离散数学第六章
- 格式:ppt
- 大小:241.50 KB
- 文档页数:35
第二部分集合论引言集合是数学中最为基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。
集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。
G.康托尔是作为数学分支的集合论的奠基人。
1870年前后,他关于无穷序列的研究导致集合论的系统发展。
1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。
1878年,他引进了两个集合具有相等的“势”的概念。
然而,朴素集合论中包含着悖论。
第一个悖论是布拉利-福尔蒂的最大序数悖论。
1901年罗素发现了有名的罗素悖论。
1932年康托尔也发表了关于最大基数的悖论。
集合论的现代公理化开始于1908年E.策梅罗所发表的一组公理,经过A.弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。
另外一种系统是冯*诺伊曼-伯奈斯-哥德尔集合论。
公理集合论中一个有名的猜想是连续统假设(CH)。
K.哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,P.J.科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。
现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。
本部分主要介绍朴素集合论的主要内容,其中包括集合代数(第六章)、二元关系(第七章)、函数(第八章)、集合的基数(第九章)等。
本部分的先行知识及各部分的关系如下图所示:6.1 集合的基本概念一.集合的表示集合是不能精确定义的基本概念。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;……集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,前一种方法是列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来。