当前位置:文档之家› 储液干燥器及液气分离器

储液干燥器及液气分离器

储液干燥器及液气分离器
储液干燥器及液气分离器

专业理论课电子教案模板

专业名称汽修

课程名称汽车空调检修

授课教师张建强

班级15汽车1、2班

教研组长董秀娇

一、组织教学

老师:上课

学生:起立

学生:老师好

老师:同学们好

老师:坐下

二、复习与导入

通过回忆循环离合器制冷系统的工作过程,逐渐导入储液罐和液气分离器的作用。

三、新授

活动6:储液干燥器及液气分离器

压缩机转速的变化将使系统中制冷剂流量发生变化;封闭的管路系统,使得实际的制冷剂流量又是固定的。

一、储液罐

储液罐在系统中的安装位置如图2-64所示。

储液罐的作用如下:

储液:具备能储存系统工质总量1/3左右的容积。

干燥:一块100cm3的XH-7分子筛在65℃时,能吸收多于100滴水。

过滤:能过滤因制造和维修而带入的微量碎屑、尘土等杂质,避免引起制冷剂流动阻塞。

液气分离:当冷凝器工作不良时,进入储液罐的制冷剂可能含有气态成份。为保证流出的制冷剂都为液态,储液罐必须具备液气分离功能。

在储液罐顶部通常还设有视液观察玻璃,通过它可观察系统制冷剂的流动状况,并判别制冷剂量的多少及是否受到污染。

二、液气分离器

对于孔管系统采用一种名为积累器的储液器,它安装在蒸发器与压缩机之间的管路上,如图2-68所示。又名液气分离器。

1.液气分离器结构与作用

液气分离器的结构如图2-69所示,罐内除有干燥剂、过滤器之外,

2.液气分离器工作原理

制冷剂从顶部进入容器后,撞击塑料杯,未蒸发的液态制冷剂将沉入容器底部,在顶部的气态制冷剂被引出管吸向压缩机,U形管底部的小孔,允许少量冷冻油流回压缩机,以保证压缩机工作时润滑的需要。此小孔也会有少量的制冷剂流回压缩机,由于在到达压缩机之前的低压管路中少量制冷剂会汽化完毕,所以不合引起“液击”。

三、液气分离器与储液器的区别

1.液气分离器装在制冷系统的低压区而储液罐装在系统的高压区。

2.液气分离器内留下液态制冷剂,这些制冷剂在容器内慢慢蒸发,离开的则是气态制冷剂,这样容器就起到液气分离作用;并且由于储液品种主要是气体,所以容积较大。

3.储液器内留下的是多余的制冷剂,以调节运行需要。

4.吸气储液器的优点:

①保证压缩机只能吸入气态制冷剂,不会发生液击现象。

②能减少压缩机排气脉冲,使系统工作更平稳。

③在制冷剂不足的情况下,能维持一定量的润滑油回流,从而提高系统对制冷剂漏失的容忍度。

四、储液罐或液气分离器的更换

桑塔纳3000型轿车空调储液干燥器,安装在发动机舱左前方的下部,如图2-70所示。

首先拔下高低压开关连接插头,(箭头A),拆

液气分离器设备技术要求

第四章货物需求一览表及商务技术要求 一、货物需求一览表 标包1: 注:1. 本次招标为定商定价,采购数量以实际需求为准。 2. 技术要求详见技术规格书。 3. 整机产品质量保证期为安装验收合格后使用12个月或出厂18个月。质保期内, 因供方原因造成的质量问题,由供方负责“三包”。 二、商务要求 (一)质量保证措施和履约保证措施条款: (1)中标厂商的供货物资必须满足产品质量标准(标书中明确的标准要求),组织单位对中标物资进行不定期抽检,由有资质第三方检测单位进行检测,如发现一次不合格或质量管理部门抽检出现不合格产品的,取消该中标厂商在渤钻中标的同类产品的中标资格,启动排名第二为中标单位,执行自身投标价格。 (2)中标通知书下发以后,在中标有效期内,如供应商违反供货承诺,无故延期供货、拖延供货或无正当理由不供货,同一项目在收到渤海钻探工程公司各分公司投诉共计2次及以上,取消该供应商在公司范围内的交易资格,启动排名第二为中标单位,执行自身投标价格。 (3)供应商放弃中标或未能完全履行合同等相关违约事项,按照CT.7.1《物资供应商管理办法》中4.11.3、4.11.4、4.11.5、4.11.6、4.11.7和4.11.8中条例进行处罚,具体

