有理数的意义
- 格式:doc
- 大小:175.50 KB
- 文档页数:8
第一节有理数的意义月 日 姓 名【知识要点】1.有理数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0)1( (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0 2.数轴:规定了原点、正方向和单位长度的直线叫数轴,数轴上右边的数大于左边的数. 3.相反数(1)代数意义:像3与-3这样只有符号不同的两个数,把其中一个叫做另一个的相反数,0的相反数是0.(2)几何意义:在数轴上原点的两旁,并且到原点的距离相等.(3)求一个数的相反数就是在这个数前添一个负号,如a 的相反数是-a . (4)a 与b 互为相反数等价于0=+b a4.绝对值:数轴上,一个数a 所对应的点与原点的距离为该数的绝对值,记作a .任何一个数的绝对值都是非负数,即0≥a .【典型例题】例1.把下列各数填入它所属的集合.-1、 -2、 0、 +3.4、 32-、 311、 5%、 。
.30-、 -(-4)自然数集:{ }负整数集:{ } 分数集: { } 正数集: { } 整数集: { } 有理数集:{ }例2.用数轴把下列各数表示出来,并用“〈”连接下列各数 -,43 1, 1.7, ,35- -0.04, ,54- 0.01, ,43 0例3.有一座三层楼房不幸起火,一位消防员搭梯子爬往三楼去抢救物品,当他爬到梯子正中间一级时,二楼的窗口喷出火来,他就往下退了三级,等到火过去了,他又爬上了七级;这时顶层有两块砖掉下来,他又退了二级;幸好没有打着他,他又爬上八级,这时他距离最高一层还有一级,问这个梯子有几级?例4.如图在数轴上有六个点,且AB=BC=CD=DE=EF ,求与点C 所表示的最接近的整数.例5.①已知()0342322=++-b b a ,则=a ,=b .②若1999-a 与2000+b 的互为相反数,则()3b a += .例6. 已知2-ab 与1-b 互为相反数,设法求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab思考:三个互不相等的有理数,既可以表示为1,,a b a +的形式,也可以表示为0,,bb a的形式,试求20082008ab +的值。
有理数单元教学目标1了解有理数的意义。
会用正数与负数表示相反意义的量,会按要求把给出的有理数归类。
2了解数轴、相反数、绝对值的概念。
会画数轴,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。
3掌握有理数大小比较的法则。
会用不等号连接两上或两个以上不同的有理数。
单元教学重点1有理数(特别是负数)和绝对值的意义。
2数形结合的思想方法。
单元教学策略有理数是根据学生熟悉的实际需要,对小学学过的数的进一步护展。
对于本单元的学习,学生已有一定的知识基础和生活体验。
教学时教师应注意避免多讲,要从学生已有的知识和熟知的实例出发,引导学生认真阅读、思考、讨论,形成新的认知结构。
同时还要注意为后面的学习做好准备。
教学手段和方法1引导学生把学过的知识和熟悉的事例与新的学习内容联系起来2指导学生阅读、讨论、练习、总结。
3使用投影仪。
第1、2课时正数与负数一、学习目标1了解正数与负数是由于实际需要而产生的,会初步应用正负数表示实际生活中的有关量。
2了解有理数的概念,会判断一个数是正数还是负数,是整数还是分数。
二、教学过程师:同学们先回顾一下我们在小学学过哪些数(小学六年级就接触了负数)填空1在数物体时,物体的个数用 ___________________________ 示;一个物体也没有,就用_________________________ 示。
2测量和计算有时得不到整数的结果,就要用 ______________________________ 示。
3北京冬季里的一天,白天最高气温比0C高10C,记作10C ;夜晚最低气温比0C低5C,记作_______________________________________ 。
在中国地形图上,珠穆朗玛峰处标着8848,表示不打珠穆朗玛峰比海平面高8848米;叶鲁番盆地处标着-155,表示叶鲁番盆地比海平面低21 2 8848、-155,21师:在黑板上写出11、2、3、0、-5、21、1.5、-1、1.5、2请同学们认真观察教师写出的数,以四个小组为单位,讨论下面的问题1哪些数是我们在小学已经学过的?自然数包括0吗?2哪些数我们还没有学过?试说明它们都是在实际需要中产生的。
有理数的意义、数轴、绝对值第一部分:有理数1、正负数的概念:比0大的数是正数,比0小的数是负数。
“—”用正数和负数表示相反意义的量Ⅰ. 相反意义的量必须包含两个因素:1、它们的意义相反;2、它们都具有数量,而且一定是同类量。
Ⅱ.相反意义的量可以人为的规定其正负。
在实际生活中,习惯把零以上的温度、上升的高度、收入、买入物品等规定为正数,而把它们相反意义的量规定为负的,用负数表示。
2、对“0”的理解:0不在正、负数的范围内,它是正数和负数的分水岭。
它的意义非常特殊,它既可以表示无意义,也可以表示其他特殊的意义。
