离散数学屈婉玲第六章
- 格式:ppt
- 大小:2.86 MB
- 文档页数:43
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值;1p∨q∧r⇔0∨0∧1 ⇔02pr∧﹁q∨s ⇔01∧1∨1 ⇔0∧1⇔0.3⌝p∧⌝q∧rp∧q∧﹁r ⇔1∧1∧1 0∧0∧0⇔04⌝r∧s→p∧⌝q ⇔0∧1→1∧0 ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数;并且,如果3是无理数,则2也是无理数;另外6能被2整除,6才能被4整除;”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧q→r∧t→s的真值为1,所以这一段的论述为真;19.用真值表判断下列公式的类型:4p→q →⌝q→⌝p5p∧r ↔⌝p∧⌝q6p→q ∧q→r →p→r答: 4p q p→q ⌝q ⌝p ⌝q→⌝p p→q→⌝q→⌝p0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式5公式类型为可满足式方法如上例6公式类型为永真式方法如上例第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.1 ⌝p∧q→q2p→p∨q∨p→r3p∨q→p∧r答:2p→p∨q∨p→r⇔⌝p∨p∨q∨⌝p∨r⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式3P q r p∨q p∧r p∨q→p∧r0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:2p→q∧p→r⇔p→q∧r4p∧⌝q∨⌝p∧q⇔p∨q ∧⌝p∧q证明2p→q∧p→r⇔⌝p∨q∧⌝p∨r⇔⌝p∨q∧r⇔p→q∧r4p∧⌝q∨⌝p∧q⇔p∨⌝p∧q ∧⌝q∨⌝p∧q⇔p∨⌝p∧p∨q∧⌝q∨⌝p ∧⌝q∨q⇔1∧p∨q∧⌝p∧q∧1⇔p∨q∧⌝p∧q5.求下列公式的主析取范式与主合取范式,并求成真赋值1⌝p→q→⌝q∨p2⌝p→q∧q∧r3p∨q∧r→p∨q∨r解:1主析取范式⌝p→q→⌝q∨p⇔⌝p∨∨⌝∨p⇔⌝p∧⌝∨⌝∨p⇔⌝p∧⌝∨⌝∧p∨⌝q∧⌝p∨p∧q∨p∧⌝q⇔⌝p∧⌝q∨p∧⌝q∨p∧q⇔∑0,2,3主合取范式:⌝p→q→⌝q∨p⇔⌝p∨∨⌝∨p⇔⌝p∧⌝∨⌝∨p⇔⌝p∨⌝q∨p∧⌝∨⌝∨p⇔1∧p∨⌝q⇔p∨⌝q ⇔ M1⇔∏12 主合取范式为:⌝p→∧∧r⇔⌝⌝p∨∧∧r⇔p∧⌝∧∧r⇔0所以该式为矛盾式.主合取范式为∏0,1,2,3,4,5,6,7矛盾式的主析取范式为 03主合取范式为:p∨q∧r→p∨q∨r⇔⌝p∨q∧r→p∨q∨r⇔⌝p∧⌝q∨⌝r∨p∨q∨r⇔⌝p∨p∨q∨r∧⌝q∨⌝r∨p∨q∨r⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑0,1,2,3,4,5,6,7第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:2前提:p→q,⌝q∧r,r结论:⌝p4前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:2①⌝q∧r 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p3 ⑤⑥拒取式证明4:①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥q→t∧t→q ⑤置换⑦q→t ⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理11p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→q→r,s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→q→r 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:1前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为a,b条件时命题的真值:1 对于任意x,均有x2−2=x+√2x−√2.2 存在x,使得x+5=9.其中a个体域为自然数集合.b个体域为实数集合.解:Fx: x2−2=x+√2x−√2.Gx: x+5=9.1在两个个体域中都解释为)∀,在a中为假命题,在b中为真命题;(xxF2在两个个体域中都解释为)(x∃,在ab中均为真命题;xG4. 在一阶逻辑中将下列命题符号化:1 没有不能表示成分数的有理数.2 在北京卖菜的人不全是外地人.解:1Fx: x能表示成分数Hx: x是有理数命题符号化为: ))x∧F⌝∃x⌝(x()(H2Fx: x是北京卖菜的人Hx: x是外地人命题符号化为: ))F⌝∀xx→(x(H)(5. 在一阶逻辑将下列命题符号化:1 火车都比轮船快.3 不存在比所有火车都快的汽车.解:1Fx: x是火车; Gx: x是轮船; Hx,y: x比y快命题符号化为: ))FyxGy∀∀∧x→))((,H)x((y(2 1Fx: x是火车; Gx: x是汽车; Hx,y: x比y快命题符号化为: )))xFxyG∧∀y→⌝∃H)(,(((y()x9.给定解释I如下:a 个体域D为实数集合R.b D中特定元素a ̅=0.c 特定函数f x,y=x−y,x,y D∈.d 特定谓词F̅x,y:x=y,G̅x,y:x<y,x,y D∈.说明下列公式在I下的含义,并指出各公式的真值:答:1 对于任意两个实数x,y,如果x<y, 那么x≠y. 真值1.2 对于任意两个实数x,y,如果x-y=0, 那么x<y. 真值0.10. 给定解释I如下:a 个体域D=NN为自然数集合.b D中特定元素a̅=2.c D上函数f(x,y)=x+y,g̅x,y=xy.d D上谓词F̅x,y:x=y.说明下列各式在I下的含义,并讨论其真值.(1)xFgx,a,x(2)xyFfx,a,y→Ffy,a,x答:1 对于任意自然数x, 都有2x=x, 真值0.2 对于任意两个自然数x,y,使得如果x+2=y, 那么y+2=x. 真值0.11. 判断下列各式的类型:1 F(x,y)→(G(x,y)→F(x,y)).3 xyF(x,y)→x yFx,y.解:1因为1→pq⇔qp为永真式;pp→⌝()(⇔)∨⌝∨所以F(x,y)→(G(x,y)→F(x,y)).为永真式;3取解释I个体域为全体实数Fx,y:x+y=5所以,前件为任意实数x存在实数y使x+y=5,前件真;后件为存在实数x对任意实数y都有x+y=5,后件假,此时为假命题再取解释I个体域为自然数N,Fx,y::x+y=5所以,前件为任意自然数x存在自然数y使x+y=5,前件假;此时为假命题;此公式为非永真式的可满足式;13. 给定下列各公式一个成真的解释,一个成假的解释;1 x Fx∨G(x))2 xFx∧Gx∧Hx解:1个体域:本班同学Fx:x会吃饭, Gx:x会睡觉.成真解释Fx:x是泰安人,Gx:x是济南人.2成假解释2个体域:泰山学院的学生Fx :x 出生在山东,Gx:x 出生在北京,Hx:x 出生在江苏,成假解释. Fx :x 会吃饭,Gx :x 会睡觉,Hx :x 会呼吸. 成真解释.第五章部分课后习题参考答案5.给定解释I如下:a 个体域D={3,4};b )(x f f 为3)4(,4)3(==f f c 1)3,4()4,3(,0)4,4()3,3(),(====F F F F y x F 为. 试求下列公式在I下的真值. 1),(y x yF x ∃∀3)))(),((),((y f x f F y x F y x →∀∀ 解:1 ))4,()3,((),(x F x F x y x yF x ∨∀⇔∃∀2 )))(),((),((y f x f F y x F y x →∀∀ 12.求下列各式的前束范式;1),()(y x yG x xF ∀→∀5)),()((),(2121211x x G x x H x x F x ⌝∃→→∃ 本题课本上有错误 解:1 ),()(y x yG x xF ∀→∀),()(y t yG x xF ∀→∀⇔)),()((y t G x F y x →∀∃⇔ 5 )),()((),(2121211x x G x x H x x F x ⌝∃→→∃ 15.