第三章 内积空间、正规矩阵、Hermite矩阵分解
- 格式:ppt
- 大小:1.07 MB
- 文档页数:45
复矩阵(向量)的4个一元运算()∀A=(a ij )∈C m ×n ,复矩阵(向量)的一元运算的性质11221122k A k A k A k A +=+ ;TT T A k A k A k A k 22112211)(+=+方阵A=(a ij )∈C n ×n 的迹定义为其所有对角元之和:行列式的性质方阵乘积的行列式公式重要特殊矩阵A=(a ij )∈C n ×n 称为对角矩阵,如果∀i ≠j,a ij =0;A称为上(下)三角矩阵,如果∀i>(<)j,a =0.特征值,特征向量λ∈C称为A=(aij)∈C n×n的一个特征值,如果存在0≠x∈C n,使得Ax=λx.此时,x称为A的特征向量.特征值、特征向量续三角矩阵A的所有对角元组成A的谱:σ(A)={a,…,a}.线性相关与线性无关定义1.1.3 (p.5): F上线性空间V中的向量组{α,…,α}是线性相关的充要条件是:在数域F线性映射与线性变换关于线性映射与线性变换的定义,请看教本第24页§3.1: 欧式空间,酉空间§3.2: 标准正交基,Schmidt方法第三章内积空间,正规矩阵,Hermite矩阵§3.1: 欧式空间,酉空间从解析几何知二平面向量内积的概念定义3.1.1:设V是实数域R 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着欧式空间的概念例3.1.1:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈R n ,定义标准内积:(α,β)=a b +…+a b ,欧氏空间例1例3.1.2:∀α=(a 1,a 2)T ,β=(b 1,b 2)T ∈R 2,定义内积(R 2×R 2到R的映射):欧氏空间例2在R 2中至少可定义两个不同的内积.今后讨论R n 时都用例3.1.1中定义的内积.关于例1和例2的注例3.1.3:R m ×n ={(a ij )|a ij ∈R,i=1,…m,j=1,…,n}中任取A,B,定义内积:(A,B)=tr(A T B)=ΣΣa b .欧氏空间例3定义3.1.1:设V是复数域C 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着酉空间的概念欧氏空间是酉空间的特例.关于欧式空间和酉空间的注酉空间例1例3.1.6:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈C n ,酉空间例2例3.1.7:C m ×n ={(a ij )|a ij ∈C,i=1,…,m,j=1,…,n}§3.2: 标准正交基,Schmidt 方法欧氏空间中的C-S不等式推出:-1 ≤(α,β)/‖α‖‖β‖≤1正交的概念(,)1αβαβ≤§3.3: 酉变换,正交变换§3.6: 正规矩阵,Schur引理§3.8: Hermite矩阵,Hermite二次齐式§3.9: 正定二次齐式,正定Hermite矩阵证:设A∈H n×n,A(i1,…,ik)为A的第i1,…,ik行,列组成的k阶主子矩阵,易见:A(i,…,i)∈H n×n.(半)正定矩阵的任何主子矩阵仍为(半)正定证:因为(半)正定矩阵A的任何主子式都是(0或)正的定理:A ∈H n ×n 为正定⇔A的n个顺序主子式全为正:用主子式刻画(半)正定矩阵命题:A ∈H n ×n 为负定⇔-A为正定定理3.9.1:对任意A ∈H n ×n ,下列各条相互等价:定理3.9.3:对任意A ∈H n ×n ,下列各条相互等价:(1) A半正定:∀x ∈C n ,x *Ax ≥0半正定矩阵的基本定理命题:A ∈H n ×n 为半正定⇔∀ε>0,A+εE 为正定半正定矩阵是正定矩阵序列的极限命题:对任意A ∈H n ×n ,下列两条相互等价:半正定矩阵是正定矩阵序列的极限(续)(1) A ∈C n ×n 为(半)正定(半)正定矩阵的补充结果定理(3.9.4):每个(半)正定Hermite矩阵A都有唯下证唯一性.