3、有理数的概念:整数和分数统称为有理数;正数、负数、零都是有理数。
4、有理数的分类:例1:(1)如果把收入50元记做50元,那么下列各数分别表示什么意义?20元 2.5元 -80元 0元(2)如果6摄氏度用6C︒表示,那么零下4摄氏度如何表示?例2:把13121271 2.80734%0.67247--、、、、、、、、、、、、、、-、、分别填在表示正数和负数的圈内。
正数负数巩固练习:1、如果规定向南走为正,那么﹣100米表示向________走100米。
2、某公司股票上周五的收盘价是27元,下表为本周内每日该股票的涨跌情况(上涨为正):由上表知,星期一收盘时,每股价格是元,星期四收盘时,每股价格是元。
3、下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是正数就是分数C.有理数是指整数、分数(正有理数、0、负有理数)D.以上说法都正确4、把下列各数填入相应的大括号内:-7,3.01,300%,-0.142,0.1,0,5/3,-355/113,12 (1)正整数集:{ };(2)分数集:{ } (3)负数集:{ };(4)非负整数集:{ }5、下列判断正确的是( )A.所有的整数都是正数B.正整数,负整数统称为整数C.分数一定是有理数D.有理数包括小数和整数6、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃ B.-6℃ C.6℃ D.10℃第二部分:数轴的再认识与相反数1、数轴的再认识(1)数轴的三要素:原点、正方向、长度单位。
数学中各种数的意义数学作为一门重要的学科,无论在理论研究还是实际应用中都起着至关重要的作用。
数学中有各种各样的数,每一种数都有着特定的意义和用途。
在本文中,我们将探讨数学中各种数的意义,以及它们在不同方面的应用。
一、自然数自然数是最基本的数,它从1开始,不断向上累加。
自然数用来表示计数和排列的概念。
在数学和其他学科中,自然数是基础,是其他数的基础。
自然数的概念也被广泛应用于日常生活中,例如计算年龄、人口统计等。
二、整数整数是包括自然数及其负数和零在内的数。
整数在数学中的应用非常广泛,例如在代数运算中,整数是最基本的计算单位,用来表示负数和正数的关系。
同时,整数也广泛应用于图形的坐标系中,用来表示位置的正负方向。
三、有理数有理数是可以表示为两个整数的比值的数。
有理数可以分为整数和分数两类。
有理数在数学中的应用非常广泛,例如在几何学中,有理数被用来表示长度、面积和体积等量的大小。
同时,在实际问题中,有理数也用于解决比例、利润和利率等计算。
四、无理数无理数是不能表示为有限小数或者分数的数。
无理数在数学中的重要性在于它们填补了有理数之间的空隙,并且展示了数学的无穷性。
无理数在几何学中经常使用,例如用来表示圆周率π和开方等问题。
五、实数实数是包括有理数和无理数的所有数。
实数在数学中具有重要的性质和应用,例如在数轴上实数可以表示长度和距离等概念。
实数也在微积分中被广泛应用,用于表示函数的定义域和值域。
六、复数复数是由实数和虚数构成的数。
复数在数学中的重要性在于它们在方程求解、电路分析和信号处理等领域的广泛应用。
复数也可以用来表示几何平面上的向量或点,丰富了数学的应用领域。
七、零零是一个特殊的数,它在数学中具有重要的意义。
零在数学中用于表示不存在、不存在关系或者是一种等量关系的中性元素。
零的概念在代数学中非常重要,在解方程、矩阵运算和数列求和等问题中应用广泛。
综上所述,数学中各种数都有着特定的意义和应用。
自然数、整数、有理数、无理数、实数、复数和零在不同的领域和学科中发挥着重要的作用。
第一部分有理数知识点梳理一、有理数的意义1、正数和负数知识点1 负数的引入正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6和零下等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
知识点2 正数和负数的概念(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3)零即不是正数也不是负数,零是正数和负数的分界。
注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5、也可以写作+3、+1.5、+。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。
知识点3 有理数的有关概念(1)有理数:整数和分数统称为有理数。
注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。
但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
(2)整数包括正整数、零、负整数。
例如:1、2、3、0、-1、-2、-3等等。
有理数的意义及运算有理数是数学中一个重要的概念,是在数轴上广泛应用的基本数类之一。
它们不只是简单的数字,还在我们生活的方方面面扮演着重要角色。
从日常的购物算账到工程设计,有理数都显得尤为重要。
有理数的定义是非常明确的。