在自然数推理系统F 中,构造下面推理的证明:(1) 前提: ))())()((()(y R y G y F y x xF →∨∀→∃,)(x xF ∃结论: ∃xRx(2) 前提: ∀xFx →Ga ∧Rx, xFx结论:xFx ∧Rx 证明1①)(x xF ∃ 前提引入 ②Fc ①EI③))())()((()(y R y G y F y x xF →∨∀→∃ 前提引入 ④))())()(((y R y G y F y →∨∀ ①③假言推理 ⑤Fc ∨Gc →Rc ④UI⑥Fc ∨Gc ②附加 ⑦Rc ⑤⑥假言推理 ⑧∃xRx ⑦EG 2①∃xFx 前提引入 ②Fc ①EI③∀xFx →Ga ∧Rx 前提引入 ④Fc →Ga ∧Rc ③UI⑤Ga ∧Rc ②④假言推理 ⑥Rc ⑤化简 ⑦Fc ∧Rc ②⑥合取引入 ⑧∃xFx ∧Rx ⑦EG第六章部分课后习题参考答案5.确定下列命题是否为真: 1∅⊆∅ 真 2∅∈∅ 假 3}{∅⊆∅ 真 4}{∅∈∅ 真 5{a,b }⊆{a,b,c,{a,b,c }} 真 6{a,b }∈{a,b,c,{a,b }} 真 7{a,b }⊆{a,b,{{a,b }}} 真 8{a,b }∈{a,b,{{a,b }}} 假6.设a,b,c 各不相同,判断下述等式中哪个等式为真: 1{{a,b },c,∅}={{a,b },c } 假2{a ,b,a }={a,b } 真 3{{a },{b}}={{a,b }} 假 4{∅,{∅},a,b }={{∅,{∅}},a,b } 假 8.求下列集合的幂集:1{a,b,c } PA={ ∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}2{1,{2,3}}PA={ ∅, {1}, {{2,3}}, {1,{2,3}} }3{∅}PA={ ∅, {∅} }4{∅,{∅}}PA={ ∅, {1}, {{2,3}}, {1,{2,3}} }14.化简下列集合表达式:1A B B -A B2A B C-B C A解:1A B B -A B=A B B ~A B=A B ~A B B=∅ B=∅2A B C-B C A=A B C ~B C A=A ~B C B C ~B C A=A ~B C ∅ A=A ~B C A=A18.某班有25个学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球;已知6个会打网球的人都会打篮球或排球;求不会打球的人数;解: 阿A={会打篮球的人},B={会打排球的人},C={会打网球的人}|A|=14, |B|=12, |A B|=6,|A C|=5,| A B C|=2,|C|=6,C⊆A B如图所示;25-5+4+2+3-5-1=25-14-5-1=5不会打球的人共5人21.设集合A={{1,2},{2,3},{1,3},{∅}},计算下列表达式:1 A2 A3 A4 A解:1 A={1,2} {2,3} {1,3} {∅}={1,2,3,∅}2 A={1,2} {2,3} {1,3} {∅}=∅3 A=1 2 3 ∅=∅4 A=∅27、设A,B,C是任意集合,证明1A-B-C=A- B⋃C2A-B-C=A-C-B-C证明1 A-B-C=A ~B ~C= A ~B ~C= A ~B⋃C =A- B⋃C2 A-C-B-C=A ~C ~B ~C= A ~C ~B C=A ~C ~B A ~C C= A ~C ~B ∅= A ~B⋃C =A- B⋃C 由1得证;第七章部分课后习题参考答案7.列出集合A={2,3,4}上的恒等关系I A,全域关系E A,小于或等于关系L A,整除关系D A. 解:I={<2,2>,<3,3>,<4,4>}A={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}EA={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>}LAD={<2,4>}A13.设A={<1,2>,<2,4>,<3,3>}B={<1,3>,<2,4>,<4,2>}求A⋃B,A⋂B, domA, domB, domA⋃B, ranA, ranB, ranA⋂B , fldA-B.解:A⋃B={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>}A⋂B={<2,4>}domA={1,2,3}domB={1,2,4}domA∨B={1,2,3,4}ranA={2,3,4}ranB={2,3,4}ranA⋂B={4}A-B={<1,2>,<3,3>},fldA-B={1,2,3}14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}求R R, R-1, R↑{0,1,}, R{1,2}解:R R={<0,2>,<0,3>,<1,3>}R -1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}R ↑{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>}R{1,2}=ranR|{1,2}={2,3}16.设A={a,b,c,d},1R ,2R 为A 上的关系,其中1R ={},,,,,a a a b b d求23122112,,,R R R R R R ;解: R 1 R 2={<a,d>,<a,c>,<a,d>}R 2 R 1={<c,d>}R 12=R 1 R 1={<a,a>,<a,b>,<a,d>}R 22=R 2 R 2={<b,b>,<c,c>,<c,d>}R 23=R 2 R 22={<b,c>,<c,b>,<b,d>}36.设A={1,2,3,4},在A ⨯A 上定义二元关系R,∀<u,v>,<x,y>∈A ⨯A ,〈u,v> R <x,y>⇔u + y = x + v.(1)证明R 是A ⨯A 上的等价关系.2确定由R 引起的对A ⨯A 的划分.1证明:∵<u,v>R<x,y> ⇔u+y=x-y∴<u,v>R<x,y>⇔u-v=x-y∀<u,v>∈A ⨯A∵u-v=u-v∴<u,v>R<u,v>∴R 是自反的任意的<u,v>,<x,y>∈A ×A如果<u,v>R<x,y> ,那么u-v=x-y∴x-y=u-v ∴<x,y>R<u,v>∴R 是对称的任意的<u,v>,<x,y>,<a,b>∈A ×A若<u,v>R<x,y>,<x,y>R<a,b>则u-v=x-y,x-y=a-b∴u-v=a-b ∴<u,v>R<a,b>∴R是传递的∴R是A×A上的等价关系2 ∏={{<1,1>,<2,2>,<3,3>,<4,4>}, {<2,1>,<3,2>,<4,3>}, {<3,1>,<4,2>},{<4,1>}, {<1,2>,<2,3>,<3,4>}, {<1,3>,<2,4>}, {<1,4>} }41.设A={1,2,3,4},R为A⨯A上的二元关系, ∀〈a,b〉,〈c,d〉∈A⨯A ,〈a,b〉R〈c,d〉⇔a + b = c + d(1)证明R为等价关系.(2)求R导出的划分.1证明:∀<a,b〉∈A⨯Aa+b=a+b∴<a,b>R<a,b>∴R是自反的任意的<a,b>,<c,d>∈A×A设<a,b>R<c,d>,则a+b=c+d∴c+d=a+b ∴<c,d>R<a,b>∴R是对称的任意的<a,b>,<c,d>,<x,y>∈A×A若<a,b>R<c,d>,<c,d>R<x,y>则a+b=c+d,c+d=x+y∴a+b=x+y ∴<a,b>R<x,y>∴R是传递的∴R是 A×A上的等价关系2∏={{<1,1>}, {<1,2>,<2,1>}, {<1,3>,<2,2>,<3,1>}, {<1,4>,<4,1>,<2,3>,<3,2>}, {<2,4>,<4,2>,<3,3>}, {<3,4>,<4,3>}, {<4,4>}}43. 对于下列集合与整除关系画出哈斯图:1 {1,2,3,4,6,8,12,24}2 {1,2,3,4,5,6,7,8,9,10,11,12}解:1 245.