权平均数在计算数据的平均数时,往往根据其重要程度,分别给每个数据一个“权”,由此求出平均数叫做加权平均数。
恒量各个数据“重要程度”的数值叫做权。
相同数据的个数叫做权,这个“权”含有所占分量轻重的意思。
ω1越大,表示x 1的个数越多,于是x 1的“权”就越重。
若n 个数x 1,x 2,…,x n 的权是分别是ω1,ω2,…,ωn ,则x =nnn x x x ωωωωωω++++++ 212211① 当ω1=ω2=…=ωn ,即各项的权相等时,加权平均数就是算术平均数。
集中和离散趋势的描述
集中趋势描述了数据集中在哪个位置,而离散趋势描述了数据在这个位置周围是如何分布的。
集中趋势主要有以下几种描述方法:
1. 均值:均值是数据集中趋势最常用的描述方法,它是所有数据值的总和除以数据个数。
2. 中位数:中位数是将数据按照大小排序后,居于中间位置的数值。
它不受极端值的影响,更能准确地描述数据的集中趋势。
3. 众数:众数是数据集中出现最频繁的数值。
它在描述离散数据时特别有用。
离散趋势主要有以下几种描述方法:
1. 极差:极差是数据的最大值与最小值之间的差异,反映了数据的全局离散情况。
2. 方差:方差是每个数据值与均值之差的平方的平均值。
它用来度量数据集中的每个数据与均值的离散程度。
3. 标准差:标准差是方差的平方根。
它提供了数据分布的平均偏离程度,可以帮助评估数据的离散性。
4. 四分位数:四分位数是将数据按大小排序后分成四个等份,每个等份包含25%的数据。
第二个等份即为中位数,而第一个和第三个等份则为上下四分位数。
四分位数能够提供更详细的数据分布信息。
以上这些描述方法都可以帮助人们更好地理解数据的集中和离散趋势,从而做出更准确的分析和决策。
数据的集中趋势和离散程度知识点文章一:《啥是数据的集中趋势?》朋友们,咱今天来聊聊数据的集中趋势。
比如说,咱班这次考试的成绩。
要是大部分同学都考了 80 分左右,那 80 分就可能是这个成绩数据的集中趋势。
再比如,咱去菜市场买菜。
一堆苹果,大多数都在半斤左右,那半斤就是这堆苹果重量数据的集中趋势。
像平均数、中位数和众数,都是能帮咱找到数据集中趋势的好帮手。
就拿平均数来说,一家人一个月的水电费,把所有费用加起来除以天数,得到的那个数就是平均数,能大概反映出这家人每天用水电的平均情况。
数据的集中趋势能让咱一下子就明白一堆数据的中心在哪儿,是不是挺有用?文章二:《走进数据的集中趋势》亲爱的小伙伴们,今天咱们来探索一下数据的集中趋势。
想象一下,学校运动会上,大家跑步的时间。
如果很多同学都在2 分钟左右跑完,那 2 分钟差不多就是跑步时间这个数据的集中趋势啦。
还有,大家一起收集树叶,看看树叶的大小。
要是多数树叶的面积都差不多,那这个差不多的大小就是树叶面积数据的集中趋势。
咱举个例子哈,一个班级同学的身高,把所有人的身高加起来除以人数,得到的那个数就是平均身高。
这个平均身高就能让咱知道这个班同学大概的身高水平。
再比如说,一组数字 3、5、5、7、8,这里面 5 出现的次数最多,那 5 就是众数,也是这组数据的集中趋势之一。
所以说,了解数据的集中趋势能帮咱快速抓住重点,是不是很有意思?文章三:《数据的集中趋势,你懂了吗?》朋友们好呀!今天咱们要说的数据的集中趋势,其实不难理解。
比如说,咱们去超市买零食,看各种零食的价格。
要是大部分零食都在 5 块钱左右,那 5 块钱就是这些价格数据的集中趋势。
再比如,咱们统计一个月里每天的气温。
如果有好多天的气温都在 25 度上下,那 25 度就可能是这个气温数据的集中趋势。
就拿咱班同学的零花钱来说吧,把大家的零花钱都加起来,再除以人数,算出来的那个数就是平均零花钱。
通过这个平均零花钱,咱能大概知道同学们零花钱的一般情况。
第五章数据分布特征的描述数据分布特征的描述是对数据集中不同数值的分布情况进行统计和描述的过程。
通过对数据的分布特征进行分析,可以更加深入地了解数据的结构和性质,从而为后续的数据处理和分析提供基础。
数据分布特征的描述可以从以下几个方面展开:1.中心位置中心位置是描述数据集中心趋势的统计指标,常用的方法有均值、中位数和众数。
均值是所有数据的总和除以数据的个数,可以反映数据的平均水平;中位数是将数据按顺序排列后的中间值,可以反映数据的中间水平;众数是数据集中出现次数最多的数值,可以反映数据的典型水平。
2.离散程度离散程度是描述数据集中数据分散程度的统计指标,常用的方法有标准差、方差和四分位距。
标准差是各个数据与均值之差的平方和的平均数的平方根,可以反映数据的离散程度;方差是各个数据与均值之差的平方和的平均数,可以反映数据的离散程度;四分位距是将数据按顺序排列后,第一四分位数和第三四分位数之差,可以反映数据的离散程度。
3.偏态和峰态偏态和峰态是描述数据分布形态的统计指标。
偏态是描述数据分布偏离对称分布的程度,可以分为正偏态、负偏态和无偏态;峰态是描述数据分布峰度的陡峭程度,可以分为高峰态、低峰态和正常峰态。
4.分布形状分布形状是描述数据集中数据分布方式的统计指标。
常见的分布形状有正态分布、均匀分布、指数分布、泊松分布等。
分布形状的了解可以帮助我们判断数据是否符合一些特定的概率分布模型。
除了上述指标,还可以通过绘制直方图、箱线图、散点图等图形来描绘数据分布情况,以便更加直观地了解数据的特征。
总结起来,数据分布特征的描述可以通过中心位置、离散程度、偏态和峰态、分布形状等多个统计指标来反映不同数值的分布情况,通过这些描述可以更加全面地了解数据的结构和性质,为后续的数据处理和分析提供基础。