一个数如果可以表示为两个整数之比(即在形式上为a/b,a和b是整数且b不为零),那么这个数就属于有理数的范畴。
比如,3(可以写成3/1)、-1/2、0都是有理数。
而平方根2、π等则不属于有理数,因为它们无法用整数字表示。
在我们的学习中,对有理数的理解不仅限于其定义。
还需掌握它们的性质和运算。
有理数的集合不仅包括正数和负数,还涵盖了零。
在数轴上,有理数通过分数和小数的方式表现出来,令其在实际问题中更易于使用。
有理数自身具备几个重要的性质。
有理数是稠密的,这意味着在任意两个有理数之间,总是可以找到另一个有理数。
例如,在1和2之间,有1.5、1.25等;在-1和0之间,有-0.5、-0.75等。
这一性质使得有理数能够精准地表示一些功能的变化,尤其在科学和工程中,需对数据进行细致分析时,这一优势极为显著。
在我们实际应用有理数时,运算是不可或缺的一环。
加法、减法、乘法和除法四种基本的数学运算是处理有理数的主要方式。
对于两个有理数进行加法运算,首先需要找到共同的分母,然后再合并分子。
而减法运算与加法类似,通常也是需要统一分母后再进行操作。
乘法和除法相对简单,直接将分子乘以分子,分母乘以分母。
值得注意的是,当进行除法运算时,除数不能为零,因为零在数学中是无法作为分母的。
运算过程中的简化同样重要。
比如,当我们有一项表达式,例如(3/4)+(1/2),要想简化成一个更直接的形式,需要把1/2转换成相同的分母。
1/2可以写成2/4,如此一来,两者相加后的结果就是5/4。
类似地,在减法和乘法时,简化步骤能够提高计算速度并减少错误。
当面对负数时,计算的过程同样适用。
有理数的负数与正数在运算中同样可以灵活应用。
七年级有理数教案北师大七年级有理数教案北师大1一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。
2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3. 相反数知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 绝对值知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0. 若a”或“b>0>c B.b>0>a>cC.b6.两个有理数的和是正数,积是负数,则这两个有理数( )A.都是正数;B.都是负数;C.一正一负,且正数的绝对值较大;D.一正一负,且负数的绝对值较大。
7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13B.13或-13C.3或-3D.-3或-138. 大于-1999而小于2000的所有整数的和是()A.-1999B.-1998C.1999D.20009. 当n为正整数时,的值是()A.0B.2C.D.2或10. 补充下列表格:31 32 33 34 35 36 373 9 27 81 243 ……根据表格中个位数的规律可知,325的个位数是( )A.1B.3C.7D.9二、填空题(8小题,每小题2分,共16分)11. 的相反数是 .12.若水位上升20cm记作+20cm,则-15cm表示__________________.13.4个-3相乘写成乘方的形式是__________________.14.比较大小: .15. 在数轴上距2.5有3.5个单位长度的点所表示的数是.16. 用“偶数”或“奇数”填:当为_________时,17. 一根2米长的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,第五次后剩下的长度为______米.18. 观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形共有个.三、解答题(6小题,每小题5分,共30分)19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)÷6- ×(-4)21. (- + - )×(-12) 22. 16÷(-2)3-(- )×(-4)223. (用简便方法) 24. - -【-5 + (0.2× -1)÷(-1 )】25. 若│a│=2,b=-3,c是的负整数,求a + b-c的值.(6分)26.某牛奶厂在一条南北走向的大街上设有O,A,B,C四家特约经销店. A店位于O店的南面3千米处;B店位于O店的北面1千米处,C店在O店的北面2千米处.(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴.在数轴上分别表示出O,A,B,C的位置吗?(4分)(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店,最后回到O店,那么走的最短路程是多少千米?(4分)27.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:星期一二三四五每股涨跌 +2.20 +1.42 -0.80 -2.52 +1.30(1)星期三收盘时,该股票涨或跌了多少元?(4分)(2)本周内该股票的价是每股多少元?最底价是每股多少元?(2分)(3)已知小杨买进股票时付了1.5‰的手续费,卖出时还需要付成交额的1.5‰的手续费和1‰的交易税,如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何? (4分)七年级有理数教案北师大2一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2, (2), (3), (4).2.(1),,,.(2)-2,,.3.(1)0, (2), (3), (4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.七年级有理数教案北师大3教学目标:1、在熟悉的生活情境中,进一步体会负数的意义。