如果还有正定矩阵M=Wdiag(µ,…,µ)W *,使∀i,j,(√λi v ij )=(√λj v ij ) 每个(半)正定矩阵有唯一(半)正定平方根续再证与A可交换的矩阵X(XA=AX)必与B可交换.若XUdiag(λ,…,λ)U *=Udiag(λ,…,λ)U *X 每个(半)正定矩阵有唯一(半)正定平方根续试证:A,B ∈H n ×n 且A为正定⇒AB的特征值全为实数.应用举例例3.9.1:若A,B为同阶正定Hermite矩阵,应用举例命题:A,B ∈H n ×n 且B正定,则det(λB-A)=0的根全为实数.证明: B正定⇒有可逆矩阵P使P *BP=E;定理3.10.1:若A,B ∈H n ×n 且B为正定,则有T ∈C n n ×n 使二矩阵经复相合变换同时对角化易见: µ1,…,µn 是det(λE-T 1*AT 1)=0的根.二矩阵经复相合变换同时对角化定理3.10.4:若A,B ∈H n ×n 且B为正定,则有行列式等二矩阵经复相合变换同时对角化续定义3.11.1:由Hermite矩阵A定义的从C n –{0}到R 的下列函数:R(x)=x *Ax/x *x 称为矩阵A的Rayleigh商.§3.11: Rayleigh商(1)R(x)为x的齐次函数:∀0≠k ∈R ,R(kx)=R(x)(3)min x ≠0R(x)=λ1=min{λ1, …,λn };max R(x)=λ=max{λ, …,λ}.注:由(1)和(3)推出min x ≠0R(x)=min ‖x‖=1x *Ax,Rayleigh 商性质的注设M ∈H n ×n ,用λmin ,λmax 分别记M的最小,大特征值,则λ=min x *Ax,λ=max x *Ax.一个推论。
matlab对hermite矩阵分解-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括对Hermit矩阵分解的定义和背景的介绍。
下面是一个可能的概述内容的例子:在数学和计算科学的领域中,矩阵分解是一种重要的技术,用于将复杂的大矩阵表示转化为更简洁、可处理的形式。
其中一种矩阵分解方法是Hermit矩阵分解,它是对Hermit矩阵进行分解的一种特殊方法。
Hermit矩阵是一种具有特殊属性的正方矩阵,其元素复共轭对称。
在Hermit矩阵分解的过程中,通过将一个Hermit矩阵表示为两个特定形式的矩阵的乘积,可以使得矩阵运算更加有效,并且可以提取出矩阵的结构信息。
本文旨在介绍MATLAB在Hermit矩阵分解中的应用,并讨论Hermit 矩阵分解的算法和实现。
首先,我们将详细介绍Hermit矩阵分解的概念和相关背景知识。
接着,我们将探讨MATLAB在Hermit矩阵分解中的具体应用,包括如何使用MATLAB进行矩阵分解和分析。
最后,我们将总结Hermit矩阵分解的优势和局限性,并展望未来相关研究的发展方向。
通过本文的阐述,读者将能够了解Hermit矩阵分解及其在科学和工程问题中的应用价值,同时也能够熟悉MATLAB在这一方面的操作和实现。
无论是对于研究人员还是对于对矩阵分解感兴趣的读者来说,本文都将为他们提供有用的信息和参考。
1.2文章结构1.2 文章结构本文共分为以下几个部分进行讨论和叙述。
第一部分为引言部分,对整篇文章进行概述,并介绍文章的结构和目的。
在这一部分中,我们将简要介绍Hermit矩阵分解的概念以及MATLAB 在该领域的应用。
第二部分为正文部分,主要讨论Hermit矩阵分解的概念、MATLAB 在该领域的具体应用以及Hermit矩阵分解的算法与实现。
我们将详细介绍Hermit矩阵分解的相关概念,包括其定义、特性等,并探讨MATLAB 在该领域中的重要作用和应用。
此外,我们还将介绍一些常用的Hermit 矩阵分解算法,包括其原理、步骤和实现方式。