内容如下: 4.11.3供应商出现下列情形之一的,临时暂停供应商交易资格,供应商管理部门进一步核实情况,确定处罚和恢复条件: a)公司及所属单位提出重大问题或质疑,需进一步调查核实; b)在质量、验收、事故处理方面存在问题有待核实; c)生产经营资质或体系保证文件逾期; d)在石油石化行业出现影响商业信誉的严重事故、法律纠纷等。 4.11.4供应商出现下列情形之一的,视情节严重程度中止其相应准入产品的交易资格3至12个月,并限期整改: a)某项产品质量经检验,不符合合同规定的质量要求; b)某项产品生产经营资质逾期超过规定时间更新; c)现场考察中发现产品生产存在某些质量隐患,需进行整改。 4.11.5供应商出现下列情形之一的,视情节严重程度中止供应商交易资格3至12个月,并限期整改: a)中标后无正当理由不与采购单位签订合同或延迟交货影响生产; b)非不可抗力原因,擅自变更、解除或终止合同或拒绝供货; c)供应商现场考察发现可能影响生产的问题; d)售后服务环节出现问题,影响企业运营。 e)在办理准入、年审工作中不按期履行相应义务,或信息变更不及时登记。 f)不符合公司QHSE管理体系要求,存在安全隐患的。 4.11.6供应商出现下列情形之一的,视情节严重程度中止供应商交易资格一至三年,并限期整改: a)恶意串通,影响采购,使采购部门提出有利于特定供应商中标的要求; b)供应商与采购部门、招标机构或其他供应商串通陪标的,或以不正当的手段排挤其

旋风分离器

机名称:旋风分离器 产品价格: 面议 有效日期:2011-02-10~2011-08-09 所在地:辽宁省沈阳市 所属行业:库存化工设备 关键词:过滤分离器,过滤器,旋风分离器 询价 详细信息 供应商类型自主生产厂商 旋风分离器技术描述 一、产品定义 旋风分离器是依据旋风除尘原理对燃气管路中的尘埃进行分离的除尘装置。 二、产品组成 旋风分离器由介质进、出口、安全阀口、放空口、手孔、进水口、清灰口、排污口、封头、筒体、旋风子内置件、腿式支座、各接口配对法兰、螺栓、螺母及垫片等组成。 三、产品技术性能介绍 1.简介 旋风分离器是由中国石油大学研制成功的一种高效气体分离设备,作为一种重要的气、固分离设备在石油化工、天然气燃煤发电和环境保护等领域得到了广泛的应用,与其它气固分离技术相比,旋风分离器具有结构简单,无运动部件,分离效率高适用气体流量波动大、压力高、粉尘和液体量高的工况。 旋风分离器的基本原理是利用利用离心沉降原理从气流中分离出固、液相杂质和粉尘微粒的。夹带固体颗粒和液滴的气体由旋风子上部的切向进口进入旋风子使其沿器壁高速旋转,按螺旋形路线向器底旋转,到达底部后折向上,成为内层的上旋气流,称为气芯,最后从旋风分离器的排气口排出,进入输送管线。由于离心力的作用,气流中所夹带的尘粒在随气流旋转的过程中逐渐趋向旋风子器壁,碰到器壁后滑向旋风子出口,最后落到旋风分离器下腔,加上本身的重量而向下移动,由旋风子底部的出口排除;不含固体颗粒和液滴的部分气体离心力小,则由旋风子顶部的出口流出。

优点:结构简单、占地面积小,投资低,操作维修方便,压低,动力消耗小,2.旋风分离器工作原理 2.1分离器内气流与尘粒的运动 气流从宏观上看可归结为三个运动: 外涡旋、内涡旋、上涡旋。 2.2除尘器内气流与尘粒的运动 气流从宏观上看可归结为三个运动:外涡旋、内涡旋、上涡旋。 含尘气流由进口沿切线方向进入除尘器后,沿器壁由上而下作旋转运动,这股旋转向下的气流称为外涡旋(外涡流),外涡旋到达锥体底部转而沿轴心向上旋转,最后经排出管排出。这股向上旋转的气流称为内涡旋(内涡流)。外涡旋和内涡旋的旋转方向相同,含尘气流作旋转运动时,尘粒在惯性离心力推动下移向外壁,到达外壁的尘粒在气流和重力共同作用下沿壁面落入灰斗。 气流从除尘器顶部向下高速旋转时,顶部压力下降,一部分气流会带着细尘粒沿外壁面旋转向上,到达顶部后,在沿排出管旋转向下,从排出管排出。这股旋转向上的气流称为上涡旋。 3、影响效率的因素 ? 3.1.工作条件 ?1)进口速度增大,则切向速度增大,效率增大。但不能过大,过大会影响气流运动的方向(剧烈、方向混乱),破坏了正常的涡流运动,另外阻力会加大,故常选用V2=12—25m/s。 ?2)除尘器的结构尺寸 ?一般而言,直径越小,切向力越大,则效率越小,过小易逃逸。出口管直径减小,则r0减小,减少了内涡旋,则效率增大。但阻力会增大,故 不能太小。 ?筒体长度增大,则效率增大,但过大阻力会增大,所以,筒体长度不大于5倍筒体直径。另外,希望锥体长度大一点,这样会使切向速度大和距器壁短。 ?旋风器斜放对效率影响不大。 ?3.2.流体性质

