第六章向量代数与空间解析几何(424).
- 格式:docx
- 大小:34.86 KB
- 文档页数:7
第六章.向量代数与空间解析几何本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。
向量。
向量可以说是几何的最为基本的概念。
因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。
由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。
我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。
基于向量的这种直观图象,可以定义向量的基本属性。
首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。
注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。
在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。
空间直角坐标系以及向量代数。
在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。
向量代数与空间解析几何在数学中,向量代数与空间解析几何是两个重要的分支。
它们分别研究了向量以及在空间中的几何问题。
本文将介绍向量代数以及空间解析几何的基本概念和应用。
一、向量代数1. 向量的定义与性质向量是带有方向和大小的量,通常用有向线段表示。
向量有很多种表示方法,如坐标表示、向量符号表示等。
向量运算包括加法、减法、数乘等,遵循相应的运算规则。
向量的性质包括共线、对称性、平行四边形法则等。
2. 向量的内积与外积向量的内积(点积)和外积(叉积)是向量代数中的重要运算。
内积表示了两个向量之间的夹角关系,具有交换律和分配律等性质。
外积表示了两个向量之间的垂直关系,其大小等于由两个向量所决定的平行四边形的面积。
3. 向量的坐标表示与线性组合向量可以通过坐标表示在坐标系中,分别用行向量和列向量表示。
向量的线性组合是指将多个向量按一定比例相加得到新的向量。
线性组合有重要的几何意义,可以表示平面或空间上的任意点。
二、空间解析几何1. 点、直线与平面空间解析几何研究了点、直线和平面在空间中的性质和相互关系。
点在空间中由坐标表示,在三维坐标系中是一个有序三元组。
直线可以通过点和方向向量表示,平面可以通过点和法向量表示。
2. 直线与平面的位置关系直线和平面有多种位置关系,包括相交、平行、重合、相交于一点等。
这些关系可以通过直线或平面的方程进行判断和计算。
同时,直线与平面之间也存在着夹角的概念,用于描述它们之间的夹角关系。
3. 空间几何体的体积与面积在空间解析几何中,体积和面积是重要的度量指标。
常见的几何体包括球、圆柱、圆锥、棱台等。
通过合适的公式和方法,可以计算出这些几何体的体积和表面积。
三、应用向量代数与空间解析几何在物理学、工程学、计算机图形学等领域中有广泛的应用。
1. 物理学中的力学分析向量代数可以用来描述物理学中的力和运动,如力的合成与分解、速度和加速度的分析等。
空间解析几何则可以用来描述物体在空间中的位置和运动轨迹。
205第六章 向量代数与空间解析几何在平面解析几何中,通过平面直角坐标系建立了平面上的点与二元有序实数对之间的一一对应关系,从而可以用代数方法来研究几何问题,这为一元微积分学提供了直观的几何背景.空间解析几何也是按照类似的方法建立起来的,并为研究多元函数微积分学提供直观的几何背景.本章先引进向量的概念,根据向量的线性运算建立空间直角坐标系,然后利用坐标讨论向量的运算,并利用向量工具讨论空间中的平面和直线、空间曲线和曲面的有关内容.第一节 向量及其线性运算一、向量的概念在研究力学以及其他应用科学时,常会遇到这样一类量,它们既有大小,又有方向.例如力、力矩、位移、速度、加速度等,这一类量叫做向量(或矢量).在数学上,用一条有方向的线段(称为有向线段)来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.以A 为起点、B 为终点的有向线段所表示的向量记作AB −−→(图6-1).向量也可用黑粗体字母表示,也可在字母上加箭头表示,例如,a ,r ,F 或a →,→r ,→F .由于一切向量的共性是它们都有大小和方向,所以在数学上我们只研究与起点无关的向量,并称这种向量为自由向量,简称向量.因此,如果向量a 和b 的大小相等,且方向相同,则说向量a 和b 是相等的,记为=a b .相等的向量经过平移后可以完全重合.向量的大小叫做向量的模.向量a ,→a ,AB −−→的模分别记为||a ,||→a ,||AB −−→.模等于1的向量叫做单位向量.模等于0的向量叫做零向量,记作0或→0.零向量的起点与终点重合,它的方向可以看作是任意的.与a 的模相等而方向相反的向量,称为a 的负向量,记作-a .设a 和b 为非零向量,在空间中任取一点O ,作OA −−→=a ,OB b −−→=,规定不超过π的AOB ∠(即0AOB ≤∠≤π)称为向量a 和b 的夹角(图6-2),记作(,)∧a b 或(,)∧b a .如果a 和b 中有一个为零向量,规定它们的夹角可在0与π之间任意取值.若(,)0∧=a b 或π,即向量a 和b 的方向相同或相反,则称这两个向量平行,记作a //b .可认为零向量与任何向量都平行.若(,)∧=a b 2π,则称向量a 与b 垂直,记作a ⊥b .也可认为零向量与任何向量都垂直.当两个平行向量的起点放在同一点时,它们的终点和公共的起点在一条直线上.因此,两向量平行又称两向量共线.206 类似还有向量共面的概念,设有(3)k k ≥个向量,当把它们的起点放在同一点时,如果k 个终点和公共起点在一个平面上,就称这k 个向量共面.二、向量的线性运算1.向量的加法向量的加法运算规定如下:设有两个向量a 与b ,任取一点A ,作AB −−→=a ,再以B 为起点,作BC −−→=b ,连接AC ,(图6-3),那么向量AC −−→=c 称为向量a 与b 的和,记作+a b ,即=+c a b .上述作出两向量之和的方法叫做向量加法的三角形法则.向量加法还满足如下平行四边形法则(图6-4):当向量a 与b 不平行时,平移向量a ,使a 与b 的起点重合,以a ,b 为邻边作一平行四边形,从公共起点到对角的顶点C 的向量等于向量a 与b 的和+a b .向量的加法满足下列运算规律: (1)交换律 +=+a b b a ;(2)结合律 ()()++=++a b c a b c .由于向量的加法符合交换律与结合律,故n 个向量12,,n a a a (3)n ≥相加可写成12+++n a a a ,并按向量相加的三角形法则,可得n 个向量相加的法则如下:使前一向量的终点作为次一向量的起点,相继作向量12,n a a a ,再以第一向量的起点为起点,最后一向量的终点为终点作一向量,这个向量即为所求的和.我们规定两个向量b 与a 的差为()-=+-b a b a (图6-5). 特别地,当=b a 时,有()-=+-=a a a a 0.显然,任给向量AB −−→及点O ,有AB AO OB OB OA −−→−−→−−→−−→−−→=+=-,因此,若把向量a 与b 移到同一起点O ,则从a 的终点A 向b 的终点B 所引向量AB −−→便是向量b 与a 的差-b a .由三角形两边之和大于第三边的原理,有+≤+a b a b 及 -≤+a b a b , 其中等号在b 与a 同向或反向时成立.2.向量与数的乘法向量a 与实数λ的乘积记作λa ,规定λa 是一个向量,它的模为207λλ=a a .当0λ>时,向量λa 与a 的方向相同,当0λ<时,向量λa 与a 的方向相反.当0λ= 时,0λ=a ,即λa 为零向量,这时它的方向可以是任意的. 特别地,当1λ=±时,有1,(1)=-=-a a a a . 向量与数的乘积运算满足下列运算规律:(1)结合律 ()()()λμμλλμ==a a a ; (2)分配律 ()λμλμ+=+a a a ;()λλλ+=+a b a b .向量加法与数乘运算统称为向量的线性运算.●●例1 化简13525-⎛⎫-+-+ ⎪⎝⎭b a a b b . 解 13525-⎛⎫-+-+ ⎪⎝⎭b a a b b 51(13)1525⎛⎫=-+--+⋅ ⎪⎝⎭a b 522=--a b . ●●例2 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB 、BC 、CD 、DA 的中点,求证:KL NM −−→−−→=.证 如图6-6所示,连结AC ,则在BAC ∆中,KL −−→=12AC −−→;在DAC ∆中,NM −−→=12AC −−→.所以KL NM −−→−−→=. 设≠0a ,则向量||aa 是与a 同方向的单位向量,记为a e .于是||=a a a e .由向量的数乘运算知向量λa 与a 平行,因此有如下定理:设向量≠0a ,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使λ=b a .证 条件的充分性是显然的,下面证明条件的必要性.设b //a .取||a b ||||=λ,当b 与a 同向时λ取正值;当b 与a 反向时λ取负值,即λ=b a .这是因为此时b 与a 同向,且λλ===ba a ab a. 再证明实数λ的唯一性.设λ=b a ,又设μ=b a ,两式相减,得()λμ-=0a ,即 0λμ-=a .因0≠a ,故0λμ-=,即λμ=.定理获证.定理1是建立数轴的理论依据,我们知道,给定一个点及一个单位向量就确定了一条数轴.设点O 及单位向量i 确定了数轴Ox ,对于数轴上任一点P ,对应一个向量OP −−→,由OP //i ,根据定理1,必有唯一的实数x ,使OP x −−→=i ,(实数x 叫做数轴上有向线段OP −−→的值),并知OP −−→与实数x 一一对应.于是点P向量OP x −−→=i 实数x ,从而数轴上的点P 与实数x 有一一对应的关系.