数学中各种数的意义数学是一门研究数量、结构、变化和空间的学科,涉及到各种数的概念和意义。
在数学中,不同种类的数具有不同的数学意义,本文将对整数、有理数、无理数、实数和复数这五种数的意义进行论述。
整数是最基本的数,它包括正整数、负整数和零。
整数的数学意义在于表示计数和排序。
正整数用于计算和表示物体的数量,例如1个苹果、2个橘子等;负整数用于表示欠债或亏损的数量,例如-3美元、-5公斤等;零则表示没有数量或不存在的数量。
整数在数学中广泛运用于代数运算、数论、组合数学等多个领域。
有理数是可以表示为两个整数之比的数,包括整数和分数。
有理数的数学意义在于表示精确的比例关系,它用于测量、计算和表示分数数量。
有理数在分数运算、方程求解、概率统计等领域中发挥重要作用。
同时,有理数的运算规则和性质也是数学中的重要基础。
无理数是不能表示为两个整数之比的数,它们的十进制表示是无限不循环小数。
无理数的数学意义在于表示那些无法精确表示为有理数的量。
最著名的无理数是圆周率π和自然对数的底数e,它们在几何、分析和物理学中具有广泛的应用。
无理数的研究涉及到数学分析中的极限理论和数值计算方法。
实数是整数、有理数和无理数的总称,它包括所有可以在数轴上表示的数。
实数的数学意义在于表示连续和无缝的数量。
实数广泛运用于微积分、函数分析、数学物理等领域,它是现代数学的基础之一。
实数的特性包括有序性、完备性和稠密性,这些性质使得实数具有丰富的数学结构和性质。
复数是由实数和虚数部分组成的数,虚数部分以字母i表示。
复数的数学意义在于表示平面上的点或向量,它在代数、几何和电磁学等领域中广泛使用。
复数的运算规则和性质由复数代数定义,它们包括加法、减法、乘法和除法等运算。
复数具有特殊的性质,例如共轭、模长和辐角等,这些性质使得复数具有广泛的应用和研究价值。
综上所述,数学中的整数、有理数、无理数、实数和复数分别表示了数量、比例、近似、连续以及平面上的点或向量等概念。
第二章 有理数的意义与运算1、有理数的意义:(1)有理数:整数和分数统称为有理数(2)有理数的分类。
注意①0既不是正数,也不是负数,它是一个中性数,是正数和负数的分界点。
②自然数:自然数是指0和正整数,既0、1、2、3、4、… 2、几个概念:(1)数轴:①原点、正方向、单位长度是数轴的三要素,缺一不可。
②数轴的用途:用数轴表示数:所有的实数都可以用数轴上的点来表示,数轴上的任一点都表示一个实数,实数和数轴上的点是一一对应的。
用数轴可以表示两个数大小。
(2)相反数:①定义:只有符号不同的两个数,其中一个是另一个的相反数,0的相反数是0。
②特点:相反数是两个数之间的一种相互关系,是成对出现的,缺一不可。
③性质:㈠ 任何一个数都有一个相反数,并且只有一个相反数。
㈡正数的相反数是负数,负数的相反数是正数,0的相反数是0。
㈢互为相反数的两个数之和为0,和为0的两个数互为相反数。
④求法:求一个数的相反数只需在这个数前面加上一个负号就可以了。
(3)绝对值:①几可意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作a 。
②代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
③数a 的绝对的表示:a = ⎪⎩⎪⎨⎧<-=>)0()(0)0(a a a a a(4)有效数字:①精确度:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
②定义:在近似数中,从左边第一个不是零的数字起,到由四舍五入到的数位止,所有的数字,都叫做这个数的有效数字,一共包含的数字的个数,叫做有效数字的个数。
③用法:在对一个数取近似数时,近似程度经常用保留几个有效数字来表示。
(5)科学记数法:把一个数写成±a ×10n形式(其中1≤a <10,n 是整数),这种记数法叫科学记数法,具体记数的方法为:①a 是只有一位整数的数。
②当原数≥1时,n是正整数,n 等于原数的整数位数减1,如31400=3.14×104;当原数<1时,n 是负整数,它的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零),如0.000035=3.5×10-5。
有理数单元教学目标1了解有理数的意义。
会用正数与负数表示相反意义的量,会按要求把给出的有理数归类。
2了解数轴、相反数、绝对值的概念。
会画数轴,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。