正定Hermitian 矩阵的分解法的概述及应用[摘要]对正定Hermitian 矩阵的定义、性质以及Cholesky 分解法做简单的概括、分析。
利用正定Hermitian 阵的Cholesky 分解法来解决一些题目,由此,我们可以看出一些矩阵可以分解成一些具有特殊特定性质的矩阵。
[关键词]矩阵分解、正定Hermitian 矩阵、Cholesky 分解法 1.定义关于矩阵的分解,一般的理论有①矩阵的三角分解(Crout 分解、TLDL 分解、Doolittle [5]分解等等),②矩阵的正交三角分解(方阵的QR 分解,长方阵的QR 分解),③矩阵的满秩分解,④矩阵的奇异分解。
现在我要给出一种特殊的三角分解:正定Hermitian 矩阵的分解及应用。
为此,先引入 定义[1]1,设n nA C⨯∈,若HAA =,则称A 是Hermitian 矩阵;若H A A =-,则称A 是反Hermitian 矩阵。
定义2.对于Hermitian 矩阵的二次齐式,(),,H n f x X AX X C =∈下列命题是等价: (1)()f x 是正定的;(2)对于任何n 阶可逆矩阵P 都有HP AP 为正定矩阵; (3)A 的n 个特征值全大于零;(4)存在n 阶可逆矩阵P ,使得HP AP E =; (5)存在n 阶可逆矩阵Q ,使得HA=Q Q(6)存在正线上三角矩阵R ,使得HA R R =,且分解是唯一的。
2. 正定Hermitian 矩阵的Cholesky 分解 (或平方根分解或对称三角分解)2.1. 正定Hermitian 矩阵的Cholesky 分解的可行性 1.以下两个命题等价: 命题[1]1,设n nA C⨯∈是正定Hermitian 矩阵一,则A 可分解为1/21/2()()H H A LDLDLL == 其中1/2L LD= ,L 是单位下三角矩阵,1/2D diag = , (1,2,,k k n = 是A 的k 阶顺序主子式。
第三章 内积空间基本概念在几何分析时,向量的长度、夹角是基本的度量。
§3.1 内积空间基本概念定义 1.1 设V 为数域()C 或R F 上线性空间,若有一法则使V 任两向量βα,确定F 中唯一的数,记为〉〈βα,,且〉〈βα,满足:(1)〉〈=〉〈βααβ,,,V ∈∀βα,;(共轭对称) (2)〉〈+〉〈=〉+〈γβγαγβα,,,,V ∈∀γβα,,; (3),,,〉〈=〉〈βαβαk k F k ∈∀,V ∈∀βα,; (4)0,≥〉〈αα,且等号成立当且仅当θα=。
则称><βα,为βα,的内积,V 为内积空间。
特别C F =时称()C V 为酉空间,R F =时称()R V 为欧氏空间。
注 (1)〉〈+〉〈=〉+〈γαβαγβα,,,;〉+〈=〉+〈αγβγβα,, 〉〈+〉〈=αγαβ,, 〉〈+〉〈=αγαβ,,〉〈+〉〈=γαβα,,;(2)〉〈=〉〈βαβα,,k k ; (3)0,,=〉〈=〉〈αθθα。
例1 在n R 中定义,,X Y Y X T =〉〈n R 为欧氏空间。
例2 在n R 中定义,,AX Y Y X T =〉〈其中A 为n 阶正定矩。
例3在n R 中定义,,X Y Y X T =〉〈,n C 为酉空间。
例4 n n C ⨯中TH H B B trAB B A =>=<,,。
例5 ()b a R V ,)(=上一切连续函数的集合),(b a C ,()(),,dx x g x f g f ba ⎰>=<()()V x g x f ∈∀,,()R V 是欧氏空间。
定义1.2 设n ααα,,,21 为内积空间V 的一组基,记,,ij j i g x x =〉〈()n j i ,,2,1, =,则称n 阶矩阵ij g G =,故G G H =。
定理1.1 设内积空间V 的一组基{}ni 1α的度量矩阵为G ,V 中向量βα与在该基下坐标向量分别为Y X ,,则X G Y Y G X T H T =>=<βα,。