据此,定义实数x 为数轴上点P 的坐标.208 由此可知,数轴上点P 的坐标为x 的充分必要条件是OP x −−→=i .三、空间直角坐标系在空间取定一点O 和3个两两垂直的单位向量i ,j ,k ,就确定了3条都以O 为原点的两两垂直的数轴,依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴.它们构成一个空间直角坐标系,称为Oxyz 坐标系或[];,,O i j k 坐标系.通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线,它们的正向通常符合右手规则,即用右手握住z 轴,其余四指从正向x 轴以π2角度转向正向y 轴时,大拇指所指的方向为z 轴的正向,如图6-7所示.在空间直角坐标系中,任意两个坐标轴可以确定一个平面,这种平面称为坐标面.x 轴及y 轴所确定的坐标面叫做xOy 面,另两个由y 轴及z 轴和z 轴及x 轴所确定的坐标面分别叫做yOz 面和zOx 面.3个坐标面把空间分成八个部分,每一部分叫做卦限,含有3个正半轴的卦限叫做第一卦限,在xOy 面的上方,按逆时针方向排列着第二卦限、第三卦限和第四卦限.在xOy 面的下方,与第一卦限对应的是第五卦限,按逆时针方向分别是第六卦限、第七卦限和第八卦限.八个卦限分别用字母I ,II ,III ,IV ,V ,VI ,VII ,VIII 表示(图6-8).设M 为空间一点,过点M 作3个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴、z 轴的交点依次为P 、Q 、R (图6-9),这3点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z .于是空间点M 就唯一地确定了一个有序数组(,,)x y z .反之,若已知一个有序数组(,,)x y z ,我们可以在x 轴上取坐标为x 的点P ,在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P ,Q ,R 分别作与x 轴、y 轴、z 轴垂直的平面,由这3个平面得到唯一的交点M (图6-9).用上述方法,我们建立了空间点与三元有序数组之间的一一对应关系.这组数,,x y z 叫做点M 的坐标,并依次称,x y 和z 为点M 的横坐标、纵坐标和竖坐标.点M 通常记作(,,)M x y z .记OM −−→=r ,则=r OM OP PN NM OP OQ OR −−→−−→−−→−−→−−→−−→−−→=++=++,设OP x −−→=i ,OQ y −−→=j ,OR z −−→=k ,则OM x y z −−→==++r i j k .上式称为向量r 的坐标分解式,x i ,y j ,z k 称为向量r 沿3个坐标轴方向的分向量.有序数,,x y z 称为向量r 在坐标系Oxyz 中的坐标,记作r (,,)x y z =.向量OM −−→=r 称为点M 关于原点O 的向径.上述定义表明,一个点与该点的向径有相同209的坐标.记号(,,)x y z 既表示点M ,又表示向量OM −−→.究竟何时表示点,何时表示向量要看具体的情况.坐标面上和坐标轴上的点,其坐标各有一定的特征.例如:点M 在xOy 面上,则0=z ;类似地,点M 在yOz 面上,则0=x ;点M 在zOx 面上,则0=y .如果点M 在x 轴上,则0==y z ;同样,点M 在y 轴上,有0z x ==;点M 在z 轴上,有0x y ==.如果点M 为原点,则x =y 0z ==.四、利用坐标作向量的线性运算利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:设(,,)x y z a a a =a ,(,,)x y z b b b =b ,即x y z a a a =++a i j k , x y z b b b =++b i j k ,则加法:()()()x x y y z z a b a b a b +=+++++a b i j k ; 减法:()()()x x y y z z a b a b a b -=-+-+-a b i j k ; 数乘:()()()x y z a a a λλλλ=++a i j k (λ为实数) 或(,,)x x y y z z a b a b a b +=+++a b , (,,)x x y y z z a b a b a b -=---a b ,(,,)x y z a a a λλλλ=a .由此可见,对向量进行加、减及与数相乘,只需对向量的各个坐标分别进行相应的数量运算就行了.由定理1可知:若≠0a 时,向量//b a 相当于λ=b a (λ为实数),即(,,)(,,),x y z x y z b b b a a a λ= 也相当于向量的对应坐标成比例,即.y x zx y zb b b a a a == ●●例3 求解以向量为未知元的线性方程组53,32-=⎧⎨-=⎩x y a x y b ,其中(2,1,2)=a ,(1,1,2)=--b .解 如同解二元一次线性方程组,可得23,35=-=-x a b y a b .以a 、b 的坐标表示式代入,即得2(2,1,2)3(1,1,2)(7,1,10)x =---=-, 3(2,1,2)5(1,1,2)(11,2,16)=---=-y .●●例4 已知两点111(,,)A x y z 和222(,,)B x y z 以及实数1λ≠-,在直线AB 上求一点M ,使AM MB λ−−→−−→=.解法1 如图6-10所示,由于AM OM OA −−→−−→−−→=-,MB OB OM −−→−−→−−→=-,因此 ()OM OA OB OM λ−−→−−→−−→−−→-=-,210 从而 1()1OM OA OB λλ−−→−−→−−→=++ 121212( , , )111x x y y z z λλλλλλ+++=+++,这就是点M 的坐标.解法2 设所求点为(,,)M x y z ,则111(, , )AM OM OA x x y y z z −−→−−→−−→=-=---,222(, , )MB OB OM x x y y z z −−→−−→−−→=-=---.依题意有AM MB λ−−→−−→=,即111222(,,)(,,)λ---=---x x y y z z x x y y z z , 则有111222(,,)(,,)(,,)(,,)λλ-=-x y z x y z x y z x y z ,故) , ,(11) , ,(212121z z y y x x z y x λλλλ++++=,从而 λλ++=121x x x ,121y y y λλ+=+,λλ++=121z z z .点M 叫做有向线段AB −−→的λ分点,当1λ=时,点M 是有向线段AB −−→的中点,其坐标为221x x x +=,221y y y +=,221z z z +=.五、向量的模、方向角、投影1.向量的模与两点间的距离公式设向量r =(,,)x y z ,作OM −−→=r (图6-9),则OM OP OQ OR −−→−−→−−→−−→==++r ,按勾股定理可得||||OM −−→==r因为OP x −−→=i ,OQ y −−→=j ,OR z −−→=k ,所以||,||,||OP x OQ y OR z −−→−−→−−→===,于是得向量模的坐标表示式222||z y x ++=r .设有点111(,,)A x y z ,222(,,)B x y z , 则222111212121 (,,)(,,)(,,)−−→−−→−−→=-=-=---AB OB OA x y z x y z x x y y z z ,于是A 、B 两点间的距离为||||AB AB −−→==●●例5 求证:以(1,2,3)A ,(2,1,4)B ,(4,2,1)C --为顶点的三角形是直角三角形. 证 因为2222(21)(12)(43)3AB =-+-+-=, 2222(41)(22)(13)41AC =-+--+--=, 2222(42)(21)(14)38BC =-+--+--=,211所以,2233841AB BC +=+=,又因为241AC =,根据勾股定理可知,ABC ∆是直角三角形.●●例6 设点P 在x轴上,它到点1P 的距离为到点2(0,1,1)P -的距离的两倍,求点P 的坐标.解 因为点P 在x 轴上,故可设点P 的坐标为(,0,0)x ,则1PP =,2PP =由于122PP PP=,即,解之得1x =±.从而所求点P 的坐标为(1,0,0)或(1,0,0)-.●●例7 已知两点(1,0,3)A 和(3,1,1)B ,求与AB −−→方向相同的单位向量e . 解 因为 (3,1,1)(1,0,3)(2,1,2)AB OB OA −−→−−→−−→=-=-=-,所以,||3AB −−→=,从而 =e 1(2,1,2)3||ABAB −−→−−→=-. 2.方向角与方向余弦非零向量r =(,,)x y z 分别与x 轴、y 轴、z 轴的夹角αβγ、、称为向量r 的方向角(图6-11).c o s,c o s ,c o s αβγ称为向量r 的方向余弦.则||cos ,||cos ,||cos x y z αβγ===r r r .cos ||x α=r ,cos ||y β=r ,cos ||zγ=r .从而1(cos , cos , cos )||r αβγ==r e r . 上式表明,以向量r 的方向余弦为坐标的向量就是与r 同方向的单位向量r e ,而且有222cos cos cos 1αβγ++=.●●例8 已知两点A )和 (1, 3, 0)B ,求向量AB −−→的模、方向余弦和方向角. 解因为(12, 32, 0(1, 1, AB −−→=---=-, 所以||2)2AB −−→=,从而(cos , cos , cos )||ABAB αβγ−−→−−→=,即 1cos 2α=-,1cos 2β=,cos γ=,故 α=23π,β=3π,γ= 34π.212 ●●例9 设向量12P P −−→与x 轴和y 轴的夹角分别为3π和4π,而且122|PP |−−→=,如果点1P 的坐标为(1,0,3),求点2P 的坐标.