化工原理课程设计流化床干燥器汇总

目录 设计任务书.................................................................................................................. II 第一章概述 (2) 1.1流化床干燥器简介 (2) 1.2设计方案简介 (6) 第二章设计计算 (8) 2.1 物料衡算 (8) 2.2空气和物料出口温度的确定 (9) 2.3干燥器的热量衡算 (11) 2.4干燥器的热效率 (12) 第三章干燥器工艺尺寸设计 (13) 3.1流化速度的确定 (13) 3.2流化床层底面积的计算 (13) 3.3干燥器长度和宽度 (15) 3.4停留时间 (15) 3.5干燥器高度 (15) 3.6干燥器结构设计 (16) 第四章附属设备的设计与选型 (19) 4.1风机的选择 (19) 4.2气固分离器 (19) 4.3加料器 (21) 第五章设计结果列表 (22) 附录 (24) 主要参数说明 (24) I

设计任务书 一、设计题目 2.2万吨/年流化床干燥器设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量) 2.2万吨/年(以干燥产品计) 操作周期260 天/年 进料湿含量13%(湿基) 出口湿含量1%(湿基) 2.操作条件 干燥介质湿空气(110℃含湿量取0.01kg/kg干空气) 湿空气离开预热器温度(即干燥器进口温度)110℃ 气体出口温度自选 热源饱和蒸汽,压力自选 物料进口温度15 ℃ 物料出口温度自选 操作压力常压 颗粒平均粒径0.4 mm 3.设备型式流化床干燥器 4.厂址合肥 三、设计内容: 1、设计方案的选择及流程说明 2、工艺计算 3、主要设备工艺尺寸设计 (1)硫化床层底面积的确定; (2)干燥器的宽度、长度和高度的确定及结构设计 4、辅助设备选型与计算 5、设计结果汇总 6、工艺流程图、干燥器设备图、平面布置图 7、设计评述 II

气液分离器

气液分离器 气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。 F.1 气液分离器的设计和使用必须遵循以下原则: 1.气液分离器必须有足够的容量来储存多余的液态制冷剂。 特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。 2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。 回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。 如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出

旋风分离器设计方案

旋风分离器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00 编制:日期:

本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。设计标准如下: a. TSG R0004-2009《固定式压力容器安全技术监察规程》 b. GB150-1998《钢制压力容器》 c. HG20584-1998《钢制化工容器制造技术要求》 d. JB4712.2-2007《容器支座》 2、旋风分离器结构与原理 旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。 说明: 旋风分离器的总体结构主要由:进 料布气室、旋风分离组件、排气室、 集污室和进出口接管及人孔等部分组 成。旋风分离器的核心部件是旋风分 离组件,它由多根旋风分离管呈叠加 布置组装而成。 旋风管是一个利用离心原理的2 英寸管状物。待过滤的燃气从进气口 进入,在管内形成旋流,由于固、液 颗粒和燃气的密度差异,在离心力的 作用下分离、清洁燃气从上导管溜走, 固体颗粒从下导管落入分离器底部, 从排污口排走。由于旋风除尘过滤器 的工作原理,决定了它的结构型式是 立式的。常用在有大量杂物或有大量 液滴出现的场合。

其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦根据以上的容器设计计算,画出设计总设备图及零件图。 4、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择16Mn号GB6479《高压化肥设备用无缝钢管》作各型号接管。因设备设计压力较高,涉及到开孔补强问题,在后面的强度计算过程中,选择16MnII锻件作为接管材料。 ③法兰的材料选择: 法兰选用ASME B16.5-2009钢制管法兰,材质:16MnII,符合NB/T47008-2009压力容器用碳素钢和低合金钢锻件标准。 ④其他附件用材原则: 与受压件相焊的的垫板,选用与壳体一致的材料:Q345R GB713-2008; 其余非受压件,选用Q235-B GB3274 《碳素结构钢和低合金钢热轧厚钢板和

化工原理课程设计流化床干燥器

化工原理课程设计流 化床干燥器 Revised on November 25, 2020

目录 I 设计任务书 一、设计题目 万吨/年流化床干燥器设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)万吨/年(以干燥产品计) 操作周期260天/年 进料湿含量13%(湿基) 出口湿含量1%(湿基) 2.操作条件 干燥介质湿空气(110℃含湿量取kg干空气) 湿空气离开预热器温度(即干燥器进口温度)110℃

气体出口温度自选 热源饱和蒸汽,压力自选 物料进口温度15℃ 物料出口温度自选 操作压力常压 颗粒平均粒径 3.设备型式流化床干燥器 4.厂址合肥 三、设计内容: 1、设计方案的选择及流程说明 2、工艺计算 3、主要设备工艺尺寸设计 (1)硫化床层底面积的确定; (2)干燥器的宽度、长度和高度的确定及结构设计 4、辅助设备选型与计算 5、设计结果汇总 6、工艺流程图、干燥器设备图、平面布置图 7、设计评述 II 第一章概述 流化床干燥器简介 将大量固体颗粒悬浮于运动着的流体之中,从而使颗粒具有类似于流体的某些表观特性,这种流固接触状态称为固体流态化。 流化床干燥器就是将流态化技术应用于固体颗粒干燥的一种工业设备,目前在化工、轻工、医学、食品以及建材工业中都得到了广泛应用。 1)流态化现象 图1流态化现象图 空气流速和床内压降的关系为:

图2空气流速和床内压降关系图 空气流速和床层高度的关系为: 流化床的操作范围:u mf ~u t 图3空气流速和床层高度关系图 2)流化床干燥器的特征 优点: (1)床层温度均匀,体积传热系数大(2300~7000W/m3·℃)。生产能力大,可在小装置中处理大量的物料。 (2)由于气固相间激烈的混合和分散以及两者间快速的给热,使物料床层温度均一且易于调节,为得到干燥均一的产品提供了良好的外部条件。 Velocity Heig ht0fb ed Fixed Fluidized A D B C E U mf Velocity ured rop U mf

储液干燥器及液气分离器

专业理论课电子教案模板 专业名称____ 汽修___________________ 课程名称—汽车空调检修_______________ 授课教师—张建强_____________________ 班级15—汽车1、2班 ________________ 教研组长—董秀娇_____________________

、组织教学 老师: 上课 学生: 起立 学生: 老师好 老师: 同学们好 老师: 坐下 二、复习与导入 通过回忆循环离合器制冷系统的工作过程,逐渐导 入储液罐和液气分离器的作用。 三、新授 活动6:储液干燥器及液气分离器 压缩机转速的变化将使系统中制冷剂流量发生变 化;封闭的管路系统,使得实际的制冷剂流量又是固定 的。 —、储液罐 储液罐在系统中的安装位置如图2-64所示。 储液:具备能储存系统工质总量1/3左右的容积。 干燥:一块100cm3的XH-7分子筛在65 C时,能 教学环节及内容 教学策略 方法组织实施储液罐的作用如下:

吸收多于100滴水。 过滤:能过滤因制造和维修而带入的微量碎屑、尘土等杂质,避免引起制冷剂流动阻塞。 液气分离:当冷凝器工作不良时,进入储液罐的制冷剂可能含有气态成份。为保证流出的制冷剂都为液态,储液罐必须具备液气分离功能。 在储液罐顶部通常还设有视液观察玻璃,通过它可观察系统制冷剂的流动状况,并判别制冷剂量的多少及是否受到污染。 二、液气分离器 对于孔管系统采用一种名为积累器的储液器,它安装在蒸发器与压缩机之间的管路上,如图2-68 所示。又名液气分离器。 1 ?液气分离器结构与作用 液气分离器的结构如图2-69所示,罐内除有干燥剂、过滤器之外, 2 ?液气分离器工作原理

YB-003-2006汽车空调用贮液器企业标准

汽车空调用贮液干燥器 企业标准 2006.9.1发布2006.9.10实施嵊州市盈亿机械有限公司发布

前言 本标准使用的介质为HFC-134a,参数,技术要求,试验方法检验规则是依据行业标准,国内外同行业的技术要求,用户要求以及生产实践而制定的。 本标准由嵊州市盈亿机械有限公司提出 本标准由嵊州市盈亿机械有限公司技术部负责起草 本标准主要起草人:储伟 本标准2006年发布.

汽车空调(HFC-134a )用贮液干燥器 1 范围 本标准规定了汽车空调(HFC-134a )用贮液干燥器的技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于以HFC-134a 为制冷剂、工作压力在0-3.5Mpa 、容积小于1000ml 的汽车空调用贮液干燥器。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件, 其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T6287 分子筛静态水吸附测定方法 GB/T10125 人造气氛腐蚀试验 盐雾试验 QC/T662 汽车空调(HFC-134a)用贮液干燥器 GB/T2828 逐批检查记数抽样程序及抽样表(适用于连续的检查) 3 术语和定义 下列术语和定义适用于本标准 贮液干燥器 一种装有干燥剂、过滤器等,用于收集循环于系统中的制冷剂所含过量的水分并贮存 高压液态制冷剂的容器。 干燥剂 用于收集和容纳水分的固体吸附剂,在制冷循环中,干燥剂应与制冷剂、冷冻润滑油 相容。 压力损失 制冷剂流经贮液干燥液进出口的压力差值 干燥剂吸水能力 干燥剂在湿空气或制冷剂中吸得水的最大质量与吸水前干燥剂质量之比 4 产品分类及型号的表示方法 4.1 汽车空调干燥过滤器分为铝质贮液器和铁质贮液器两大类 示例:型号TZ76-BK(A) 表示该产品的器体外径为Φ60.5mm ,客户为博格众思,为同样外径及客户的第二种产品 5 技术要求 应符合本标准要求,并按经规定程序批准的图样和技术文件制造。

流化床干燥器

流化床干燥器设计说明书 设计者: 学号: 班级: 指导老师: 设计日期:

第一节 概述 将大量固体颗粒悬浮于运动着的流体之中,从而使颗粒具有类似于流体的某些表观特性,这种流固接触状态称为固体流态化。 流化床干燥器就是将流态化技术应用于固体颗粒干燥的一种工业设备,目前在化工、轻工、医学、食品以及建材工业中都得到了广泛应用。 一、 流态化现象 空气流速和床内压降的关系为: 空气流速和床层高度的关系为: Press ure drop U mf