下图是两个偏序集<A,R >的哈斯图.分别写出集合A 和偏序关系R 的集合表达式.a b解: aA={a,b,c,d,e,f,g}R ={<a,b>,<a,c>,<a,d>,<a,e>,<a,f>,<a,g>,<b,d>,<b,e>,<c,f>,<c,g>}A I ⋃ b A={a,b,c,d,e,f,g} R ={<a,b>,<a,c>,<a,d>,<a,e>,<a,f>,<d,f>,<e,f>}A I ⋃46.分别画出下列各偏序集<A,R >的哈斯图,并找出A 的极大元`极小元`最大元和最小元.1A={a,b,c,d,e} R ={<a,d>,<a,c>,<a,b>,<a,e>,<b,e>,<c,e>,<d,e>}⋃I A . 2A={a,b,c,d,e}, R ={<c,d>}⋃IA.解:1 2项目 1 2极大元: e a,b,d,e极小元: a a,b,c,e最大元: e 无最小元: a 无第八章部分课后习题参考答案1.设f :N →N,且f x=12x x x ⎧⎪⎨⎪⎩,若为奇数若为偶数, 求f 0, f {0}, f 1, f {1}, f {0,2,4,6,…},f {4,6,8}, f -1{3,5,7}.解:f 0=0, f {0}={0}, f 1=1, f {1}={1},f {0,2,4,6,…}=N,f {4,6,8}={2,3,4}, f -1 {3,5,7}={6,10,14}.4. 判断下列函数中哪些是满射的哪些是单射的哪些是双射的1 f:N →N, fx=x 2+2 不是满射,不是单射2 f:N →N,fx=xmod 3,x 除以3的余数 不是满射,不是单射3 f:N →N,fx=10x x ⎧⎨⎩,若为奇数,若为偶数不是满射,不是单射 4 f:N →{0,1},fx=01x x ⎧⎨⎩,若为奇数,若为偶数是满射,不是单射 5 f:N-{0}→R,fx=lgx 不是满射,是单射6 f:R →R,fx=x 2-2x-15 不是满射,不是单射5. 设X={a,b,c,d},Y={1,2,3},f={<a,1>,<b,2>,<c,3>,}判断以下命题的真假:1f 是从X 到Y 的二元关系,但不是从X 到Y 的函数; 对2f 是从X 到Y 的函数,但不是满射,也不是单射的; 错3f 是从X 到Y 的满射,但不是单射; 错4f 是从X 到Y 的双射. 错第十章部分课后习题参考答案4.判断下列集合对所给的二元运算是否封闭:(1) 整数集合Z 和普通的减法运算;封闭,不满足交换律和结合律,无零元和单位元(2) 非零整数集合Z ∗和普通的除法运算;不封闭(3) 全体n n ⨯实矩阵集合M n R 和矩阵加法及乘法运算,其中n ≥2;封闭 均满足交换律,结合律,乘法对加法满足分配律;加法单位元是零矩阵,无零元;乘法单位元是单位矩阵,零元是零矩阵;4全体n n ⨯实可逆矩阵集合关于矩阵加法及乘法运算,其中n ≥2;不封闭5正实数集合R +和 ° 运算,其中 ° 运算定义为:a ,b ∈R +,a ° b = ab −a −b不封闭 因为 +∉-=--⨯=R 11111116n ∈Z +,nZ ={nz | z ∈ Z }.nZ 关于普通的加法和乘法运算;封闭,均满足交换律,结合律,乘法对加法满足分配律加法单位元是0,无零元;乘法无单位元1>n ,零元是0;1=n 单位元是17A = {},,,21n a a a n ≥2.° 运算定义如下:a ,b ∈ A ,a ° b = b封闭 不满足交换律,满足结合律,8S = {2x −1|x ∈Z +}关于普通的加法和乘法运算;封闭 均满足交换律,结合律,乘法对加法满足分配律9S = {0,1},S 是关于普通的加法和乘法运算;加法不封闭,乘法封闭;乘法满足交换律,结合律10S = {x | x =2n ,n ∈Z +} ,S 关于普通的加法和乘法运算;加法不封闭,乘法封闭,乘法满足交换律,结合律5.对于上题中封闭的二元运算判断是否适合交换律,结合律,分配律;见上题7.设 为+Z 上的二元运算+∈∀Z y x ,,X Y = min x,y ,即x 和y 之中较小的数.(1)求4 6,7 3;4, 32 在+Z 上是否适合交换律,结合律,和幂等律满足交换律,结合律,和幂等律3求运算的单位元,零元及+Z 中所有可逆元素的逆元;单位元无,零元1, 所有元素无逆元8.Q Q S ⨯= Q 为有理数集,为S 上的二元运算,<a,b>,<x,y > ∈ S 有< a,b ><x,y> = <ax,ay + b>1运算在S 上是否可交换,可结合是否为幂等的不可交换:<x,y><a,b >= <xa,xb +y>≠< a,b ><x,y>可结合:<a,b ><x,y><c,d>=<ax,ay + b><c,d>=<axc,axd +ay+b ><a,b ><x,y><c,d>=<a, b><xc,xd+y>=<axc,axd +y+b ><a,b ><x,y><c,d>=<a,b ><x,y><c,d>不是幂等的2运算是否有单位元,零元 如果有请指出,并求S 中所有可逆元素的逆元;设<a,b>是单位元,<x,y > ∈ S ,<a,b ><x,y>= <x,y><a,b >=<x,y>则<ax,ay+b>=<xa,xb+y>=<x,y>,解的<a,b>=<1,0>,即为单位;设<a,b>是零元,<x,y > ∈ S ,<a,b ><x,y>= <x,y><a,b >=<a,b>则<ax,ay+b>=<xa,xb+y>=<a,b>,无解;即无零元;<x,y > ∈ S,设<a,b>是它的逆元<a,b ><x,y>= <x,y><a,b >=<1,0><ax,ay+b>=<xa,xb+y>=<1,0>a=1/x,b=-y/x所以当x ≠0时,x y x y x -=><-,1,1 10.令S={a,b},S 上有四个运算:,°,和□分别有表确定; a b c d1这4个运算中哪些运算满足交换律,结合律,幂等律a 交换律,结合律,幂等律都满足, 零元为a,没有单位元;b 满足交换律和结合律,不满足幂等律,单位元为a,没有零元c 满足交换律,不满足幂等律,不满足结合律没有单位元, 没有零元d 不满足交换律,满足结合律和幂等律没有单位元, 没有零元(2)求每个运算的单位元,零元以及每一个可逆元素的逆元;见上16.设V=〈 N,+ , 〉,其中+ ,分别代表普通加法与乘法,对下面给定的每个集合确定它是否构成V 的子代数,为什么1S 1={2n | n ∈Z } 是2S 2={2n +1 | n ∈Z } 不是 加法不封闭3S 3 = {-1,0,1} 不是,加法不封闭第十一章部分课后习题参考答案8.设S={0,1,2,3},为模4乘法,即"∀x,y ∈S, xy=xymod 4 问〈S,〉是否构成群为什么解:1 ∀x,y ∈S, xy=xymod 4S ∈,是S 上的代数运算; 2 ∀x,y,z ∈S,设xy=4k+r 30≤≤rx y z =xymod 4z=r z=rzmod 4=4kz+rzmod 4=4k+rzmod 4 =xyzmod 4同理x y z =xyzmod 4所以,x y z = x y z,结合律成立; 3 ∀x ∈S, x 1=1x=x,,所以1是单位元;4,33,1111==-- 0和2没有逆元所以,〈S,〉不构成群9.设Z 为整数集合,在Z 上定义二元运算;如下:" ∀x,y ∈Z,xoy= x+y-2问Z 关于o 运算能否构成群为什么解:1 ∀x,y ∈Z, xoy= x+y-2Z ∈,o 是Z 上的代数运算;2 ∀x,y,z ∈Z,xoy oz =x+y-2oz=x+y-2+z-2=x+y+z-4同理xoyoz= xoyoz,结合律成立;3设e 是单位元,∀x ∈Z, xo e = e ox=x,即x+e -2= e +x-2=x, e=24 ∀x ∈Z , 设x 的逆元是y, xoy= yox=e , 即x+y-2=y+x-2=2,所以,x y x -==-41所以〈Z,o 〉构成群11.设G=⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛1001,1001,1001,1001,证明G 关于矩阵乘法构成一个群. 解:1 ∀x,y ∈G, 易知xy ∈G,乘法是Z 上的代数运算;2 矩阵乘法满足结合律3设⎪⎪⎭⎫ ⎝⎛1001是单位元,4每个矩阵的逆元都是自己;所以G 关于矩阵乘法构成一个群.14.