解 设点2P 的坐标为(,,)x y z ,则12P P −−→的坐标为(1,0,3)x y z ---,又设向量12P P −−→的方向角为α、β、γ,由题设可得α=3π,1cos 2α=,β=4π,cos β= 因为222cos cos cos 1αβγ++=,所以1cos 2γ=±.即γ=3π或γ=23π.由121cos x |PP |α−−→-= 可得12x -12=,解之得2x =,由120cos y |PP |β−−→-= 可得02y-=y = 由123cos z |PP |γ−−→-=可得32z -12=±,解之得4z =或2z =. 故点2P的坐标为或.3.向量在轴上的投影设点O 及单位向量e 确定u 轴(图6-12).任给向量r ,作OM −−→=r ,再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫作点M 在u 轴上的投影),则向量OM −−→'称为向量r 在u 轴上的分向量.设OM −−→'λ=e ,则数λ称为向量r 在u 轴上的投影,记作Pr j u r 或()u r . 按此定义,向量a 在直角坐标系Oxyz 中的坐标,,x y z a a a 就是a 在3条坐标轴上的投影,即Pr j ,Pr j ,Pr j x x y y z z a a a ===a a a .投影的性质:性质1 ()cos u a a ϕ=(即Pr j cos u a a ϕ=),其中ϕ为向量a 与u 轴的夹角. 性质2 ()()()u u u a b a b +=+(即Pr j ()Pr j Pr j u u u a b a b +=+).性质3 ()()u u a a λλ=(即Pr j ()Pr j u u a a λλ=).习 题 6-11.在平行四边形ABCD 中,设a −−→=AB ,AD −−→=b ,试用a 和b 表示向量MA −−→、MB −−→、MC −−→、MD −−→,其中M 是平行四边形对角线的交点.2.若四边形的对角线互相平分,用向量方法证明它是平行四边形.2133.求起点为(1,2,1)A ,终点为(19,18,1)B --的向量AB −−→与12AB -的坐标表达式.4.求平行于(1,1,1)=a 的单位向量.5.在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),(1,1,1),(1,1,1),(1,1,1)A B C D ------6.求点(,,)M x y z 与x 轴,xOy 平面及原点的对称点坐标.7.已知点(,,)A a b c ,求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标).8.过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?9.求点(2,5,4)P -到原点、各坐标轴和各坐标面的距离.10.求证以1(4,3,1)M 、2(7,1,2)M 、3(5,2,3)M 3点为顶点的三角形是一个等腰三角形. 11.在yOz 坐标面上,求与三个点(3,1,2),(4,2,2),(0,5,1)A B C --等距离的点的坐标. 12.z 轴上,求与点(4,1,7)-A ,点(3,5,2)-B 等距离的点. 13.求λ使向量(,1,5)λ=a 与向量(2,10,50)=b 平行. 14.求与y 轴反向,模为10的向量a 的坐标表达式.15.求与向量(1,5,6)=a 平行,模为10的向量b 的坐标表达式. 16.已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .17.已知两点A ,(3,0,4)B ,求向量AB −−→的模、方向余弦和方向角.18.设向量的方向角为α,β,γ.若已知π3α=,2π3β=.求γ.19.已知3点(1,0,0)A =,(3,1,1)B ,(2,0,1)C ,求:(1)BC −−→与CA −−→及其模;(2)BC −−→的方向余弦、方向角;(3)与BC −−→同向的单位向量. 20.设23=++m i j k ,23=+-n i j k ,34=-+p i j k ,求向量23=+-a m n p 在x 轴上的投影和在y 轴上的分向量.21.一向量的终点为点(2,1,4)B --,它在x 轴,y 轴和z 轴上的投影依次为3,-3和8, 求这向量起点A 的坐标.22.已知向量a 的两个方向余弦为2cos 7α=,3cos 7β=,且a 与z 轴的方向角是钝角.求cos γ.23.设有三个力12=-F i k ,2234=-+F i j k ,3=+F j k 作用于同一质点,求合力的大小和方向角.214 第二节 数量积 向量积 混合积*一、向量的数量积1.数量积的定义设一物体在常力F 作用下沿直线从点1M 移动到点2M ,以s 表示位移12M M −−→. 由物理学知道, 力F 所作的功为cos θ=W F s , 其中θ为F 与s 的夹角(图6-13).在现实生活中还有很多问题的求解都归结于求两个向量a 和b 的模||a 、||b 及它们的夹角θ的余弦的乘积,我们称之为向量a 和b 的数量积,记作a b ⋅(图6-14),即cos θ⋅=a b a b .由数量积的定义可以知道,力F 所作的功是力F 与位移s 这两个向量的数量积,即W =⋅F s ,下面我们来讨论数量积的一些性质.2.数量积的性质性质 1 当a ≠0时,Pr j ⋅=a a b a b ;当b ≠0时,Pr j ⋅=b a b b a .这就是说,两向量的的数量积等于其中一个向量的模和另一个向量在这个向量上的投影的乘积.由向量投影的定义即可证明,证明略.性质2 2⋅=a a a .证 因为向量a 与自身的夹角0θ=,所以 2cos θ⋅==a a a a a .性质3 两个向量a 与b 垂直的充要条件是0⋅a b =.证 若向量a 与b 中至少有一个为零向量时,由于零向量的方向可以看作是任意的,故可以认为零向量与任何向量都垂直,上述结论显然成立.如果向量a 与b 均不为零向量时,则a 与b 均不为零,故当0⋅=a b 时一定有cos 0θ=,从而θ=π2,即a ⊥b ; 反之,如果a ⊥b ,那么π2θ=,cos 0θ=,于是cos 0θ⋅==a b a b . 3.数量积满足的运算规律(1) 交换律 a b b a ⋅=⋅.(2) 分配律 ()a b c a c b c +⋅=⋅+⋅.(3) 结合律 ()()a b a b λλ⋅=⋅, ()()()a b a b λμλμ⋅=⋅ (λ、μ 为常数). 证 下面只证明分配律()a b c a c b c +⋅=⋅+⋅,余下的证明留给读者. 当0c =时,上式显然成立,当0c ≠时,由性质1及投影的性质有()P r ()(P r P r )c c c j j j +⋅=+=+a b c c a b c ab Pr Prc c j j =+=⋅+⋅c a c b a c b c .●●例1 试用向量证明三角形的余弦定理.215证 设在ABC ∆中,BCA θ∠=,=BC a ,CA b =,AB c =(图6-15),要证2222cos θ=+-c a b ab .记CB −−→=a ,CA −−→=b ,AB −−→=c , 则有 =-c a b ,从而2()()2=⋅=-⋅-=⋅+⋅-⋅c c c a b a b a a b b a b222cos(,).=+-a b a b a b即2222cos θ=+-c a b ab .4.数量积的坐标表示设 ()x y z a ,a ,a a =,()x y z b ,b ,b =b ,则按数量积的运算规律可得()()x y z x y z x x x y x z y x y y y z z x z y z z a a a b b b a b a b a b a b a b a b a b a b a b ⋅=++⋅++=⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅a b i j k i j ki i i j i k j i j j j k k i k j k k因为i j k 、、是两两互相垂直的单位向量,所以0⋅=⋅=⋅=⋅=⋅=⋅=i j j i j k k j k i i k ,1⋅=⋅=⋅=i i j j k k .从而a b ⋅=++x x y y z z a b a b a b .这就是两个向量的数量积的坐标表示式.5.两向量夹角的余弦的坐标表示设(,)θ∧=a b 则当,≠≠00a b 时, 由数量积的定义cos θ⋅=⋅a b a b 有cos ||||a b a b a b θ++⋅==⋅a ba b . ●●例2 已知(1,1,4)=-a ,(1,2,2)=-b ,求(1)⋅a b ; (2)a 与b 的夹角; (3)a 在b 上的投影. 解 (1)⋅a b 111(2)(4)2=⋅+⋅-+-⋅9.=-(2)因为cos a b a b a b θ++==θ=3π4. (3)因为||Prj ⋅=b a b b a ,所以 P rj 3||⋅==-b a ba b . 二、向量的向量积1.向量积的定义在研究物体转动问题时,不但要考虑这物体所受的力,还要分析这些力所产生的力矩. 设O 为一根杠杆L 的支点,有一个力F 作用于这杠杆上P 点处. F 与OP −−→的夹角为θ(图6-16).由力学规定,力F 对支点O 的力矩是一向量M , 它的模sin |||OP |||θ−−→=M F , 而M 的方向垂直于OP −−→与F 所决定的平面, M 的指向是按右手规则从OP −−→以不超过π的角转向F 来确定的(图6-17).216设向量c 是由两个向量a 与b 按下列方式定出:(1)c 的模:sin θ=c a b ,其中θ为a 与b 间的夹角;(2)c 的方向:垂直于a 与b 所决定的平面,c 的指向按右手规则从a 转向b 来确定(图6-18).那么,向量c 叫做向量a 与b 的向量积,记作⨯a b ,即=⨯c a b.根据向量积的定义,力矩M 等于OP −−→与F 的向量积,即OP −−→=⨯M F .2.向量积的性质性质1 ×0a a =.