流化床的操作范围:u mf ~u t 二、 流化床干燥器的特征 优点: (1)床层温度均匀,体积传热系数大(2300~7000W /m3·℃)。生产能力大,可在小装置中处理大量的物料。 (2)由于气固相间激烈的混合和分散以及两者间快速的给热,使物料床层温度均一且易于调节,为得到干燥均一的产品提供了良好的外部条件。 (3)物料干燥速度大,在干燥器中停留时间短,所以适用于某些热敏性物料的干燥。 (4)物料在床内的停留时间可根据工艺要求任意调节,故对难干燥或要求干燥产品含湿量低的过程非常适用。 (5)设备结构简单,造价低,可动部件少,便于制造、操作和维修。 (6)在同一设备内,既可进行连续操作,又可进行间歇操作。 缺点: (1)床层内物料返混严重,对单级式连续干燥器,物料在设备内停留时间不均匀,有可能使部分未干燥的物料随着产品一起排出床层外。 (2)一般不适用于易粘结或结块、含湿量过高物料的干燥,因为容易发生物料粘结到设备壁面上或堵床现象。 (3)对被干燥物料的粒度有一定限制,一般要求不小于30、不大于6mm 。 (4)对产品外观要求严格的物料不宜采用。干燥贵重和有毒的物料时,对回收装量要求苛刻。 (5)不适用于易粘结获结块的物料。 三、流化床干燥器的形式 1、单层圆筒形流化床干燥器 连续操作的单层流化床干燥器可用于初步干燥大量的物料,特别适用于表面水分的干燥。然而,为了获得均匀的干燥产品,则需延长物料在床层内的停留时间,与此相应的是提高床层高度从而造成较大的压强降。在内部迁移控制干燥阶段, Velocity Heigh t 0f bed Fixed Fluidized A D B C E U mf

液气分离器基本知识

液气分离器 钻井液液气分离器也是气浸钻井液除气的专用设备,属常压除气范畴,基于常压除气原理,不过它是处理气浸钻井液的初级脱气设备,与除气器的主要区别在于它主要用于清除环空钻井液喷出来的直径≥3mm的大气泡。大气泡是指大部分充满井眼环空某段的钻井液的膨胀性气体,其直径大约为3-25mm。这些大气泡引起井涌。甚至喷出转盘表面。另外,液气分离器主要是靠重力冲撞作用来实现液气分离的,而除气器是采用真空、紊流、离心等原理,除气器的处理气体量比液气分离器少得多,但是清除气体更彻底。通常经液气分离器处理后的钻井液中还会有小气泡,通过振动筛后,需进入除气器再进行常规除气。 液气分离器可以直接从旋转防喷器处进液,也可以从节流管汇外进液。液气分离器按压力分常压式和压力自控式两种。在过去的50年里,它们已经从简单的开式罐发展到复杂的密闭和加压式容器。一般液气分离器是与节流管汇和电子点火装置配套使用的,用于脱离钻井液中的游离气体,可应用于欠平衡钻井液和硫化氢气体的钻井液处理。 液气分离器的类型 常用的液气分离器有两种类型 1.封底式 除气罐底部封闭。钻井液通过一根U形管线回到循环罐内。除气罐内钻井液面的高度,可通过u管的高度增减来控制。 2.开底式 分离器罐无底,下半部潜入钻井液中。罐内的液面依靠底部潜入深度来控制,这种分离器在国外俗称“穷孩子”,说明其简易性。 最简单、最可靠的液气分离器是封底式的。因为它的钻井液柱高度受到循环罐内液面高度的限制。液气分离器的工作压力等于游离气体由排出管排出时的摩擦阻力。分离器内始终保持一定高度的液面(钻井液柱高),如果上述摩擦阻力大于分离器内钻井液柱的静水压力,将造成“短路”,未经分离的气浸钻井液就会直接排入钻井液循环罐内。分离器产生“短路”一般是在气浸钻井液出现大量气体(峰值)的条件下发生的。这表明分离器处理能力不足。 液气分离器原理 液气分离器的基本原理都是相同的。开底式的基本结构是一个底部敞开(或有一个直径较大的排出口)的立式钢质圆筒,筒的一侧有一个钻井液入口,顶端是气体排出口。筒体是一个直径为355-610(或者更大一些)的钢质圆筒。当钻井液从井口返出后,经阻气管汇流进入出气筒的入口管,入口关随阻气管的直径而定。例如:阻气管直径为50mm,则入口管直径为100mm,而液气分离器的排气管应为150mm.若圆筒直径是1000mm,则排气口直径应为200mm.液气分离器圆筒内有许多挡板,排列形状各不相同。其作用是承受钻井液的冲击,有助于形成紊流,使钻井液层变薄,以促使气泡与液体分离、破裂、逸出。排气管线应接至远离井场的地方,以便将分离出的气体引向远处。应注意的是排气管内的阻力必须很小,以确保管线回压很小。 液气分离流程如图所示,从井口返出的气浸钻井液经阻气管汇后,以很高的速度沿分离器进液口切线进入分离器内,顺内壁落在专门设计的一系列内挡板上,液体与钢板撞击后,通过碰撞、增大暴露面积后继续向下流动,一部分气泡在撞击后破裂,其余气泡与液体一起形成紊流和薄膜。由于液气分离器圆筒与大气相通,因而气浸钻井液压力降低到几乎等于大气压力,在紊流和薄膜中的气体便迅速膨胀并逸出液面。液气分离后钻井液从下部流入钻井液