设G 为群,且存在a∈G,使得G={a k ∣k∈Z}证明:G 是交换群;证明:∀x,y ∈G,设l k a y a x ==,,则所以,G 是交换群17.设G 为群,证明e 为G 中唯一的幂等元;证明:设G e ∈0也是幂等元,则020e e =,即e e e 020=,由消去律知e e =018.设G 为群,a,b,c∈G,证明∣abc∣=∣bca∣=∣cab∣证明:先证设e bca e abc k k =⇔=)()(设,)(e abc k =则e abc abc abc abc =)())()(( ,即 e a bca bca bca bca a =-1)())()((左边同乘1-a ,右边同乘a 得反过来,设,)(e bac k =则.)(e abc k= 由元素阶的定义知,∣abc∣=∣bca∣,同理∣bca∣=∣cab∣19.证明:偶数阶群G 必含2阶元;证明:设群G 不含2阶元,G a ∈∀,当e a =时,a 是一阶元,当e a ≠时,a 至少是3阶元,因为群G 时有限阶的,所以a 是有限阶的,设a 是k 阶的,则1-a 也是k 阶的,所以高于3阶的元成对出现的,G 不含2阶元,G 含唯一的1阶元e ,这与群G 是偶数阶的矛盾;所以,偶数阶群G 必含2阶元20.设G 为非Abel 群,证明G 中存在非单位元a 和b,a≠b,且ab=ba.证明:先证明G 含至少含3阶元;若G 只含1阶元,则G={e},G 为Abel 群矛盾;若G 除了1阶元e 外,其余元a 均为2阶元,则e a =2,a a =-1ba ba b a ab ab ab b b a a G b a ======∈∀------111111)(,)(,,,,所以,与G 为Abel 群矛盾;所以,G 含至少含一个3阶元,设为a ,则≠a 2a ,且22aa a a =;令2a b =的证;21.设G 是M n R 上的加法群,n≥2,判断下述子集是否构成子群;1全体对称矩阵 是子群2全体对角矩阵 是子群3全体行列式大于等于0的矩阵. 不是子群4全体上下三角矩阵; 是子群22.设G 为群,a 是G 中给定元素,a 的正规化子Na 表示G 中与a 可交换的元素构成的集合,即Na={x ∣x ∈G ∧xa=ax}证明Na 构成G 的子群;证明:ea=ae,φ≠∈)(a N ea xy ya x ay x y xa y ax xy a )()()()()()(=====,所以)(a N xy ∈由xa ax =,得111111,------==eax ae x xax x axx x ,即11--=ax a x ,所以)(1a N x ∈- 所以Na 构成G 的子群31.设ϕ1是群G 1到G 2的同态,ϕ2是G 2到G 3的同态,证明ϕ1ϕ 2是G 1到G 3的同态;证明:有已知ϕ1是G 1到G 2的函数,ϕ2是G 2到G 3的函数,则ϕ1·ϕ2是G 1到G 3的函数;所以:ϕ1·ϕ2是G 1到G 3的同态;33.证明循环群一定是阿贝尔群,说明阿贝尔群是否一定为循环群,并证明你的结论; 证明:设G 是循环群,令G=<a>,G y x ∈∀,,令l k a y a x ==,,那么yx a a a a a a xy k l k l l k l k =====++,G 是阿贝尔群克莱因四元群,},,,{c b a e G =是交换群,但不是循环群,因为e 是一阶元,a,b,c 是二阶元;36.设τσ,是5元置换,且⎪⎪⎭⎫ ⎝⎛=3541254321σ,⎪⎪⎭⎫⎝⎛=2154354321τ 1计算τσσσττσστ111,,,,---;2将τσσττσ11,,--表成不交的轮换之积;3将2中的置换表示成对换之积,并说明哪些为奇置换,哪些为偶置换; 解:1 ⎪⎪⎭⎫ ⎝⎛=1235454321τσ ⎪⎪⎭⎫ ⎝⎛=5213454321στ ⎪⎪⎭⎫ ⎝⎛=-32154543211τ 2 )1425(=τσ )14253(1=-τ )25)(143(1=-τσσ3 )15)(12)(14(=τσ 奇置换,)13)(15)(12)(14(1=-τ 偶置换)25)(13)(14(1=-τσσ 奇置换第十四章部分课后习题参考答案5、设无向图G 有10条边,3度与4度顶点各2个,其余顶点的度数均小于3,问G 至少有多少个顶点在最少顶点的情况下,写出度数列、)()(G G δ、∆;解:由握手定理图G 的度数之和为:20102=⨯3度与4度顶点各2个,这4个顶点的度数之和为14度;其余顶点的度数共有6度;其余顶点的度数均小于3,欲使G 的顶点最少,其余顶点的度数应都取2, 所以,G 至少有7个顶点, 出度数列为3,3,4,4,2,2,2,2)(,4)(==∆G G δ.7、设有向图D 的度数列为2,3,2,3,出度列为1,2,1,1,求D 的入度列,并求)(),(D D δ∆, )(),(D D ++∆δ,)(),(D D --∆δ.解:D 的度数列为2,3,2,3,出度列为1,2,1,1,D 的入度列为1,1,1,2.2)(,3)(==∆D D δ,1)(,2)(==∆++D D δ,1)(,2)(==∆--D D δ8、设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点解:由握手定理图G 的度数之和为:1262=⨯设2度点x 个,则1221513=+⨯+⨯x ,2=x ,该图有4个顶点.14、下面给出的两个正整数数列中哪个是可图化的对可图化的数列,试给出3种非同构的无向图,其中至少有两个时简单图;1 2,2,3,3,4,4,52 2,2,2,2,3,3,4,4解:1 2+2+3+3+4+4+5=23 是奇数,不可图化;2 2+2+2+2+3+3+4+4=16, 是偶数,可图化;18、设有3个4阶4条边的无向简单图G 1、G 2、G 3,证明它们至少有两个是同构的;证明:4阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列为2,2,2,2;3,2,2,1;3,3,1,1;但3,3,1,1对应的图不是简单图;所以从同构的观点看,4阶4条边的无向简单图只有两个:所以,G 1、G 2、G 3至少有两个是同构的;20、已知n 阶无向简单图G 有m 条边,试求G 的补图G 的边数m '; 解:m n n m --='2)1( 21、无向图G 如下图1求G 的全部点割集与边割集,指出其中的割点和桥;2 求G 的点连通度)(G k 与边连通度)(G λ;解:点割集: {a,b},d边割集{e2,e3},{e3,e4},{e1,e2},{e1,e4}{e1,e3},{e2,e4},{e5})(G k =)(G λ=123、求G 的点连通度)(G k 、边连通度)(G λ与最小度数)(G δ;解:2)(=G k 、3)(=G λ 、4)(=G δ28、设n 阶无向简单图为3-正则图,且边数m 与n 满足2n-3=m 问这样的无向图有几种非同构的情况解:⎩⎨⎧=-=mn m n 3223 得n=6,m=9.31、设图G 和它的部图G 的边数分别为m 和m ,试确定G 的阶数; 解:2)1(+=+n n m m 得2)(811m m n +++-= 45、有向图D 如图1求2v 到5v 长度为1,2,3,4的通路数;2求5v 到5v 长度为1,2,3,4的回路数;3求D 中长度为4的通路数;4求D 中长度小于或等于4的回路数;5写出D 的可达矩阵;解:有向图D 的邻接矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0101000101100000010110000A ,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00202200000101020000010102A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=40000020200020202020002023A 12v 到5v 长度为1,2,3,4的通路数为0,2,0,0;25v 到5v 长度为1,2,3,4的回路数为0,0,4,0;3D 中长度为4的通路数为32;4D 中长度小于或等于4的回路数10;4出D 的可达矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111111111111111111111111P 第十六章部分课后习题参考答案1、画出所有5阶和7阶非同构的无向树.2、一棵无向树T 有5片树叶,3个2度分支点,其余的分支点都是3度顶点,问T 有几个顶点 解:设3度分支点x 个,则)135(232315-++⨯=+⨯+⨯x x ,解得3=xT 有11个顶点3、无向树T 有8个树叶,2个3度分支点,其余的分支点都是4度顶点,问T 有几个4度分支点根据T 的度数列,请至少画出4棵非同构的无向树;解:设4度分支点x 个,则)128(243218-++⨯=+⨯+⨯x x ,解得2=x4、棵无向树T 有i n i=2,3,…,k 个i 度分支点,其余顶点都是树叶,问T 应该有几片树叶 解:设树叶x 片,则)1(21-+⨯=⨯+⨯x n x i n i i ,解得2)2(+-=i n i x评论:2,3,4题都是用了两个结论,一是握手定理,二是1-=n m5、nn≥3阶无向树T 的最大度(T)至少为几最多为几解:2,n-16、若nn ≥3阶无向树T 的最大度(T) =2,问T 中最长的路径长度为几解:n-17、证明:nn ≥2 阶无向树不是欧拉图.