性质2 两个向量//a b 的充要条件是×0a b =.证 若向量a 与b 中至少有一个为零向量时,由于零向量的方向可以看作是任意的,故由于可以认为零向量与任何向量都平行,上述结论显然成立.如果向量a 与b 均不为零向量时,则a 与b 均不为零,故当×0a b =时一定有sin 0θ=,从而0θ=或πθ=,即//a b ;反之,如果//a b ,那么0θ=或πθ=,则sin 0θ=,于是×0a b =.3.向量积的运算规律(1)反交换律 ⨯=-⨯a b b a .(2)分配律 ()+⨯=⨯+⨯a b c a c b c .(3)结合律 ()()()λλλ⨯=⨯=⨯a b a b a b (λ为数).4.向量积的坐标表示设x y z a a a =++a i j k ,x y z b b b b =i +j +k , 按向量积的运算规律可得()()x y z x y z x x x y x z y x y y y z z x z y z z a a a b b b a b a b a b a b a b a b a b a b a b ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯a b i j k i j k i i i j i k j i j j j k k i k j k k由于⨯=⨯=⨯=0i i j j k k ,,,⨯=⨯=⨯=i j k j k i k i j ---⨯⨯⨯,j i =k,k j =i,i k =j ,所以()()()y z z y z x x z x y y x a b a b a b a b a b a b ⨯=-+-+-a b i j k .217为了帮助记忆, 利用三阶行列式, 上式可写成x yz x yza a ab b b ⨯=i jk a b . ●●例3 设向量2a i j k =+-,23b j k =+.计算a b ⨯,并计算以a ,为b 邻边的平行四边形的面积.解 121023i j ka b ⨯=-211112230302i j k --=-+832i j k =-+.根据向量积的模的几何意义,a b ⨯的模在数值上就是以a ,b 为邻边的平行四边形的面积.因而其面积S 为S ||=⨯a b●●例4 求同时垂直于向量(=-a解 记368(803)010,,=⨯=-=--i j kb a j ,故同时垂直于向量a 与y 轴的单位向量为803),,±=--b b . ●●例5 用向量方法证明:三角形的正弦定理sin a A =sin bB =sin c C. 证 如图6-19所示,在ABC ∆中,设−−→=BC a ,CA −−→=b ,−−→=AB c ,且=a a ,b =b ,c =c , 则0++=a b c ,从而()=-+c a b ,因此()⨯=-+⨯=-⨯=⨯0c a a b a b a a b ,同理可得⨯=⨯b c a b ,所以⨯=⨯=⨯b c c a a b .故 ⨯=⨯=⨯b c c a a b ,即 sin sin sin bc A ca B ab C ==,于是sin a A =sin bB =sin c C. 三、向量的混合积*1.向量的混合积的定义已知3个向量a 、b 、c ,向量a b ⨯与向量c 的数量积()⨯⋅a b c 称为这3个向量的混合积,记为[]abc .2.混合积的坐标表示设 (,,)x y z a a a =a ,(,,)x y z b b b =b ,(,,)x y z c c c =c ,因为218 xy z x y za a ab b b ⨯=ij ka b yz x yx zyz x yx z a a a a a a b b b b b b =-+i j k . 再按两向量的数量积的坐标表达式可得[]()=⨯⋅abc a b c yz x yx zxy zy z x yx za a a a a a c c cb b b b b b =-+xy zx y z x y za a ab b bc c c =. 由上述坐标表达式不难验证 []()()()=⨯⋅=⨯⋅=⨯⋅a b ca b c b c a c a b . 3.向量的混合积的几何意义向量的混合积[]()=⨯⋅abc a b c 的绝对值表示以向量,,a b c 为棱的平行六面体的体积.如果向量,,a b c 组成右手系(即c 的指向按右手规则从a 转向b 来确定),那么混合积的符号是正的;如果向量,,a b c 组成左手系(即c 的指向按左手规则从a 转向b 来确定),那么混合积的符号是负的.下面我们来解释这一问题.一方面,设−−→OA =a ,−−→OB =b ,−−→OC =c ,按向量积的定义,向量积a b f ⨯=是一个向量,它的模在数值上等于向量a 和b 为边所作的平行四边形OADB 的面积,它的方向垂直于这平行四边形的平面,且当,,a b c 组成右手系时,向量f 与向量c 朝着这平面的同侧(图6-20);当,,a b c 组成左手系时,向量f 与向量c 朝着这平面的异侧.所以,如设f 与c 的夹角为α,那么当,,a b c 组成右手系时,α为锐角;当,,a b c 组成左手系时,α为钝角.由于[]()cos α=⨯⋅=⨯abc a b c a b c .所以当,,a b c 组成右手系时,[]abc 为正;当,,a b c 组成左手系时,[]abc 为负.另一方面,以向量,,a b c 为棱的平行六面体的底(平行四边形OADB )的面积S 在数值上等于a b ⨯,它的高h 等于向量c 在向量f 上的投影的绝对值,即h Prj cos α==f c c ,所以平行六面体的体积==V Sh []cos α⨯=a b c abc .由上述混合积的几何意义可知,若混合积[]0abc ≠,则能以,,a b c 三向量为棱构成平行六面体,从而,,a b c 三向量不共面;反之,若,,a b c 三向量不共面,则必能以,,a b c 为棱构成平行六面体,从而[]0abc ≠.于是有下述结论:三向量,,a b c 共面的充分必要条件是它们的混合积[]0abc =,即0x y zx y z xyza a ab b bc c c =. ●●例6 已知[]2=abc ,计算[()()]()+⨯+⋅+a b b c c a .解 [()()]()+⨯+⋅+a b b c c a [)]()=⨯+⨯+⨯+⨯⋅+a b a c b b b c c a219()()()0=⨯⋅+⨯⋅+⋅+⨯⋅a b c a c c c b c c ()()()0+⨯⋅+⨯⋅+⋅+⨯⋅a b a a c a a b c a 2()=⨯⋅a b c 2[]=abc 4=.●●例7 已知(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,(,,)D x y z 4点共面,试求D 点的坐标所满足的关系式.解 A B C D 、、、 四点共面相当于−−→AB 、−−→AC 、AD −−→三个向量共面,而(450)−−→=-,,AB ,(043)−−→=-,,AC ,(112)−−→=-+-,,AD x y z ,由3个向量共面的充要条件可知:1124500043-+--=-x y z . 即 151216350++-=x y z 为所求的关系式.习 题 6-21.已知向量(112),,=a ,(010),,=b ,(0,0,1)=c ,求(1)⋅a b ,⋅a c ,⋅b c ;(2)⨯a a ,⨯a b ,⨯a c ,⨯b c .2.已知向量(100),,=a ,(221),,=b ,求⋅a b ,⨯a b 及a 与b 的夹角余弦.3.已知π5,2,(,)3∧===a b a b ,求23a b -.4.证明下列问题:(1)证明向量(101),,=a 与向量(-111),,=b 垂直; (2)证明向量c 与向量()()a c b b c a ⋅-⋅垂直.5.求点(1M 的向径OM −−→与坐标轴之间的夹角. 6.求与=++a i j k 平行且满足1⋅=a x 的向量x .7.求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.8.在顶点为(1,-1,2)A 、(5,-6,2)B 和(1,3,-1)C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .9.已知向量2222, , ||||||().≠≠⨯=-⋅00证明a b a b a b a b10.证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义. 11.已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b ; (2)()()+⨯+a b b c ; (3)()⨯⋅a b c ; (4)⨯⨯a b c .第三节 曲面及其方程一、曲面方程的概念类似于在平面解析几何中把平面曲线看作是动点的运动轨迹,在空间解析几何中,任何曲面都可以看作点的几何轨迹.在这样的意义下, 如果曲面S 与三元方程(,,)0F x y z = (1)220 有下述关系:(1) 曲面S 上任一点的坐标都满足方程(1),(2) 不在曲面S 上的点的坐标都不满足方程(1), 那么,方程(,,)0F x y z =就叫做曲面S 的方程,而曲面S 就叫做方程(1)的图形(图6-21).下面我们来建立几个常见的曲面的方程.●●例1 建立球心在0000()M x ,y ,z 、半径为R 的球面的方程. 解 设(,,)M x y z 是球面上的任一点(图6-22),那么0M M =R ,即R或 2222000()()()R x x y y z z -+-+-=. (2) 这就是球面上的点的坐标所满足的方程.而不在球面上的点的坐标都不满足这个方程. 特别地,如果球心在原点,那么球面方程为2222x y z R ++=.●●例2 求与原点O 及0(2,3,4)M 的距离之比为1:2的点的全体所组成的曲面方程.解 设(,,)M x y z 是曲面上任一点,根据题意有0||1||2MO MM =,即12=, 整理得: 22224116(1)339x y z ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.