3掌握有理数大小比较的法则。
会用不等号连接两上或两个以上不同的有理数。
单元教学重点1有理数(特别是负数)和绝对值的意义。
2数形结合的思想方法。
单元教学策略有理数是根据学生熟悉的实际需要,对小学学过的数的进一步护展。
对于本单元的学习,学生已有一定的知识基础和生活体验。
教学时教师应注意避免多讲,要从学生已有的知识和熟知的实例出发,引导学生认真阅读、思考、讨论,形成新的认知结构。
同时还要注意为后面的学习做好准备。
教学手段和方法1引导学生把学过的知识和熟悉的事例与新的学习内容联系起来。
2指导学生阅读、讨论、练习、总结。
3使用投影仪。
第1、2课时正数与负数一、学习目标1了解正数与负数是由于实际需要而产生的,会初步应用正负数表示实际生活中的有关量。
2了解有理数的概念,会判断一个数是正数还是负数,是整数还是分数。
二、教学过程师:同学们先回顾一下我们在小学学过哪些数(小学六年级就接触了负数)填空1在数物体时,物体的个数用____________________表示;一个物体也没有,就用____________________表示。
2测量和计算有时得不到整数的结果,就要用____________________表示。
3北京冬季里的一天,白天最高气温比0℃高10℃,记作10℃;夜晚最低气温比0℃低5℃,记作____________________。
在中国地形图上,珠穆朗玛峰处标着8848,表示不打珠穆朗玛峰比海平面高8848米;叶鲁番盆地处标着-155,表示叶鲁番盆地比海平面低____________________。
师:在黑板上写出11、2、3、0、-5、221、1.5、-1、1.5、221 、8848、-155,请同学们认真观察教师写出的数,以四个小组为单位,讨论下面的问题。
1哪些数是我们在小学已经学过的?自然数包括0吗?2哪些数我们还没有学过?试说明它们都是在实际需要中产生的。
3你认为哪些数是正数,哪些数是负数,有没有既不是正数又不是负数的数。
什么叫做正数,什么叫做负数,零是正数还是负数?大于0的数叫正数,小于0的数叫做负数。
0既不是正数也不是负数。
注:(1)对于正数和负数,不能简单地理解为带“+”的就是正数,带“-”号的就是负数。
(2)正数前面的+可以写也可以不写。
但是负数的不可以省略 例:下列对0的认识正确的有:① 0是正数和负数的分界线② 0只表示什么都没有③ 0可以表示特定的意义,如0℃④ 0是正数⑤ 0是自然数用正数、负数表示具有相反意义的量1. 具有相反意义的量我们用正负数表示相反意义的 量的时候,是可以任意选择一种量为正,与其相反意义的量就为负。
2.具有相反意义的量的表述相反意义的量是一对反义词,如上升和下降、增加与减少等。
注:1.必须是同类量。
如节约三吨水和浪费一吨苹果不是。
2.表示的意义要完全相反,而不仅仅是不同。
如:向东与向南。
3.通常将增加、上升、盈利、收入记为正。
例题:第3课时:有理数教学目的和要求:1.理解有理数的意义。
2.会根据要求把给出的有理数分类。
3.了解“0”在有理数分类中的作用。
教学重点和难点:重点:了解有理数包括哪些数。
难点:要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
教学过程:一、复习引入:1.填空:①正常水位为0m,水位高于正常水位0.2m 记作,低于正常水位0.3m记作。
②乒乓球比标准重量重0.039g记作,比标准重量轻0.019g记作,标准重量记作。
2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m记作4m,向西运动8m记作;如果―7m表示物体向西运动7m,那么6m表明物体怎样运动?二、讲授新课:1.数的扩充:1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;32,41,854,+5.6,…叫做正分数; 小数可以化分数, ―97,―76,―3.5,…叫做负分数; 故看成分数。
正分数和负分数统称为分数;整数和分数统称为有理数。
2.思考并回答下列问题: ①“0”是整数吗?是正数吗?是有理数吗?②“―2”是整数吗?是正数吗?是有理数吗?③自然数就是整数吗?是正数吗?是有理数吗?要求学生区分“正”与“整”;小数可化为分数。
3.有理数的分类不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:{负分数正分数分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:{{负分数负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧注:①“0”也是自然数。
②“0”的特殊性。
4.把一些数放在一起,就组成一个数的集合,简称数集(set of number )。
所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。