空调制冷系统组成部件及结构图

制冷循环系统的组成部件 制冷循环系统中各部件在车上的安装位置如图所示,下面对各主要组成部件分别予以介绍。 制冷循环系统各部件的安装位置 压缩机 压缩机的作用是将从蒸发器出来的低温、低压的气态制冷剂通过压缩转变为高温、高压的气态制冷剂,并将其送入冷凝器。目前在汽车空调系统中所采用的压缩机有多种类型,比较常见的有斜盘式压缩机、叶片式压缩机、涡旋式压缩机、曲轴连杆式压缩机等。此外,压缩机还可分为定排量和变排量的两种型式,变排量压缩机可根据空调系统的制冷负荷自动改变排量,使空调系统运行更加经济。 叶片式压缩机 (1)结构叶片式压缩机的结构见图,在叶轮上安装有若干叶片,与机体形成几个密封的空间,在机体上安装有吸气孔、排气孔和排气阀,在叶轮旋转时,密封的空间的体积会发生变化,从而完成进气、压缩和排气的过程。

叶片式压缩机的结构 (2)工作过程叶片式压缩机的工作过程见图6-34。 图6-34 叶片式压缩机的工作过程 旋转斜盘式压缩机 (1)结构旋转斜盘式压缩机的结构见图,这种压缩机通常在机体圆周方向上布置有6个或者10个气缸,每个气缸中安装一个双向活塞形成6缸机或10缸机,每个气缸两头都有进气阀和排气阀。活塞由斜盘驱动在气缸中往复运动,活塞的一侧压缩时,另一侧则为进气。

旋转斜盘式压缩机的结构 2)工作过程旋转斜盘式压缩机的工作过程见图,压缩机轴旋转时,轴上的斜盘同时驱动所有的活塞运动,部分活塞向左运动,部分活塞向右运动。图中的活塞在向左运动中,活塞左侧的空间缩小,制冷剂被压缩,压力升高,打开排气阀,向外排出,与此同时,活塞右侧空间增大,压力减小,进气阀开启,制冷剂进入气缸。由于进、排气阀均为单向阀结构, 所以保证制冷剂不会倒流.

流化床干燥机

◎食品级流化床干燥机 工作原理 系列振动流化床干燥机将所要处理的物料通过适当的铺料机构,如星型布料器、摆动带、粉碎机或造粒机等,分布在布料孔板上,布料孔板穿过一个或几个加热单元组成的通道,每个加热单元均配有空气加热和循环系统,每一个通道有一个或几个排湿系统,物料在布料孔板上通过时,在 激振力作用下,物料沿水平方向抛掷向前连续运动,热空气从上往下或从下往上通过不赖哦孔板上的物料,从而使物料能均匀干燥,热风穿过流化床孔板向上穿过同物料换热后,由排风口排出,干燥物料由排料口排出。

特点 ● 物料受热均匀,热交换充分,干燥强度高,比普通干燥机节15%~30%左右。 ● 振动源始采用振动电机驱动,运转平稳、维修方便、噪音低、寿命长。 ● 流态化平稳,无死角和吹穿现象。 ● 可调性好,使用面宽,料层厚度和在机内移动以及振幅变更均可实现无级调节。 ● 对物料表面损伤小,可用于易碎物料的干燥,物料颗粒不规则时亦不影响工作效果。● 采用全封闭式的结构,有效的防止了物料与空气间的交叉感染,作业环境影响。 应用范围 ● 无机物:过硫酸盐、漂粉精、偏硅酸钠、硅砂、过硼硼砂、硼酸、溴化钾。 ● 有机物:苯二酚、草酸、对苯二酚、富马酸、古龙酸酒石酸、氰尿酸、盐。 ● 食品和饲料添加剂:大豆分离蛋白、谷氨酸、焦糖色葡萄糖、乳酸、砂糖。 ●还可用于物料的冷却、增湿等。 机型Model 硫化床 面(M2) Area of Fluidzed -bed 进风 温度 temp eratu re of inlet air 出风温 度 tempra ture of outlet 蒸发水份能 力(kg/h) capacity to vapor moisture 振动电vabration 型号model 功率 power(kw) ZLG3×0.30 0.9 70~140 401~ 70 20~35 ZDS31-6 0.8×2 ZLG4.5×0.30 1.35 35~50 ZDS31-6 0.8×2 ZLG4.5×0.45 2.025 50~70 ZDS32-6 1.1×2 ZLG4.5×0.60 2.7 70~90 ZDS32-6 1.1×2 ZLG6×0.45 2.7 80~100 ZDS41-6 1.5×2 ZLG6×0.60 3.6 100~130 ZDS41-6 1.5×2 ZLG6×0.75 4.5 120~140 ZDS42-6 2.2×2 ZLG6×0.9 5.4 140~170 ZDS42-6 2.2×2 ZLG7.5×6.0 4.5 130~150 ZDS42-6 2.2×2 ZLG7.5×0.75 5.625 150~180 ZDS51-6 3.0×2 ZLG7.5×0.9 6.75 160~210 ZDS51-6 3.0×2 ZLG7.5×1.2 9 200~260 ZDS51-6 3.0×2 流化床干燥机 流化床干燥机是20世纪60年代发展起来的一种新型干燥技术,又称为沸腾床干燥机。 流化床干燥是指粉状或颗粒状物料呈沸腾状态被通入的气流干燥。这种沸腾料层称为流化床,而采用这种方法干燥物料的设备,称为流化床干燥机。 在食品、轻工、化工、医药以及建材等行业都得到了广泛的应用。流化床在食品工业上用于干燥果汁型饮料、速溶乳粉、砂糖、葡萄糖、汤料粉等。 流化床干燥机呈长方形或长槽状箱体结构。流化床工作部位为多孔板,由薄钢板冲孔、细钢丝编织网或氧化铝烧结成多孔陶瓷板制成,多孔板下方是热空气强制通风室。干燥时,颗粒状食品原料由供料装置散布在多孔板上,形成一定料层厚度,热空气穿过多孔板,对板上物