证明:无向树没有回路,因而不是欧拉图;8、证明:nn ≥2 阶无向树不是哈密顿图.证明:无向树没有回路,因而不是哈密顿图;9、证明:任何无向树T 都是二部图.证明:无向树没有回路,因而不存在技术长度的圈,是二部图;10、什么样的无向树T 既是欧拉图,又是哈密顿图解:一阶无向树14、设e 为无向连通图G 中的一条边, e 在G 的任何生成树中,问e 应有什么性质解:e 是桥15、设e为无向连通图G中的一条边, e不在G的任何生成树中, 问e应有什么性质解:e是环23、已知n阶m条的无向图G是kk≥2棵树组成的森林,证明:m = n-k.;证明:数学归纳法;k=1时, m = n-1,结论成立;时,结论成立,当k=t时,无向图G是t棵树组成的森林,任取两棵树,每棵树任取一个设k=t-1t-11顶点,这两个顶点连线;则所得新图有t-1棵树,所以m = n-k-1.所以原图中m = n-k得证;24、在图所示2图中,实边所示的生成子图T是该图的生成树.1指出T的弦,及每条弦对应的基本回路和对应T的基本回路系统.2 指出T的所有树枝, 及每条树枝对应的基本割集和对应T的基本割集系统.a b图解:aT的弦:c,d,g,hT的基本回路系统: S={{a,c,b},{a,b,f,d},{e,a,b,h},{e,a,b,f,g}}T的所有树枝: e,a,b,fT的基本割集系统: S={{e,g,h},{a,c,d,g,h},{b,c,d,g,h},{f,d,g}}b有关问题仿照给出25、求图所示带权图中的最小生成树.a b图解:注:答案不唯一;37、画一棵权为3,4,5,6,7,8,9的最优2叉树,并计算出它的权.38.下面给出的各符号串集合哪些是前缀码A1={0,10,110,1111} 是前缀码A2={1,01,001,000} 是前缀码A3={1,11,101,001,0011} 不是前缀码A4={b,c,aa,ac,aba,abb,abc} 是前缀码A5={ b,c,a,aa,ac,abc,abb,aba} 不是前缀码41.设7个字母在通信中出现的频率如下:a: 35% b: 20%c: 15% d: 10%e: 10% f: 5%g: 5%用Huffman算法求传输它们的前缀码.要求画出最优树,指出每个字母对应的编码.并指出传输10n n ≥2个按上述频率出现的字母,需要多少个二进制数字.解:a:01 b:10 c:000 d:110 e:001 f:1111 g:1110WT=54+54+103+103+153+202+352=255传输10n n≥2个按上述频率出现的字母,需要25510n-2个二进制数字.。
离散数学第二版屈婉玲简介《离散数学第二版》是由屈婉玲编写的离散数学教材。
离散数学是计算机科学中的一门基础课程,主要研究离散对象及其结构、性质和相互关系。
这本教材系统地介绍了离散数学的各个方面,具有循序渐进、清晰易懂的特点,适合计算机科学及相关专业本科生使用。
目录•离散数学概论–离散数学的基本概念–命题逻辑–谓词逻辑与推理–集合与命题逻辑的应用•图论基础–图的基本概念–有向图与无向图–图的遍历–最短路径•关系与函数–二元关系–关系的闭包与等价关系–函数与映射关系–函数的复合与反函数•计数原理–基本计数原理–排列与组合–生成函数–容斥原理•离散数学中的数论–整数与整除性–模运算与同余关系–素数与因子分解–公约数与最大公约数•离散结构中的代数系统–代数系统的基本概念–半群与幺半群–群与子群–环与域内容概述离散数学概论第一章介绍了离散数学的基本概念和离散对象的性质。
包括集合论、命题逻辑和谓词逻辑等内容。
后续讲解了命题逻辑的推理规则,以及如何应用集合论和命题逻辑解决实际问题。
图论基础第二章介绍了图论的基本概念和图的表示方法。
包括有向图和无向图的概念、图的遍历算法和最短路径算法。
通过实例讲解了如何使用图论解决实际问题。
关系与函数第三章介绍了关系与函数的概念和性质。
包括二元关系的定义和性质、关系的闭包和等价关系的概念,以及函数与映射关系的概念和性质。
通过实例讲解了如何使用关系和函数解决实际问题。
计数原理第四章介绍了计数原理的基本概念和计数方法。
包括基本计数原理、排列与组合、生成函数和容斥原理等内容。
通过实例讲解了如何使用计数原理解决实际问题。
离散数学中的数论第五章介绍了离散数学中的数论知识。
包括整数与整除性、模运算与同余关系、素数与因子分解、公约数与最大公约数等内容。
通过实例讲解了如何使用数论知识解决实际问题。
离散结构中的代数系统第六章介绍了离散结构中的代数系统。
包括代数系统的基本概念、半群与幺半群、群与子群、环与域等内容。
离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。
第一章 命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e 是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p :刘晓月选学英语,q :刘晓月选学日语;.7.因为p 与q 不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)pq ,真值为1;(4)p→r,若p 为真,则p→r 真值为0,否则,p→r 真值为1.16 设p 、q 的真值为0;r 、s 的真值为1,求下列各命题公式的真值。
(1)p ∨(q ∧r)⇔ 0∨(0∧1) ⇔0(2)(p?r )∧(﹁q ∨s) ⇔(0?1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p ∧⌝q ∧r )?(p ∧q ∧﹁r) ⇔(1∧1∧1) ? (0∧0∧0)⇔0(4)(⌝r ∧s )→(p ∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。
解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:RοR ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。
离散数学答案屈婉玲版第⼆版⾼等教育出版社课后答案.docx离散数学答案屈婉玲版第⼆版⾼等教育出版社课后答案第⼀章部分课后习题参考答案16设p 、q 的真值为0; r 、S 的真值为1,求下列各命题公式的真值。
(1) p ∨ (q ∧ r)⼆ O V (0 ∧ 1) U 0(2) ( p? r )∧ (「q ∨ S)⼆ (0? 1)∧ (1 ∨ 1)⼆ 0∧ 1= 0. (3)( ⼀ p ∧⼀ q ∧ r ) ? (P ∧ q ∧, r)⼆(1∧ 1∧ 1)(0 ∧ 0∧ 0)=0(4) (⼀ r ∧ S )→(P ∧⼀ q) U (0∧ 1)→ (1 ∧ 0) = 0→O= 1 17 .判断下⾯⼀段论述是否为真:“⼆是⽆理数。
并且,如果3是⽆理数,则' 2也是⽆理数。
另外6能被2整除,6才能被4整除。