5.例题;例1:把下列各数填入表示它所在的数集的圈里:―18,722,3.1416,0,2001,53-,―0.142857,95℅.正数集 负数集整数集 有理数集例2:把下列各数填入相应集合的括号内:29,―5.5,2002,76,―1,90%,3.14,0,―231,―0.01,―2,1 (1)整数集合:{ }(2)分数集合:{ }(3)正数集合:{ }(4)负数集合:{ }(5)正整数集合:{ }(6)负整数集合:{ }(7)正分数集合:{ }(8)负分数集合:{ }(9)正有理数集合:{ }(10)负有理数集合:{ }注:要正确判断一个数属于哪一类,首先要弄清分类的标准。
要特别注意“0”不是正数,但是整数。
在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的。
6.课堂练习:(1)下列说法正确的是( )①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。
A :①②③⑥B :①②⑥C :①②③D :②③⑥(2)下列说法正确的是( )A :在有理数中,零的意义表示没有B :正有理数和负有理数组成全体有理数C :0.5既不是整数,也不是分数,因而它不是有理数D :零是最小的非负整数,它既不是正数,又不是负数(3)―100不是( )A :有理数B :自然数C :整数D :负有理数(4)判断:(1)0是正数()(2)0是负数()(3)0是自然数()(4)0是非负数()(5)0是非正数()(6)0是整数()(7)0是有理数()(8)在有理数中,0仅表示没有。
()(9)0除以任何数,其商为0 ((10)正数和负数统称有理数。
()(11)―3.5是负分数()(12)负整数和负分数统称负数()(13)0.3既不是整数也不是分数,因此它不是有理数()(14)正有理数和负有理数组成全体有理数。
()第3课时:数轴(1)教学目的和要求:1.使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。
2.向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
教学重点和难点:重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。
难点:正确理解有理数与数轴上点的对应关系。
教学过程:一、复习引入:1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。
演示从温度计抽象成数轴,激发学生学习兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程。
二、讲授新课:1.阅读7-8,思考并讨论:①零上25℃用正数_____表示。
0℃用数____表示;零下10℃用负数_____表示。
②数轴要具备哪三个要素?③原点表示什么数?原点右方表示什么数?原点左方表示什么数?④表示+2的点在什么位置?表示―3的点在什么位置?⑤原点向右0.5个单位长度的A 点表示什么数?原点向左121个单位长度的B 点表示什么数?2.数轴的画法:师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O ,叫做原点,用这点表示数0;(相当于温度计上的0℃。
)第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。
相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。
)第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。
(相当于温度计上1℃占1小格的长度。
)在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,…,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,…。
3.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。
直线也不一定是水平的。
动态演示各种类型的数轴。
认识和掌握判断一条直线是不是数轴的依据。
4.例题;例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?分析:原点、正方向、单位长度这数轴的三要素缺一不可。
解答:都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致。
例2:把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,323 ,+3.5 (2)―5,0,+5,15,20;(3)―1500,―500,0,500,1000。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、(3)题数轴较大,可取1cm分别代表5和500。
数轴上原点的位置要根据需要来定,不一定要居中,如第(1)题的原点可居中,(2)的原点可偏左,(3)的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。
表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。