006-2014_钻井液液气分离器安装与使用规范

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 006—2014 代替?Q/SYCQZ 006-2011钻井液液气分离器安装与使用规范 2014-08-18发布2014-09-18实施

目 次 前言.......................................................................II 1?范围 (1) 2?安装前的准备 (1) 3?安装 (1) 4?使用 (2) 5?检查 (2)

前 言 本标准是对Q/SYCQZ 006-2011《钻井液液气体分离器安装与使用规范》的修订,与Q/SYCQZ 006-2011相比,除进行编辑性修改外,主要技术内容差异如下:: ——适用范围增加了欠平衡钻井、充气钻井现场使用的分离器。 ——取消了规范性引用文件要求。 ——增加了分离器安装准备要求“绷绳为均布的4根直径不小于16 mm的钢丝绳;固定地脚螺栓或绷绳用水泥基墩坑尺寸长×宽×深为0.8 m×0.8 m×1.0 m ,遇地表松软时,基墩坑体积应大于1.2m3”(见2.3)。 —— 修改了分离器安装固定要求“就位后用地脚螺栓或绷绳固定。地脚螺栓宜固定在底座四个吊装位置处”、“地脚螺栓或绷绳的正反螺栓应在浇注凝固后紧固”(见3.1)。 ——增加了排液管的安装要求“安装后应测量U型管的有效高度H并记录”(见3.4.8)。 ——增加了“充空气钻井作业时”排气管线的安装要求“充空气钻井作业时可接至距井口30 m以远的井场污水池或沉砂池”(见3.5.3)。 ——增加了点火装置的安装要求“点火装置应垂直地面安装,用地脚螺栓或直径12 mm钢丝绳固定,钢丝绳不少于3根”(见3.5.7)。 —— 增加了分离器使用要求“使用前应按测量的U型管高度及钻井液密度计算出最大允许工作压力(最大允许工作压力Pmax=U型管的有效高度H×钻井液密度ρ)”(见4.4);“排气管线压力表的读数大于计算出的最大工作压力”(见4.5.2)。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准由川庆钻探工程有限公司川东钻探公司起草。 本标准主要起草人:徐勇军、罗琼英、苏庆、王志坚、吴琦、李刚、罗整。

旋风分离器工作原理

旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。压力降正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。设计使用寿命旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。通常,气体入口设计分三种形式:a) 上部进气b) 中部进气c) 下部进气对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm 的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点

化工原理课程设计流化床干燥器

化工原理课程设计 目录 设计任务书................................................................. 第一章概述................................................................. 3.. 1.1流化床干燥器简介................................................... 3. 1.2设计方案简介........................................................ 7.第二章设计计算............................................................. 9. 2.1物料衡算............................................................ 9. 2.2空气和物料出口温度的确定......................................... 1.0 2.3干燥器的热量衡算 (12) 2.4干燥器的热效率.................................................... 1.3第三章干燥器工艺尺寸设计 (14) 3.1流化速度的确定.................................................... 1.4 3.2流化床层底面积的计算 (14) 3.3干燥器长度和宽度 (16) 3.4停留时间.......................................................... 1.6 3.5干燥器高度........................................................ 1.6 3.6干燥器结构设计 (17) 第四章附属设备的设计与选型 (20) 4.1风机的选择 (20) 4.2气固分离器 (20) 4.3加料器 (22) 第五章设计结果列表 (23) 附录 (25) 主要参数说明 (25) 设计任务书 一、设计题目 2.2万吨/年流化床干燥器设计 二、设计任务及操作条件 1?设计任务 生产能力(进料量)22万吨/年(以干燥产品计) 操作周期__________ 260 天/年 进料湿含量_______ 13% (湿基) 出口湿含量1% (湿基) I