”答:p:⼆是⽆理数 1q: 3是⽆理数 0 r:2是⽆理数 1s: 6能被2整除1 t: 6能被4整除 0命题符号化为:p ∧ (q →r) ∧ (t →S)的真值为1,所以这⼀段的论述为真19.⽤真值表判断下列公式的类型: (4) (P → q) → (_q —_ P) (5) (P ∧ r)' (—p ∧⼀q) (6) ((P →q) ∧ (q → r)) →(p →r)(5) 公式类型为可满⾜式(⽅法如上例) (6) 公式类型为永真式(⽅法如上例)答:(4)_ p → q^q 1 1 1POOIOOI 1 1 1 0 所以公式类型为永真式P 1 1 0 0q —_p 1 1 0 1(p → q)→ (—q →-P) 1 1 1 1第⼆章部分课后习题参考答案3. ⽤等值演算法判断下列公式的类型,对不是重⾔式的可满⾜式,再⽤真值表法求出成真赋值?⑴⼀(p∧q→q)(2) (p→(P ∨q))∨(p→r)(3) (P∨q)→(P∧r)答:(2) (p→(p∨q))∨(p→r):= (⼀p∨(p∨q))∨(⼀p∨r):= ^ p∨p∨q∨r= 1 所以公式类型为永真式⑶P q r p∨q P ∧r (P∨q)→ (P∧0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满⾜式4. ⽤等值演算法证明下⾯等值式:⑵(P → q) ∧(P → r)⼆(P → (q ∧r))⑷(P ∧- q) ∨ (—p∧q)= (p ∨q) ∧⼀(P ∧q)证明(2)(P →q) ∧(P →r)(^p∨q) ∧( ⼀p∨r)=^p∨(q ∧r)):=p→ (q ∧ r)(4) (P ∧— q) ∨ (—p∧q) = (p ∨ (—p∧q)) ∧(~ q∨ ( —p∧q)⼆(P∨— P) ∧(P∨q)∧(⼀q∨-P) ∧Cq∨q)U 1 ∧(P ∨q) ∧^ (P ∧q) ∧1U (P ∨q) ∧^ (P ∧q)5. 求下列公式的主析取范式与主合取范式,并求成真赋值(1) ( ^P→q)→(⼀q∨P)(2) _(P→q) ∧q∧r(3) (P ∨(q ∧r)) →(P ∨q∨r)解:(1) 主析取范式(-p→ q) → (-q P)--(P q) (⼀q P)=(—P ^q) ( ⼀q P)=(-P ^q) (⼀q P) (⼀q -P) (P q) (P ^q)-(-P ^q) (P ^q) (P q)U m0m2m3U ∑ (0,2,3)主合取范式:(^P→q)→(⼀q P)--(P q) (⼀q P)U ( -p -q) (⼀q P)=(-p ( -q P)) ( -q (-q P))=1 (p — q)-(P _q) - M iU ∏ (1)(2) 主合取范式为:—(P → q) q r = ⼀(⼀p q) q r=(P _ q) q r = 0所以该式为⽭盾式?主合取范式为∏(0,1,2,3,4,5,6,7)⽭盾式的主析取范式为0(3) 主合取范式为:(P (q r)) → (P q r)u ⼀(P (q r)) → (P q r)=(⼀p ( ⼀q _ r)) (P q r)U ( ⼀p (P q r)) (( ⼀q ^ r)) (P q r)) =1 1所以该式为永真式?永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在⾃然推理系统P中构造下⾯推理的证明⑵前提:p—;q, —(q r),r结论:_ P(4)前提:q“ p,q s,s I t,t r结论:P q证明:(2)①—(q r) 前提引⼊②—q ⼀r ①置换③ q ? ⼀r ②蕴含等值式④r 前提引⼊⑤⼀q ③④拒取式⑥p— q 前提引⼊⑦」P (3)⑤⑥拒取式证明(4):①t r 前提引⼊②t ①化简律③qι S前提引⼊④SI t 前提引⼊⑤q t ③④等价三段论(q~ t)(t > q) ⑤置换⑦(q T )⑥化简⑧q ②⑥假⾔推理⑨ q—;P 前提引⼊⑩P ⑧⑨假⾔推理(11)p q ⑧⑩合取15在⾃然推理系统P中⽤附加前提法证明下⾯各推理(1)前提:p— (q > r),S > p,q结论:S-;r证明①S 附加前提引⼊②Sr P 前提引⼊③P ①②假⾔推理④P- (q - r) 前提引⼊⑤ q—;r ③④假⾔推理⑥q 前提引⼊⑦r ⑤⑥假⾔推理16在⾃然推理系统P中⽤归谬法证明下⾯各推理:(1)前提:p ■ —q, —r q,r - S结论:- P证明:①P 结论的否定引⼊② p—;「q 前提引⼊③⼚q ①②假⾔推理r q 前提引⼊⑤「r ④化简律⑥r 「S 前提引⼊⑦r ⑥化简律⑧r 「r ⑤⑦合取由于最后⼀步r 「r是⽭盾式,所以推理正确.第四章部分课后习题参考答案3.在⼀阶逻辑中将下⾯将下⾯命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意X,均有声-2=(x+ )(x T Q.(2) 存在x,使得x+5=9.其中(a)个体域为⾃然数集合.(b) 个体域为实数集合.解:F(x): F=2=(x+遢)(x :區).G(x): x+5=9.(1)在两个个体域中都解释为-XF(X),在(a)中为假命题,在(b)中为真命题。
1.1.略1.2.略1.3.略1.4.略1.5.略1.6.略1.7.略1.8.略1.9.略1.10.略1.11.略1.12.将下列命题符号化,并给出各命题的真值:<1>2+2=4当且仅当3+3=6.<2>2+2=4的充要条件是3+3≠6.<3>2+2≠4与3+3=6互为充要条件.<4>若2+2≠4, 则3+3≠6,反之亦然.<1>p↔q,其中,p: 2+2=4,q: 3+3=6, 真值为1.<2>p↔⌝q,其中,p:2+2=4,q:3+3=6,真值为0.<3>⌝p↔q,其中,p:2+2=4,q:3+3=6,真值为0.<4>⌝p↔⌝q,其中,p:2+2=4,q:3+3=6,真值为1.1.13.将下列命题符号化, 并给出各命题的真值:<1>若今天是星期一,则明天是星期二.<2>只有今天是星期一,明天才是星期二.<3>今天是星期一当且仅当明天是星期二. <4>若今天是星期一,则明天是星期三.令p: 今天是星期一;q:明天是星期二;r:明天是星期三.<1>p→q ⇔ 1.<2> q→p ⇔ 1.<3> p↔q⇔ 1.<4>p→r当p ⇔ 0时为真; p ⇔ 1时为假.1.14.将下列命题符号化. <1>刘晓月跑得快,跳得高.<2>老王是XX人或XX人.<3>因为天气冷, 所以我穿了羽绒服. <4>王欢与李乐组成一个小组.<5>李辛与李末是兄弟.<6>王强与刘威都学过法语. <7>他一面吃饭, 一面听音乐. <8>如果天下大雨,他就乘班车上班.<9>只有天下大雨,他才乘班车上班.<10>除非天下大雨,他才乘班车上班.<11>下雪路滑, 他迟到了.<12>2与4都是素数,这是不对的.<13>"2或4是素数,这是不对的"是不对的.<1>p∧q,其中, p:刘晓月跑得快, q: 刘晓月跳得高.<2>p∨q,其中, p:老王是XX人, q: 老王是XX 人.<3>p→q, 其中,p:天气冷, q:我穿了羽绒服.<4>p, 其中,p:王欢与李乐组成一个小组,是简单命题.<5>p, 其中,p:李辛与李末是兄弟.<6>p∧q,其中, p:王强学过法语, q: 刘威学过法语.<7>p∧q,其中, p:他吃饭,q:他听音乐.<8>p→q, 其中,p:天下大雨, q:他乘班车上班.<9>p→q, 其中,p:他乘班车上班, q: 天下大雨.<10>p→q, 其中,p: 他乘班车上班,q:天下大雨.<11>p→q, 其中,p: 下雪路滑, q:他迟到了.12>⌝ <p∧q>或⌝p∨⌝q,其中,p:2是素数,q:4是素数.<13>⌝⌝ <p∨q>或p∨q,其中,p:2 是素数,q:4是素数.1.15.设p:2+3=5.q: 大熊猫产在中国.r: 复旦大学在XX.求下列复合命题的真值:<1><p↔q>→r<2><r→ <p∧q>>↔ ⌝p<3>⌝r→ <⌝p∨⌝q∨r><4><p∧q∧⌝r>↔ <<⌝p∨⌝q>→r><1>真值为0.<2>真值为0.<3>真值为0.<4>真值为1.注意:p, q是真命题,r是假命题.1.16.略1.17.略1.18.略1.19.用真值表判断下列公式的类型:<1>p→ <p∨q∨r><2><p→⌝q>→⌝q<3>⌝ <q→r>∧r<4><p→q>→ <⌝q→⌝p><5><p∧r>↔ <⌝p∧⌝q><6><<p→q>∧ <q→r>>→ <p→r><7><p→q> ↔ <r↔s><1>, <4>,<6>为重言式.<3>为矛盾式.