与方程(2)比较可知,该方程表示球心在点24,1,33⎛⎫--- ⎪⎝⎭求球面上的点的坐标所满足的方程,而不在此球面上的点的坐标都不满足这个方程,所以这个方程就是所求球面的方程.以上表明作为点的几何轨迹的曲面可以用它的点的坐标间的方程来表示,反之,变量x 、y 和z 间的方程通常表示一个曲面.因此在空间解析几何中关于曲面的研究,有下列两个基本问题:(1) 已知一曲面作为点的几何轨迹时,建立这曲面的方程;图6-22图6-21221(2) 已知坐标x 、y 和z 间的一个方程时,研究这方程所表示的曲面的形状. 上述两个例子是从已知曲面建立其方程的例子,下面举一个由已知方程研究它所表示的曲面的例子.●●例3 方程222240x y z x y ++-+=表示怎样的曲面? 解 通过配方,原方程可化为222(1)(2)5x y z -+++=,与方程(2)比较可知,原方程表示球心在点0(1,2,0)M -、半径为R = 一般地,设有三元二次方程2220x y z Dx Ey Fz G ++++++=,这个方程的特点是缺xy ,yz ,zx 各项,而且平方项系数相同,如果能将方程经过配方化成2222000()()()x x y y z z R -+-+-=的形式,那么它的图形就是一个球面.下面,我们来讨论一些特殊的曲面.二、旋转曲面以一条平面曲线绕其所在平面上的一条直线旋转一周所成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴.设在yOz 坐标面上有一已知曲线:(,)0C f y z =,把该曲线绕z 轴旋转一周,就得到一个以z 轴为轴的旋转曲面(图6-23),下面求该旋转曲面的方程.设111(0,,)M y z 为曲线C 上的任一点,那么有11(,)0=f y z , (3)当曲线C 绕z 轴旋转时,点1M 也绕z 轴旋转到另一点(,,)M x y z ,这时1z z =保持不变,且点M 到z 轴的距离1d y .将1z z =,1y =3)式,即得旋转曲面的方程为()0f z =,即将曲线C 的方程(,)0f y z =中的y改成,便得曲线C 绕z 轴旋转所成的旋转曲面的方程.同理yOz 坐标面上的已知曲线(,)0f y z =绕y 轴旋转一周的旋转曲面方程为(0f y,=.同理xOy 坐标面上的已知曲线(,)0=f x y 绕x 轴旋转一周的旋转曲面方程为(,0f x =.●●例4 直线L 绕另一条与L 相交的直线旋转一周,所得旋转曲面叫圆锥面.两直线的交点叫圆锥面的顶点,两直线的夹角π(0)2αα<<叫圆锥面的半顶角.试建立顶点在坐标原点,旋转轴为z 轴,半顶角为α的圆锥面(图6-24)222 的方程.解 yOz 面上直线L 的方程为cot z y α=,因为z 轴为旋转轴,L 为母线,所以只要将方程cot z y α=中的y改成即可得到所要求的圆锥面方程z α=或 2222()z a x y =+,其中cot a α=.显然,圆锥面上任一点M 的坐标一定满足此方程.如果点M 不在圆锥面上,那么直线OM 与z 轴的夹角就不等于α,于是点M 的坐标就不满足此方程.三、柱面给定一曲线C 和一定直线L (L 不在曲线C 所在的平面内),如果一动直线平行于定直线L 并沿着曲线C 平行移动所生成的曲面叫做柱面,其中,曲线C 叫做柱面的准线,动直线叫做柱面的母线.下面仅讨论母线平行于坐标轴的柱面.设准线C 为xOy 面内的一条曲线,其方程为(,)0F x y =,沿C 作母线平行于z 轴的柱面(图6-25).在柱面上任取一点(,,)M x y z ,过M 点作一条与z 轴平行的直线,则该直线与xOy 平面的交点为0(,,0)M x y ,由于0M 在准线C 上,所以有(,)0F x y =.即M 点的坐标应满足方程 (,)0F x y =. 反之,如果空间一点000(,,)M x y z 满足方程(,)0F x y =,即00(,)0F x y =,则000(,,)M x y z 必在过准线C 上一点00(,)x y 而平行于z 轴的直线上,于是点000(,,)M x y z 必在柱面上.所以,方程(,)0F x y =在空间就表示母线平行于z 轴的柱面.例如方程222x y R +=表示母线平行于z 轴,准线是xOy 平面上以原点为圆心、以R 为半径的圆的柱面(图6-26),称其为圆柱面,类似地,曲面222x z R +=、222y z R +=都表示圆柱面.方程22y x =表示母线平行于z 轴,以xOy 坐标面上的抛物线22y x =为准线的柱面,该柱面叫做抛物柱面(图6-27).一般地,只含,x y 而缺z 的方程(,)0F x y =,在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy 面上的曲线C :(,)0F x y =.类似地,只含,x z 而缺y 的方程(,)0G x z =和只含,y z 而缺x 的方程(,)0=H y z 分别表示母线平行于y 轴和x 轴的柱面.223图6-29例如,方程0-=x z 表示母线平行于y 轴的柱面,其准线是xOz 面上的直线0-=x z ,所以它是过y 轴的平面.四、二次曲面与平面解析几何中介绍的二次曲线相类似,我们把三元二次方程所表示的曲面叫做二次曲面.把平面叫做一次曲面.怎样了解三元方程(,,)0F x y z =所表示的曲面的形状呢? 方法之一是用坐标面和平行于坐标面的平面与曲面相交,考察其交线的形状,然后加以综合,从而了解曲面的形状.这种方法叫做截痕法.另外一种常见的方法是所谓的伸缩变形的方法,即通过把空间图形伸缩变形形成新的曲面的方法:设S 是一个曲面,其方程为(,,)0F x y z =,S '是将曲面S 沿x 轴方向伸缩λ倍所得的曲面,显然,若(,,)x y z S ∈,则(,,)x y z S λ'∈;若(,,)x y z S '∈,则1,,x y z S λ⎛⎫∈ ⎪⎝⎭.因此,对于任意的(,,)x y z S '∈,有1,,0λ⎛⎫= ⎪⎝⎭F x y z ,即1,,0F x y z λ⎛⎫= ⎪⎝⎭是曲面S '的方程.下面我们来介绍几种典型的二次曲面.1.椭圆锥面由方程22222x y z a b+=所表示的曲面称为椭圆锥面(图6-28).我们先用截痕法来讨论其图形.以垂直于z 轴的平面z t =截此曲面,当0t =时得一点(0,0,0);当0t ≠时,得平面z t =上的椭圆1)()(2222=+bt y at x .当t 变化时, 上式表示一族长短轴比例不变的椭圆,当||t 从大到小并变为0时,这族椭圆从大到小并缩为一点.综合上述讨论,可得椭圆锥面. 另外,我们也可以用伸缩变形的方法来讨论其图形.把圆锥面2222x y a z +=沿y 轴方向伸缩a b倍,也可得到椭圆锥面的方程为2222()a x y a z b +=,即 22222x yz a b+=.2.椭球面由方程2222221x y z a b c++=所表示的曲面称为椭球面(图6-29).把xOz 面上的椭圆22221x z a c +=绕z 轴旋转一周所得的曲面称 为旋转椭球面,其方程为222221x y z=a c ++,再把旋转椭球面沿y 轴 方向伸缩a b 倍,便得椭球面2222221x y z a b c++=.另外,把球面2222x y z a ++=沿z 轴方向伸缩a c 倍,得旋转椭球面222221x y z a c++=,再沿y 轴方向伸缩a b倍,也可得椭球面2222221x y z a bc++=.。
向量代数和空间解析几何向量代数和空间解析几何是数学中非常重要的概念,既可以处理经典几何问题,又可以用于表达数学模型。
它们在科学技术、计算机图形学、矩阵计算等方面都有着广泛的应用。
向量代数是计算机科学家和数学家在处理空间问题时最常使用的方法。
它利用向量来描述空间中的点、直线和平面。
向量代数可以用来计算空间的大小、形状、方向、坐标变换等概念。
向量代数涉及的内容主要有线性代数系统、矩阵运算、向量空间等。
它在科技计算机图形学、建模和科学仿真中被广泛使用。
空间解析几何是在几何学中一类研究空间几何结构的重要分支学科。
它被广泛应用于工程、机械、制图学等方面,是解决建筑、室内装潢、雕塑、建筑园林设计、制图学等问题的基础学科。
主要内容有平面几何和立体几何,包括平面的直线、圆弧、多边形等,立体的点、直线、面等概念。
空间解析几何主要用来解决解空间几何图形的问题,是几何学中一类重要的问题。
向量代数和空间解析几何之间有着千丝万缕的联系,它们都是分析和处理空间几何图形的重要工具。
向量代数主要用来解决空间的大小、形状、方向等问题,而空间解析几何则主要用于处理空间中的点、直线和平面等结构。
它们的结合可以清楚的表示空间的量化和定义,是建立数学模型的基础和工具。
向量代数和空间解析几何在科技、计算机图形学、建模和科学仿真方面都有着广泛的应用。
它们可以帮助我们更准确地表示和分析空间问题,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。
综上所述,向量代数和空间解析几何是数学中重要的概念,可以在科学技术、计算机图形学、矩阵计算等方面得到广泛应用,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。
它们的结合可以更为清楚地表示和分析空间几何图形,为建立数学模型提供基础。
空间解析几何与向量代数向量及其运算目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算;重点与难点重点:向量的概念及向量的运算。