泥浆液气分离器的操作

1 技术数据 液气分离器是设计用于处理含有大量溶解气或自由气泥浆的设备,这些气体在大气压条件下会膨胀。传统的液气分离器位于节流管汇和振动筛之间,它有一条直接排放气体的管线。 液气分离器通常只安装在节流管汇后面使用。 液气分离器应满足下列要求: (1) 根据实践经验,选择的液气分离器的处理量必须5倍于设计循环量。 (2) 液气分离器进口管线内径应等于或大于节流管汇排出管线的内径。 (3) 液气分离器泥浆排出管线的内径应不小于进口管线的内径,泥浆直接排放到振动筛进口管汇或泥浆储备罐。 (4) 排气管线的直径应为200 mm (8 英寸) 或更大。 (5) 气体排出管线上不应安装阀门。 带班队长指导液气分离器的所有作业,并决定什么时候通过液气分离器的泥浆直接返回到振动筛。 2 设备和工具检查 (1) 分离器的气体排出管线必须固定牢固。 (2) 寒冷天气时,如果液气分离器底部安装了清洁阀,为了防止液体冻结堵塞液气分离器,应打开该阀。 (3) 按厂家提供的说明书或服务要求清洁和维修液气分离器。 3 HSE 提示和预防措施 发行版本:A 文件编码:GWDC/HSEDOP2-04 发布日期: 2003.10.15 液气 分 离 器 的 操 作

4 准备工作 (1)确保节流管汇到液气分离器之间的管线畅通无阻。 (2)当液气分离器的开口端安装在泥浆罐的底部时,确保它不被沉积物堵塞。 5 实施(用于循环出受浸泥浆) (1)在发生溢流关井后,完成压井计算和压井方案的同时,循环排出受浸泥浆的 节流管汇已经连接好,液气分离器也已经连接处于待命状态。 (2)如果液气分离器安装了清洁阀和U形管排泄阀,在使用时,一定要把它们关 闭。 (3)检查排出管线安全固定绳或链。 (4)确保泥浆录井装置气体取样器固定牢固。 (5)打开节流管汇通向液气分离器的阀门。 (6)井控程序启动后,从环空返出的泥浆将通过节流管汇,然后进入液气分离 器,分离器分离出的气体排放出去,分离器排出的泥浆直接返回到振动筛。 (7)作业期间,连续监视液气分离器和检测返回到振动筛罐的泥浆。 (8)压井成功后,打开防喷器,关闭从节流管汇通向液气分离器的阀门。 (9)打开液气分离器清洁阀,将所有岩屑排放到排污池。 (10)如果使用的是U形管分离器,打开U管排泄阀并用水冲洗,将所有固体排放 到排污池。 (11)清洁、冲洗和检查所有管汇、管线和阀门,并按照钻井设计中软关井或硬关 井的要求重新布置节流管汇和液气分离器的工作状态。 6 关闭 按厂家规定清洁和维修液气分离器。 7相关文件 无

振动流化床干燥机操作规程完整

振动流化床干燥机操作规程 1.目的:规振动流化床干燥机的操作,确保生产设备的安全正常运转。 2.适用围:适用振动流化床干燥机的操作和管理。 3.责任人:车间操作人员和设备管理员。 4.振动流化床干燥机使用操作 4.1.开机前先对主机及附属设备仔细检查,确保设备良好状态。 4.2.调节震动电机的振幅,使设备达到最佳状态。 4.3.打开蒸汽阀门,仪表压力根据干燥温度规定值设定压力。 4.4.打开旋风分离引风机,再开鼓风机,调节好引风送风阀门。 4.5.待温度达到要求开提料机再开下料机进料,调速好下料机绞龙速度使物料均匀的分 布到流化床干燥板上。 4.6.干燥过程时刻注意机身的振动情况及机身温度,确保干燥物料均匀。 4.7.设备运行要注意机身螺栓松动、声音有无异常,蒸汽压力是否正常。出现异常及时 停止给料停机报修。 4.8.停止给料,使机物料全部出来。 4.9.关闭蒸汽关流化床电机继续通风5-10分钟待流化床降温后关闭鼓风机关 旋风分离引风机最后关闭所用附属设备电源并拉下空气开关。 5.注意事项: 5.1.每班检查设备主体、附属设备有无异常。固定螺栓是否松动。 5.2.每班干燥结束对设备外部进行清扫,保证设备整洁无积尘、无油污、无杂物。清扫 一定切断电源。 5.3.按照工艺要求清洗设备部,清洁后按技术要求检测。 5.4.每班按要求清理旋风引风机物料,每周更换水槽喷淋水。 1开机前先对主机及附属设备仔细检查,确保设备 2 调节震动电机的振幅,使设备达到良好状态。最佳状态

3打开蒸汽阀门,仪表压力根据干燥温度规 4打开旋风分离引风机,再开鼓风机 定值设定压力

5待温度达到要求开提料机再开下料机进料, 6干燥过程时刻注意机身的振动情况及机身 调速好下料机绞龙速度使物料均匀的分布到 温度,确保干燥物料均匀。 流化床干燥板上。

旋风分离器

旋风分离器 旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质 和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度 旋风分离器的分离效果:在设计压力和气量条件下,均可除去≥10μm的固体颗粒。在工况点,分离效率为99%,在工况点±15%范围内,分离效率为97%。 压力降 正常工作条件下,单台旋风分离器在工况点压降不大于0.05MPa。 设计使用寿命 旋风分离器的设计使用寿命不少于20年。 结构设计 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。 设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风除尘器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,

相关主题
文本预览
相关文档 最新文档