<2>, <5>,<7>为可满足式.1.20.略1.21.略1.22.略1.23.略1.24.略1.25.略1.26.略1.27.略1.28.略1.29.略1.30.略1.31.将下列命题符号化,并给出各命题的真值:<1>若3+=4,则地球是静止不动的.<2>若3+2=4,则地球是运动不止的. <3>若地球上没有树木,则人类不能生存.<4>若地球上没有水,则3是无理数.<1>p→q,其中, p: 2+2=4,q:地球静止不动,真值为0.<2>p→q,其中, p: 2+2=4,q:地球运动不止,真值为1.<3>⌝p→⌝q,其中,p:地球上有树木,q:人类能生存,真值为1.<4>⌝p→q,其中,p:地球上有水,q: 3 是无理数,真值为1.习题二2.1.设公式A=p→q,B=p⌝∧q,用真值表验证公式A和B适合德摩根律:⌝<A∨B>⇔ ⌝A⌝∧B.p q A =p→q B=p⌝∧q⌝<A∨B>⌝A⌝∧B0 0 1 0 0 00 1 1 0 0 01 0 0 1 0 01 1 1 0 0 0因为⌝<A∨B>和⌝A⌝∧B的真值表相同,所以它们等值.2.2. 略2.3. 用等值演算法判断下列公式的类型, 对不是重言式的可满足式,再用真值表法求出成真赋值.<1>⌝ <p∧q→q><2><p→ <p∨q>>∨ <p→r><3><p∨q>→ <p∧r><1>⌝ <p∧q→q>⇔ ⌝ <⌝<p∧q>∨ q>⇔ ⌝ <⌝p∨ ⌝q∨ q>⇔ p∧q∧⌝q⇔ p∧0⇔ 0⇔ 0.矛盾式.<2>重言式.<3> <p∨q>→ <p∧r>⇔ ⌝<p∨q>∨ <p∧r>⇔ ⌝p⌝∧q∨ p∧r易见,是可满足式,但不是重言式.成真赋值为:000,001, 101, 111p q r←p∍ ←q(p∍r0 0 0 1 1 1 1 00 0 1 1 1 1 1 00 1 0 1 0 0 0 00 1 1 1 0 0 0 01 0 0 0 0 1 0 01 0 1 0 0 1 1 11 1 0 0 0 0 0 01 1 1 0 0 0 1 12.4.用等值演算法证明下面等值式:<1>p⇔ <p∧q>∨ <p∧⌝q><3>⌝ <p↔q>⇔ <p∨q>∧⌝ <p∧q><4><p∧⌝q>∨ <⌝p∧q>⇔ <p∨q>∧⌝ <p∧q><1><p∧q>∨ <p∧⌝q>⇔ p∧ <q⌝∨q>⇔ p∧ 1⇔ p.<3>⌝<p↔q>⇔⌝ <<p→q>∧ <q→p>>⇔⌝ <<⌝p∨q>∧ <⌝q∨p>>⇔ <p∧⌝q>∨ <q∧⌝p>⇔ <p∨q>∧ <p∨⌝p>∧ <⌝q∨q>∧ <⌝p∨⌝q>⇔ <p∨q> ∧⌝ <p∧q><4><p∧⌝q>∨ <⌝p∧q>⇔ <p∨⌝p>∧ <p∨q>∧ <⌝q∨⌝p>∧ <⌝q∨q>⇔ <p∨q> ∧⌝ <p∧q>2.5.求下列公式的主析取范式,并求成真赋值:<1><⌝p→q>→ <⌝q∨p><2>⌝ <p→q>∧q∧r<3><p∨ <q∧r>> → <p∨q∨r><1><⌝p→q>→ <⌝q∨p>⇔ ⌝<p∨q> ∨ <⌝q∨p>⇔ ⌝p∧⌝q∨ ⌝q∨ p⇔ ⌝p∧⌝q∨ ⌝q∨ p<吸收律>⇔ <p⌝∨p>⌝∧q∨ p∧<q⌝∨q>⇔ p⌝∧q⌝∨p⌝∧q∨ p∧q∨ p⌝∧q⇔ m10∨ m00∨ m11∨ m10⇔ m0∨ m2∨ m3⇔ ∑<0, 2,3>.成真赋值为00,10, 11.<2>主析取范式为0, 无成真赋值,为矛盾式.<3>m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7,为重言式.2.6. 求下列公式的主合取范式, 并求成假赋值:<1>⌝ <q→⌝p>∧⌝p<2><p∧q>∨ <⌝p∨r><3><p→ <p∨q>>∨r<1> ⌝ <q⌝→p>∧ ⌝p⇔ ⌝<⌝q⌝∨p>∧ ⌝p⇔ q∧p∧ ⌝p⇔ q∧0⇔ 0⇔ M0∧M1∧M2∧M3这是矛盾式.成假赋值为00, 01,10,11.<2>M4,成假赋值为100.<3>主合取范式为1, 为重言式.2.7.求下列公式的主析取范式,再用主析取范式求合取范式:<1><p∧q> ∨r<2><p→q> ∧ <q→r><1>m1∨m3∨m5∨m6∨m7⇔M0∧M2∧M4<2>m0∨m1∨m3∨m7⇔M2∧M4∧M5∧M62.8. 略2.9. 用真值表求下面公式的主析取范式.<2><p→q>→ <p⌝↔q>p q<p q> <p← q>0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0<2>从真值表可见成真赋值为01,10.于是<p→ q>→ <p⌝ ↔ q>⇔ m1∨ m2.2.10.略2.11.略2.12.略2.13.略2.14.略2.15. 用主析取范式判断下列公式是否等值:<1> <p→q> →r与q→ <p→r><2><p→q> →r⇔ ⌝<⌝p∨q>∨ r⇔ ⌝<⌝p∨q>∨ r⇔ p⌝∧q∨ r⇔ p⌝∧q∧<r⌝∨r>∨ <p⌝∨p>∧ <q⌝∨q>∧r⇔ p⌝∧q∧r∨ p⌝∧q∧⌝r∨p∧q∧r∨ p∧⌝q∧r∨ ⌝p∧q∧r∨ ⌝p∧⌝q∧r= m101∨ m100∨ m111∨ m101∨ m011∨ m001⇔ m1∨ m3∨ m4∨ m5∨ m7= ∑<1,3,4,5,7>.而q→<p→r>⇔ ⌝q∨ <⌝p∨r>⇔ ⌝q∨ ⌝p∨r⇔ <⌝p∨p>⌝∧q∧<⌝r∨r>∨ ⌝p∧<⌝q∨q>∧<⌝r∨r>∨ <⌝p∨p>∧<⌝q∨q>∧r⇔ <⌝p⌝∧q∧⌝r>∨<⌝p⌝∧q∧r>∨<p⌝∧q∧⌝r>∨<p⌝∧q∧r>∨<⌝p∧⌝q∧⌝r>∨<⌝p∧⌝q∧r>∨<⌝p∧q∧⌝r>∨<⌝p∧q∧r>∨<⌝p∧⌝q∧r>∨<⌝p∧q∧r>∨<p∧⌝q∧r>∨<p∧q∧r>= m0∨ m1∨ m4∨ m5∨ m0∨ m1∨ m2∨ m3∨ m1∨ m3∨ m5∨ m7⇔ m0∨ m1∨ m2∨ m3∨ m4∨ m5∨ m7⇔ ∑<0,1,2,3,4,5,7>.两个公式的主吸取范式不同,所以<p→q>→rœq→ <p→r>.2.16.用主析取范式判断下列公式是否等值:<1><p→q>→r与q→ <p→r><2>⌝ <p∧q>与⌝ <p∨q><1><p→q>→r> ⇔m1∨m3∨m4∨m5∨m7q→ <p→r>⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以<p→q>→r>œq→ <p→r><2>⌝ <p∧q>⇔m0∨m1∨m2⌝ <p∨q>⇔m0所以⌝ <p∧q>œ⌝ <p∨q>2.17.用主合取范式判断下列公式是否等值:<1>p→ <q→r>与⌝ <p∧q>∨r<2>p→ <q→r>与<p→q>→r<1>p→ <q→r>⇔M6⌝ <p∧q>∨r⇔M6所以p→ <q→r>⇔ ⌝ <p∧q>∨r<2>p→ <q→r>⇔M6<p→q>→r⇔M0∧M1∧M2∧M6所以p→ <q→r>œ<p→q>→r2.18.略2.19.略2.20.将下列公式化成与之等值且仅含{⌝,→}中联结词的公式.<3> <p∧q>↔r.注意到A↔B⇔ <A→B>∧<B→A>和A∧B⇔ ⌝<⌝A⌝∨B>⇔ ⌝<A⌝→B>以及A∨B⇔ ⌝A→B.<p∧q>↔r⇔ <p∧q → r> ∧ <r → p∧q>⇔ <⌝<p⌝→q>→ r>∧ <r→ ⌝<p⌝→q>>⇔ ⌝<<⌝<p⌝→q>→ r>→ ⌝<r→ ⌝<p⌝→q>>>注 联结词越少,公式越长.2.21.证明:<1> <p↑q>⇔ <q↑p>,<p↓q>⇔ <q↓p>.<p↑q>⇔ ⌝<p∧q>⇔ ⌝<q∧p>⇔ <q↑p>.<p↓q>⇔ ⌝<p∨q>⇔ ⌝<q∨p>⇔ <q↓p>.2.22.略2.23.略2.24.略2.25.设A,B,C为任意的命题公式.<1>若A∨C⇔B∨C,举例说明A⇔B不一定成立.<2>已知A∧C⇔B∧C,举例说明A⇔B不一定成立.<3>已知⌝A⇔⌝B,问:A⇔B 一定成立吗?<1>取A=p,B=q,C = 1 <重言式>, 有A∨C⇔ B∨C,但AœB.<2>取A=p,B=q,C = 0 <矛盾式>, 有A∧C⇔ B∧C,但AœB.好的例子是简单,具体,而又说明问题的.<3>一定.2.26.略2.27.某电路中有一个灯泡和三个开关A,B,C.已知在且仅在下述四种情况下灯亮:<1>C的扳键向上, A,B的扳键向下.<2>A的扳键向上, B,C的扳键向下.<3>B,C的扳键向上,A的扳键向下.<4>A,B的扳键向上,C的扳键向下.