难点:运算法则的掌握过程:一、向量既有大小又有方向的量称作向量通常用一条有向线段来表示向量,有向线段的长度表示向量的大小.有向线段的方向表示向量的方向•向量的表示方法有两种:a、AB向量的模:向量的大小叫做向量的模,向量a、AB的模分别记为|a'|、|AB| .单位向量:模等于1的向量叫做单位向量.零向量:模等于0的向量叫做零向量.记作0规定:0方向可以看作是任意的,相等向量:方向相同大小相等的向量称为相等向量平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反.就称这两个向量平行记作a // b规定:零向量与任何向量都平行,二、向量运算向量的加法向量的加法:设有两个向量a与b.平移向量使b的起点与a的终点重合.此时从a 的起点到b的终点的向量c称为向量a与b的和.记作a+b .即c=a+b .当向量a与b不平行时.平移向量使a与b的起点重合.以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和a b向量的减法:设有两个向量a与b .平移向量使b的起点与a的起点重合.此时连接两向量终点且指向被减数的向量就是差向量。
T T T T TAB =AO OB =0B -CA .2、向量与数的乘法向量与数的乘法的定义:向量a与实数,的乘积记作 a .规定■ a是一个向量.它的模它的方向当■ >0时与a相同.当■ <0时与a相反,(1) 结合律,(七)=±a)=C;L)a ;(2) 分配律(kj a = 'a;'(a b) =■ a …b例1在平行四边形ABCD中.设AB =a . AD二b试用a和b表示向量MA’、MB’、MC‘、MD .其中M是平行四边形对角线的交点----- ■> ----- i ---- i A解:a 〜b = AC = 2 AM 于是MA = (a 亠b),因为MC —MA” .所以MC =1(a b).又因 T b = BD =2 MD .所以MD =2(b_a).由于MB =—MD“ .所以MB‘=2(a—b).定理1设向量a式0.那么.向量b平行于a的充分必要条件是:存在唯一的实数,.使b二,a,三、空间直角坐标系过空间一个点O,作三条互相垂直的数轴,它们都以O为原点。
空间解析几何与向量代数》知识点、公式总结空间解析几何与向量代数是数学中非常重要的分支,它们在物理、工程、计算机科学等领域得到了广泛的应用。
以下是一些知识点和公式的总结:一、向量的数量积与向量积1. 向量的数量积:两个向量 a 和 b 的数量积 (也叫数量积或点积) 定义为一个新的向量,记作 a·b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a·b)·c=a·(b·c)。
2. 向量积:两个向量 a 和 b 的向量积 (也叫向量积或叉积)定义为一个新的向量,记作 a×b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a×b)·c=a·(b×c)。
二、向量的混合积1. 向量的混合积:三个向量的混合积 (也叫叉积) 定义为一个新的向量,记作 (ab)c,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 d,(ab)c·d=a·(b·c)d。
2. 向量共面的条件:三个向量 a、b、c 共面的条件是它们对应的三条法向量共面。
三、空间平面及其方程1. 空间平面的方程:空间中两个不共线的平面的方程分别为Px+My+Nz=C 和 Px+My+Nz=D,其中 P、M、N 为平面上的任意三个点,C 和D 为已知常数。
2. 平面的点法式方程:设 M(x0,y0,z0) 为平面上的已知点,n(A,B,C) 为法向量,M(x,y,z) 为平面上的任一点,则平面的点法式方程为 A(x-x0)B(y-y0)C(z-z0)=0。
四、空间直线及其方程1. 空间直线的方程:空间中一条直线的方程为 x+My+Nz=C,其中 P、M、N 为直线上的任意三个点,C 为已知常数。
2. 空间直线的参数方程:空间中一条直线的参数方程为x=f(t),y=g(t),z=h(t),其中 t 为参数,f、g、h 分别为直线上的点的 x、y、z 坐标。
高等数学向量代数与空间解析几何总结高等数学是大学数学学科的一门重要基础课程,其中向量代数与空间解析几何是其重要的内容之一、本文将对向量代数与空间解析几何的主要内容进行总结,让我们一起来了解一下吧!向量代数是研究向量的代数性质和运算法则的数学分支,旨在通过研究向量的各种运算进行分析与求解问题。
空间解析几何则是研究点、线、面等几何对象在三维空间中的位置关系和几何性质的学科。
首先,我们先来了解一下向量代数的基本概念和运算法则。
在向量代数中,向量是具有大小和方向的量,通常用一个有向线段表示。
向量的加法是指两个向量相加,得到一个新的向量,其结果是由两个向量的平行四边形法则确定的。
向量的乘法有数量乘法和点乘法两种形式。
数量乘法是指数与向量相乘,得到一个新的向量,其长度与原向量的长度相乘,方向与原向量相同或相反。
点乘法是指两个向量进行点乘,得到一个实数结果,其大小等于两个向量的长度相乘再乘以它们的夹角的余弦值,方向与夹角为锐角的原向量相同,为钝角时与原向量相反。
向量代数的运算法则包括交换律、结合律和分配律。
接下来,我们来了解一下空间解析几何的基本内容。
空间解析几何主要研究三维空间中的点、直线和平面的位置关系和几何性质。
其中,点是空间中没有大小、没有方向的对象,用坐标表示。
直线是由无数个点组成的无限延伸的几何对象,可以通过两点确定一条直线,也可以通过点和方向向量确定一条直线。
平面是由无数个点组成的无限延伸的几何对象,可以通过三个点确定一个平面,也可以通过点和法向量确定一个平面。
空间解析几何要求我们掌握点与点之间的距离、点与直线之间的关系、直线与直线之间的关系、点与平面之间的关系、直线与平面之间的关系等内容。
对于这些关系,我们可以通过向量的性质和运算进行解决。
在向量代数与空间解析几何中,还有一些重要的概念与定理需要了解。
例如,向量的模长是指向量的长度,可以通过向量的坐标和勾股定理求得。
向量的单位向量是指长度为1的向量,可以通过将向量的坐标除以其模长得到。
第六章向量代数与空间解析几何习题 6-11、在平行四边形ABCD中, 设=a, =b. 试用a和b表示向量、、、, 其中M是平行四边形对角线的交点.解:由于平行四边形的对角线互相平分, 所以a+b, 即 -(a+b), 于是 (a+b).因为, 所以(a+b). 又因-a+b, 所以(b-a).由于, 所以(a-b).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: ,,与平行且相等, 结论得证.3、求起点为,终点为的向量与的坐标表达式.解:==, =4、求平行于={1,1,1}的单位向量.解:与平行的单位向量为.5、在空间直角坐标系中,指出下列各点在哪个卦限?解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、求点与轴,平面及原点的对称点坐标.解:关于轴的对称点为,关于平面的对称点为,关于原点的对称点为.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标).解:分别为.8、过点分别作平行于z轴的直线和平行于xOy面的平面,问它们上面的点的坐标各有什么特点?解:平行于z轴的直线上面的点的坐标:;平行于xOy面的平面上的点的坐标为 .9、求点P(2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为,到x轴的距离为,到y轴的距离为,到z轴的距离为.10、求证以、、三点为顶点的三角形是一个等腰三角形.解:,,即,因此结论成立.11、在yoz坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标.解:设yoz坐标面所求点为,依题意有,从而,联立解得,故所求点的坐标为.12、 z轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点.解:设所求z轴上的点为,依题意:,两边平方得,故所求点为.13、求使向量与向量平行.解:由得得.14、求与轴反向,模为10的向量的坐标表达式.解: ==.15、求与向量={1,5,6}平行,模为10的向量的坐标表达式.解:,故 .16、已知向量,,试求:(1);(2).解:(1) ;(2).17、已知两点和,求向量的模、方向余弦和方向角.解:因为, 所以,,从而,,.18、设向量的方向角为、、.若已知其中的两个角为,.求第三个角.解: ,,由得.故或.19、已知三点,,,求:(1)与及其模;(2)的方向余弦、方向角;(3)与同向的单位向量.解:(1)由题意知故 .(2)因为所以,由向量的方向余弦的坐标表示式得:,方向角为:.(3)与同向的单位向量为:.20、设在x轴上的投影和在y轴上的分向量.解:.故向量在x 轴上的投影,在y轴上的投影分量为.21、一向量的终点为点B(-2,1,-4),它在x轴,y轴和z轴上的投影依次为3,-3和8,求这向量起点A的坐标.解:设点A为(x, y, z),依题意有:,故,即所求的点A(-5, 4,-12).22、已知向量的两个方向余弦为cos= ,cos=, 且与z轴的方向角是钝角.求cos.解:因,又是钝角,所以.23、设三力作用于同一质点,求合力的大小和方向角.解:合力,因此,合力的大小为合力的方向余弦为因此习题 6-21、,,,求,,,及,,,.解:依题意,,,,故,,.,,,.2、,求及 .与的夹角余弦.解:(1), ..3、已知,求解:,∴ .4、证明下列问题:1)证明向量与向量垂直.2)证明向量与向量垂直.证:1),,即与垂直.2) .5、求点的向径与坐标轴之间的夹角.解:设与、、轴之间的夹角分别为,则,, . , , .6、求与平行且满足的向量.解:因, 故可设,再由得,即,从而.7、求与向量,都垂直的单位向量.解:,8、在顶点为、和的三角形中,求三角形的面积以及边上的高.解:,三角形的面积为9、已知向量,,证明.解10、证明:如果,那么,并说明它的几何意义.证:由, 有, 但,于是,所以.同理由, 有 ,从而 .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、已知向量和,计算下列各式:(1)(2)(3)(4)解:(1).(2) ,故.(3).(4)由(3)知.习题 6-31、已知,,求线段的垂直平分面的方程.解:设是所求平面上任一点,据题意有化简得所求方程.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、一动点移动时,与及平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点,所求的轨迹为,则亦即从而所求的轨迹方程为.3、求下列各球面的方程:(1)圆心,半径为;(2)圆心在原点,且经过点;(3)一条直径的两端点是;(4)通过原点与解:(1)所求的球面方程为:(2)由已知,半径,所以球面方程为(3)由已知,球面的球心坐标,球的半径,所以球面方程为:(4)设所求的球面方程为:因该球面经过点,所以解之得所求的球面方程为.4、将坐标面上的抛物线绕旋转一周,求所生成的旋转曲面的方程.解:(旋转抛物面) .5、将坐标面上的双曲线分别绕轴和轴旋转一周,求所生成的旋转曲面的方程.解:绕轴旋转得绕轴旋转得.6、指出下列曲面的名称,并作图:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10).解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形?(1);(2);(3);(4).解:(1)在平面解析几何中表示直线,在空间解析几何中表示平面;(2)在平面解析几何中表示圆周,在空间解析几何中表示圆柱面;(3)在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、说明下列旋转曲面是怎样形成的?(1);(2)(3);(4)解:(1)平面上椭圆绕轴旋转而成;或者平面上椭圆绕轴旋转而成(2)平面上的双曲线绕轴旋转而成;或者平面上的双曲线绕轴旋转而成(3)平面上的双曲线绕轴旋转而成;或者平面上的双曲线绕轴旋转而成(4)平面上的直线绕轴旋转而成或者平面上的直线绕轴旋转而成.9、画出下列各曲面所围立体的图形:(1)与三个坐标平面所围成;(2)及三坐标平面所围成;(3)及在第一卦限所围成;(4)所围.解:(1)平面与三个坐标平面围成一个在第一卦限的四面体;(2)抛物柱面与平面及三坐标平面所围成;(3)坐标面、及平面、和圆柱面在第一卦限所围成;(4)开口向上的旋转抛物面与开口向下的抛物面所围.作图略.习题 6-41、画出下列曲线在第一卦限内的图形(1);(2);(3)解:(1)是平面与相交所得的一条直线;(2)上半球面与平面的交线为圆弧;(3)圆柱面与的交线.图形略.2、分别求母线平行于轴及轴而且通过曲线的柱面方程.解:消去坐标得,为母线平行于轴的柱面;消去坐标得:,为母线平行于轴的柱面.3、求在平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:;; .4、试求平面与椭球面相交所得椭圆的半轴与顶点.解:将椭圆方程化简为:,可知其为平面上的椭圆,半轴分别为,顶点分别为.5 、将下面曲线的一般方程化为参数方程(1);(2)解:(1)原曲线方程即:,化为;(2).6、求螺旋线在三个坐标面上的投影曲线的直角坐标方程.解:;;.7、指出下列方程所表示的曲线(1)(2);(3);(4);(5).解:(1)圆;(2)椭圆;(3)双曲线;(4)抛物线;(5)双曲线.8、求曲线在面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:,是位于平面上的抛物线,在面上的投影曲线为9、求曲线在坐标面上的投影.解:(1)消去变量后得在面上的投影为它是中心在原点,半径为的圆周.(2)因为曲线在平面上,所以在面上的投影为线段.(3)同理在面上的投影也为线段.10、求抛物面与平面的交线在三个坐标面上的投影曲线方程.解:交线方程为,(1)消去得投影(2)消去得投影,(3)消去得投影.习题 6-51、写出过点且以为法向量的平面方程.解:平面的点法式方程为.2、求过三点的平面方程.解:设所求平面方程为,将的坐标代入方程,可得,故所求平面方程为.3、求过点且与平面平行的平面方程.解:依题意可取所求平面的法向量为,从而其方程为即 .4、求通过x轴和点(4, -3, -1)的平面的方程.解:平面通过x轴, 一方面表明它的法线向量垂直于x轴, ??即A=0; 另一方面表明?它必通过原点, 即D=0. 因此可设这平面的方程为By+Cz=0.又因为这平面通过点(4, -3, -1), 所以有-3B-C=0, 或C=-3B . 将其代入所设方程并除以B (B?0), 便得所求的平面方程为y-3z=0.5、求过点,且垂直于平面和的平面方程.解:取法向量所求平面方程为化简得:6、6 设平面过原点及点,且与平面垂直,求此平面方程.解:设所求解设平面为由平面过点知平由平面过原点知,,所求平面方程为7、写出下列平面方程:(1)平面;(2)过轴的平面;(3)平行于的平面;(4)在,,轴上的截距相等的平面.解:(1),(2)(为不等于零的常数),(3) (为常数), (4) .8、求平行于而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为由所求平面与已知平面平行得化简得令代入体积式或所求平面方程为或.9、分别在下列条件下确定的值:(1)使和表示同一平面;(2)使与表示二平行平面;(3)使与表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:即:,解之得,,.(2)欲使所给的二方程表示二平行平面,则:,所以,.(3)欲使所给的二方程表示二垂直平面,则:所以: .10 、求平面与的夹角;解:设与的夹角为,则 .11、求点到平面的距离.解:利用点到平面的距离公式可得.习题 6-61、求下列各直线的方程:(1)通过点和点的直线;(2)过点且与直线平行的直线.(3)通过点且与三轴分别成的直线;(4)一直线过点,且和轴垂直相交,求其方程.(5)通过点且与两直线和垂直的直线;(6)通过点且与平面垂直的直线.解:(1)所求的直线方程为:即:,亦即.(2)依题意,可取的方向向量为,则直线的方程为.(3)所求直线的方向向量为:,故直线方程为:.(4)因为直线和轴垂直相交, 所以交点为取所求直线方程(5)所求直线的方向向量为:,所以,直线方程为:.(6)所求直线的方向向量为:,所以直线方程为: .2、求直线的点向式方程与参数方程.解在直线上任取一点,取解.所求点的坐标为,取直线的方向向量,所以直线的点向式方程为:令则所求参数方程:3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)与;(2)与.解:(1)将所给的直线方程化为标准式为:二直线平行.又点与点(7,2,0)在二直线上,向量平行于二直线所确定的平面,该平面的法向量为:,从而平面方程为:,即 .(2)因为,所以两直线不平行,又因为,所以两直线相交,二直线所决定的平面的法向量为,二直线所决定的平面的方程为:.设两直线的夹角为,则.4、判别下列直线与平面的相关位置:(1)与;(2)与;(3)与;(4)与.解(1),而,所以,直线与平面平行.(2),所以,直线与平面相交,且因为,直线与平面垂直.(3)直线的方向向量为:,,所以直线与平面平行或者直线在平面上;取直线上的点,显然点在也在平面上(因为),所以,直线在平面上.(4)直线的方向向量为,直线与平面相交但不垂直.5、验证直线:与平面:相交,并求出它的交点和交角.解:直线与平面相交.又直线的参数方程为:设交点处对应的参数为,,从而交点为(1,0,-1).又设直线与平面的交角为,则:,.6、确定的值,使:(1)直线与平面平行;(2)直线与平面垂直.解:(1)欲使所给直线与平面平行,则须:即.(2)欲使所给直线与平面垂直,则须:,所以:.7、求下列各平面的方程:(1)通过点,且又通过直线的平面;(2)通过直线且与直线平行的平面;(3)通过直线且与平面垂直的平面;(4). 求过点与直线垂直的平面方程.解:(1)因为所求的平面过点和,且它平行于向量,所以要求的平面方程为:, 即. (2)已知直线的方向向量为,平面方程为:,即(3)所求平面的法向量为,平面的方程为:,即.(4).所求平面的法向量为,则平面的方程为:, 即 .8、求点在平面上的投影.解:过点作已知平面的垂线,垂线的方向向量就是已知平面的法向量,所以垂线方程为,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程,代入平面方程求得,故投影为.9、求点到直线的距离.解:直线的标准方程为:所以p到直线的距离.10、设是直线外一点,是直线上一点,且直线的方向向量为,试证:点到直线的距离为.证:设与的夹角为,一方面由于;另一方面,,所以.11、求通过平面和的交线且满足下列条件之一的平面:(1)通过原点;(2)与轴平行;(3)与平面垂直.解:(1)设所求的平面为:欲使平面通过原点,则须:,即,故所求的平面方程为即:.(2)同(1)中所设,可求出.故所求的平面方程为即:.(3)如(1)所设,欲使所求平面与平面垂直,则须:从而,所以所求平面方程为.12、求直线在平面上的投影直线的方程.解:应用平面束的方法.设过直线的平面束方程为即这平面与已知平面垂直的条件是,解之得代入平面束方程中得投影平面方程为,所以投影直线为.13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设是平面:外的一点,下面我们来求点到平面的距离.过作平面的垂线:,设与平面的交点为,则与之间的距离即为所求.因为点在上,所以,而在平面上,则,故.习题 6-7飞机的速度:假设空气以每小时32公里的速度沿平行轴正向的方向流动,一架飞机在平面沿与轴正向成的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设为飞机相对于空气的速度,为空气的流动速度,那么就是飞机相对于地面的速度.所以, 千米/小时.复习题A一、判断正误:1、若且,则; ( )解析 ==0时,不能判定或.例如,,,有,但.2、若且,则; ( )解析此结论不一定成立.例如,,,则,,,但.3 、若,则或; ( )解析两个相互垂直的非零向量点积也为零.4、. ( √ )解析这是叉积运算规律中的反交换律.二、选择题:1 、当与满足( D )时,有;; (为常数);∥;.解析只有当与方向相同时,才有.(A)中,夹角不为0,(B),(C)中,方向可以相同,也可以相反.2、下列平面方程中,方程( C )过轴;(A) ; (B) ; (C) ; (D) .解析平面方程若过轴,则,故选C.3 、在空间直角坐标系中,方程所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析对于曲面,垂直于轴的平面截曲面是椭圆,垂直于轴或轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线在面上的投影方程为( C );(A); (B); (C) ;(D)解析曲线与平面平行,在面上的投影方程为.5 、直线与平面的位置关系是( B ).(A) 垂直; (B) 平行; (C) 夹角为; (D) 夹角为.解析直线的方向向量={2,1,-1},平面的法向量={1,-1,1},=2-1-1=0,所以,⊥,直线与平面平行.三、填空题:1、若,,则, 0 ;解 ==,==0.2、与平面垂直的单位向量为;解平面的法向量 ={1,-1,2}与平面垂直,其单位向量为==,所以,与平面垂直的单位向量为.3、过点和且平行于轴的平面方程为;解已知平面平行于轴,则平面方程可设为,将点 (-3,1,-2)和(3,0,5)代入方程,有得,即.4、过原点且垂直于平面的直线为;解直线与平面垂直,则与平面的法向量 ={0,2,-1}平行,取直线方向向量=={0,2,-1},由于直线过原点,所以直线方程为.5、曲线在平面上的投影曲线方程为解: 投影柱面为,故为空间曲线在平面上的投影曲线方程.四、解答题:1、已知,,计算(a) ; (b) ; (c) ;解: (a) =.(b) ,,所以.(c) ,所以.2、已知向量的始点为,终点为,试求:(1)向量的坐标表示; (2)向量的模;(3)向量的方向余弦; (4)与向量方向一致的单位向量.解: (1) ;(2);(3) 在三个坐标轴上的方向余弦分别为;(4).3、设向量,,求与和都垂直的单位向量.解:令,,故与、都垂直的单位向量为.4、向量垂直于向量和,且与的数量积为,求向量解:垂直于与,故平行于,存在数使因,故, .5、求满足下列条件的平面方程:(1)过三点,和;(2)过轴且与平面的夹角为.解 (1)解1:用三点式.所求平面的方程为,即.解2:用点法式.,,由题设知,所求平面的法向量为,又因为平面过点,所以所求平面方程为,即.解3:用下面的方法求出所求平面的法向量,再根据点法式公式写出平面方程也可.因为,所以解得,于是所求平面方程为,即.(2)因所求平面过轴,故该平面的法向量垂直于轴,在轴上的投影,又平面过原点,所以可设它的方程为,由题设可知(因为时,所求平面方程为又,即.这样它与已知平面所夹锐角的余弦为,所以),令,则有,由题设得,解得或,于是所求平面方程为或.6、一平面过直线且与平面垂直,求该平面方程;解法1:直线在平面上,令=0,得,=4,则(0,-,4)为平面上的点.设所求平面的法向量为=,相交得到直线的两平面方程的法向量分别为 ={1,5,1},={1,0,-1},则直线的方向向量==={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即={-5,2,-5}?==0,因为所求平面与平面垂直,则==0,解方程组所求平面方程为,即.解法2:用平面束(略)7、求既与两平面和的交线平行,又过点的直线方程.解法1:,,,从而根据点向式方程,所求直线方程为,即.解法2:设,因为,所以;又,则,可解,从而.根据点向式方程,所求直线方程为,即.解法3:设平面过点,且平行于平面,则为的法向量,从而的方程为,即.同理,过已知点且平行于平面的平面的方程为.故所求直线的方程为.8、一直线通过点,且垂直于直线,又和直线相交,求该直线方程;解:设所求直线的方向向量为,因垂直于,所以;又因为直线过点,则所求直线方程为,联立由①,令,则有代入方程②有可得,代入③解得,因此,所求直线方程为.9、指出下列方程表示的图形名称:(a) ;(b) ;(c) ;(d) ;(e) ; (f) .解: (a) 绕轴旋转的旋转椭球面.(b) 绕z轴旋转的旋转抛物面. (c) 绕轴旋转的锥面.(d) 母线平行于轴的两垂直平面:,. (e) 母线平行于轴的双曲柱面.(f) 旋转抛物面被平行于面的平面所截得到的圆,半径为,圆心在(0,0,2)处.10、求曲面与所围立体在平面上的投影并作其图形.解:将所给曲面方程联立消去,就得到两曲面交线的投影柱面的方程,所以柱面与平面的交线所围成的区域即为曲面与所围立体在平面上的投影(图略).复习题B1、设,,,求以和为邻边的平行四边形的面积.解:.2、设,,求.解:由已知可得:,即,.这可看成是含三个变量、及的方程组,可将、都用表示,即,从而,.3、求与共线,且的向量.解由于与共线,所以可设,由,得,即,所以,从而.4、已知,求,使且.解法1: 待定系数法.设,则由题设知及,所以有由①得④,由②得⑤,将④和⑤代入③得,解得,于是或.解法2: 利用向量的垂直平行条件,因为,所以∥.设是不为零的常数,则,因为,所以,解得,所以或.解法3: 先求出与向量方向一致的单位向量,然后乘以.,,故与方向一致的单位向量为.于是,即或.5、求曲线的参数式方程.解:曲线参数式方程是把曲线上任一点的坐标都用同一变量即参数表示出来,故可令,则.6、求曲线在面上及在面上的投影曲线的方程.解:求在面上的投影的方程,即由的两个方程将消去,即得关于面的投影柱面的方程则在面上的投影曲线的方程为.同理求在面上的投影的方程,即由的两个方程消去,得关于面的投影柱面的方程,则在面上的投影曲线方程为.7、已知平面过点和直线,求平面的方程.解法1:设平面的法向量为,直线的方向向量,由题意可知,是直线上的一点,则在上,所以,故可取.则所求平面的点法式方程为,即为所求平面方程.解法2:设平面的一般方程为,由题意可知,过点,故有, (1)在直线上任取两点,将其代入平面方程,得, (2), (3)由式(1)、(2)、(3)解得,故平面的方程为.解法3:设为上任一点.由题意知向量、和共面,其中为直线上的点,为直线的方向向量.因此,故平面的方程为,即为所求平面方程.8、求一过原点的平面,使它与平面成角,且垂直于平面.解:由题意可设的方程为,其法向量为,平面的法向量为,平面的法向量为,由题意得,即(1)由,得,将代入(1)式得,解得或,则所求平面的方程为或.9、求过直线:且平行于直线:的平面的方程.解法1:直线的方向向量为,直线的对称式方程为,方向向量为,依题意所求平面的法向量且,故可取,则,又因为过原点,且在平面上,从而也过原点,故所求平面的方程为.解法2:设所求平面为,即,其法向量为,由题意知,故,得,则所求平面的方程为.另外,容易验证不是所求的平面方程.10、求过直线:且与球面相切的平面方程解:设所求平面为,即,由题意:球心到它的距离为1,即解得:或所求平面为:或11、求直线:在平面:上投影直线的方程,并求直线绕轴旋转一周而成的曲面方程.解:将直线:化为一般方程,设过直线且与平面垂直的平面方程为,则有,即,平面方程为,这样直线的方程把此方程化为:,因此直线绕轴旋转一周而成的曲面方程为:即 .12、求过点且平行于平面:,又与直线相交的直线L的方程.解法1:用点向式方程.因为直线L平行于平面,故直线的方向向量垂直于平面的法向量,从而得①,又直线的方向向量为,是直线上一点,是直线上一点,根据题设:直线与直线相交,所以及共面,因此,即②,将①和②联立解得,由此得,于是所求直线方程为.解法2:用一般式,即先求出过的两个平面,将其方程联立便得的方程.直线在过点且平行于平面的平面上,平面的方程为,即,直线又在过点及直线的平面上,平面的法向量可取为,故平面的方程为,即,于是所求直线方程为13、求直线:与直线:的公垂线的方程解:的方向向量而的方向向量于是公垂线的方向向量,过与的平面的法向量.也可取法向量,以代入方程,可得上的点,于是平面方程,即再求与的交点,的参数方程为,,,代入上述平面方程,得:,,再代回的参数方程得,,,于是,兼顾公垂线的方向向量,于是可产生公垂线的方程为.14、求点到直线:的距离.解法1:直线的方向向量为,在上任取一点,则,,故,又,解法2:将直线的方程由一般式化为标准式得,故过点与直线垂直的平面的方程为,即,直线的参数式方程为:,,,将上式代入平面的方程,得:,解得:,所以直线的交点为2,于是点到直线的距离为.15.求两直线:与:之间的最短距离解法1:过作平面,过的平面方程为,即,要此平面平行于,则此法向量须垂直于,即,而,则,解得:,从而平面的方程为,容易得到直线上一点,点到平面的距离为即为与之间的距离.解法2:容易得到直线上的一点,直线上的一点,于是,可求得直线与直线的方向向量分别为,,两直线公垂线的方向向量为,直线与之间的距离为.第六章向量代数与空间解析几何习题详解1。
空间解析几何与向量代数知识点总结
以下是空间解析几何与向量代数的一些重要知识点总结:
1.三维坐标系:空间解析几何中,我们使用三维坐标系来描述点的位置。
常见的三维坐标系有直角坐标系和球坐标系。
2.点、向量和直线:点是空间中的一个位置,向量是由起点和终点确定的有方向的线段。
直线是空间中一组满足某种几何性质的点的集合。
3.向量的表示和运算:向量可以用坐标表示,常见的表示方法有行向量和列向量。
向量的运算包括加法、减法、数量乘法、点乘和叉乘等。
4.向量的长度和方向:向量的长度可以用模长表示,方向可以用单位向量表示。
单位向量是长度为1的向量,可以通过将向量除以其模长得到。
5.平面和曲面:平面是空间中一组满足某种几何性质的点的集合,可以用法向量和一个过点的向量表示。
曲面是空间中一组满足某种几何性质的点的集合。
6.点到直线和点到平面的距离:点到直线的距离可以通过求取点到直线的垂直距离得到,点到平面的距离可以通过求取点到平面的垂直距离得到。
7.向量的线性相关性和线性独立性:向量的线性相关性表示向量之间存在线性关系,线性独立性表示向量之间不存在线性关系。
8.平面的交线和平面的夹角:两个平面的交线是同时在两个平面上的点的集合,平面的夹角是两个平面的法向量之间的夹角。
9.点积和叉积的应用:点积可以用来计算向量的夹角和投影,叉积可以用来计算向量的长度、面积和法向量。
10.直线和平面的方程:直线可以用参数方程和对称方程表示,平面可以用点法式方程和一般式方程表示。