设F为1表示灯亮,p,q,r分别表示A,B,C的扳键向上.<a>求F的主析取范式.<b>在联结词完备集{⌝,∧}上构造F.<c>在联结词完备集{⌝,→,↔}上构造F.<a>由条件<1>-<4>可知, F的主析取范式为F⇔ <⌝p∧⌝q∧r>∨ <p∧⌝q∧⌝r>∨ <⌝p∧q∧r>∨ <p∧q∧⌝r>⇔m1∨m4∨m3∨m6⇔m1∨m3∨m4∨m6<b>先化简公式F⇔ <⌝p∧⌝q∧r>∨ <p∧⌝q∧⌝r>∨ <⌝p∧q∧r>∨ <p∧q∧⌝r>⇔⌝q∧ <<⌝p∧r>∨ <p∧⌝r>>∨q∧ <<⌝p∧r>∨ <p∧⌝r>>⇔ <⌝q∨q>∧ <<⌝p∧r>∨ <p∧⌝r>>⇔ <⌝p∧r>∨ <p∧⌝r>⇔⌝ <⌝ <⌝p∧r>∧⌝ <p∧⌝r>><已为{⌝,∧}中公式><c>F⇔ <⌝p∧r>∨ <p∧⌝r>⇔⌝⌝ <⌝p∧r>∨ <p∧⌝r>⇔⌝ <⌝p∧r>→ <p∧⌝r>⇔ <p∨⌝r>→⌝ <⌝p∨r>⇔ <r→p>→⌝ <p→r> <已为{⌝,→,↔}中公式>2.28.一个排队线路, 输入为A,B,C,其输出分别为F A,F B,F C.本线路中,在同一时间内只能有一个信号通过,若同时有两个和两个以上信号申请输出时,则按A,B,C的顺序输出.写出F A,F B,F C在联结词完备集{⌝,∨}中的表达式.根据题目中的要求,先写出F A,F B,F C的真值表<自己写>由真值表可先求出他们的主析取范式,然后化成{⌝,∧}中的公式F A⇔m4∨m5∨m6∨m7⇔p <已为{⌝,∧}中公式>F B⇔m2∨m3⇔⌝p∧q <已为{⌝,∧}中公式>F C⇔m1⇔⌝p∧⌝q∧r <已为{⌝,∧}中公式>2.29.略2.30.略习题三3.1.略3.2.略3.3.略3.4.略3.5.略3.6.判断下面推理是否正确.先将简单命题符号化,再写出前提,结论, 推理的形式结构<以蕴涵式的形式给出>和判断过程<至少给出两种判断方法>:<1>若今天是星期一,则明天是星期三;今天是星期一.所以明天是星期三.<2>若今天是星期一,则明天是星期二;明天是星期二.所以今天是星期一.<3>若今天是星期一,则明天是星期三;明天不是星期三.所以今天不是星期一.<4>若今天是星期一,则明天是星期二;今天不是星期一.所以明天不是星期二.<5>若今天是星期一,则明天是星期二或星期三.<6>今天是星期一当且仅当明天是星期三;今天不是星期一.所以明天不是星期三.设p: 今天是星期一,q:明天是星期二,r:明天是星期三.<1>推理的形式结构为<p→r>∧p→r此形式结构为重言式,即<p→r>∧p⇒r所以推理正确. <2>推理的形式结构为<p→q>∧q→p 此形式结构不是重言式,故推理不正确.<3>推理形式结构为<p→r>∧⌝r→⌝p此形式结构为重言式,即<p→r>∧⌝r⇒⌝p故推理正确. <4>推理形式结构为<p→q>∧⌝p→⌝q此形式结构不是重言式, 故推理不正确.<5>推理形式结构为p→ <q∨r>它不是重言式, 故推理不正确. <6>推理形式结构为<p⇒r>∧⌝p→⌝r.此形式结构为重言式,即<p⇒r>∧⌝p⇒⌝r故推理正确.推理是否正确, 可用多种方法证明.证明的方法有真值表法,等式演算法.证明推理正确还可用构造证明法.下面用构造证明法证明<6>推理正确.前提:p⇒r,⌝p结论:⌝r证明:①p⇒r 前提引入②<p→r>∧ <r→p> ①置换③r→p ②化简律④⌝p 前提引入⑤⌝r ③④拒取式所以,推理正确.3.7.略3.8.略3.9.用三种方法<真值表法,等值演算法,主析取范式法>证明下面推理是正确的:若a 是奇数,则a 不能被2 整除.若a 是偶数,则a 能被2 整除.因此,如果a是偶数, 则a不是奇数.令p: a是奇数;q:a 能被2 整除; r:a是偶数.前提:p→ ⌝q,r→ q.结论:r→ ⌝p.形式结构:<p→ ⌝q>∧ <r→ q>→ <r→ ⌝p>.……3.10.略3.11.略3.12.略3.13.略3.14.在自然推理系统P中构造下面推理的证明:<1>前提: p→ <q→r>,p, q结论: r∨s<2>前提:p→q,⌝ <q∧r>,r结论:⌝p<3>前提: p→q结论: p→ <p∧q><4>前提: q→p, q⇒s,s⇒t,t∧r结论: p∧q<5>前提: p→r,q→s,p∧q.结论: r∧s<6>前提:⌝p∨r,⌝q∨s,p∧q结论:t→ <r∨s><1>证明:①②p→<q→r>p前提引入前提引入③④q→rq①②假言推理前提引入⑤r③④假言推理⑥r∨s⑤附加律<2>证明:①②③⌝ <q∧r>⌝q∨⌝rr前提引入①置换前提引入④⑤⑥⌝qp→q⌝p②③析取三段论前提引入④⑤拒取式<3>证明:①p→q前提引入②⌝p∨q①置换③<⌝p∨q>∧ <⌝p∨p>②置换④⌝p∨ <p∧q>③置换⑤p→ <p∧q> ④置换也可以用附加前提证明法,更简单些.<4>证明:①②③④⑤s⇒t<s→t> ∧ <t→s>t→st∧rt前提引入①置换②化简前提引入④化简⑥s③⑤假言推理⑦⑧⑨⑩q⇒s<s→q>∧ <q→s>s→qq前提引入⑦置换⑧化简⑥⑥假言推理○11 q →p前提引入○12 ○13 pp∧q⑩○11 假言推理⑩○12 合取<5>证明:①②p→rq→s前提引入前提引入③④p∧qp前提引入③化简⑤q③化简⑥r①④假言推理⑦s②⑤假言推理⑧r∧s⑥⑦合取<6>证明:①②t⌝p∨r附加前提引入前提引入③④p∧qp前提引入③化简⑤r②④析取三段论⑥r∨s⑤附加说明:证明中,附加提前t,前提⌝q∨s没用上.这仍是正确的推理.3.15.在自然推理系统P中用附加前提法证明下面各推理:<1>前提: p→ <q→r>,s→p,q结论: s→r<2>前提: <p∨q> → <r∧s>,<s∨t>→u结论: p→u<1>证明:①②ss→p附加前提引入前提引入③p①②假言推理④⑤⑥p→ <q→r>q→rq前提引入③④假言推理前提引入⑦r⑤⑥假言推理<2>证明:①②Pp∨q附加前提引入①附加③<p∨q> → <r∧s> 前提引入④⑤r∧sS②③假言推理④化简⑥⑦⑧s∨t<s∨t>→uu⑤附加前提引入⑥⑦假言推理3.16.在自然推理系统P中用归谬法证明下面推理:<1>前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p<2>前提: p∨q,p→r,q→s结论: r∨s<1>证明:①②Pp→⌝q结论否定引入前提引入③④⑤⑥⑦⌝q⌝r∨q⌝rr∧⌝sr①②假言推理前提引入③④析取三段论前提引入⑥化简⑧⌝r∧r⑤⑦合取⑧为矛盾式,由归谬法可知, 推理正确.<2>证明:①⌝ <r∨s>结论否定引入②p∨q前提引入③p→r前提引入④q→s前提引入⑤r∨s②③④构造性二难⑥⌝ <r∨s>∧ <r∨s>①⑤合取① ② ③ ④ ⑤ ⑥ ⑦ pp q (rq (rss ←q←qr ①②假言推理 前提引入 前提引入⑥为矛盾式,所以推理正确.3.17.P53 17. 在自然推理系统P 中构造下面推理的证明:只要A 曾到过受害者房间并且11点以前没用离开,A 就犯了谋杀罪.A 曾到过受害者房间.如果A 在 11点以前离开, 看门人会看到他.看门人没有看到他.所以A 犯了谋杀罪.令p :A 曾到过受害者房间;q :A 在11点以前离开了; r : A 就犯了谋杀罪;s :看门人看到A.前提:p ⌝∧q → r ,p ,q → s ,⌝s.结论:r .前提:p ⌝∧q → r ,p ,q → s ,⌝s;结论:r . 证明:①⌝s前提引入 ②q → s前提引入 ③⌝q①②拒取 ④p前提引入 ⑤p ⌝∧q③④合取 ⑥p ⌝∧q → r前提引入 ⑦r ⑤⑥假言推理3.18.在自然推理系统P 中构造下面推理的证明. <1>如果今天是星期六,我们就要到颐和园或圆明园去玩.如果颐和园游人太多,我们就不去颐和园玩.今天是星期六. 颐和园游人太多.所以我们去圆明园玩.<2>如果小王是理科学生,他的数学成绩一定很好.如果小王不是文科生,他必是理科生.小王的数学成绩不好.所以小王是文科学生.<3>明天是晴天, 或是雨天;若明天是晴天,我就去看电影;若我看电影,我就不看书.所以,如果我看书,则明天是雨天.<1>令p : 今天是星期六;q :我们要到颐和园玩;r :我们要到圆明园玩;s :颐和园游人太多.前提:p → <q ∨r >,s → ⌝q ,p ,s.结论:r .前提引入前提引入 p p →q ∨rq ∨r s s → ⌝q ⌝q r ④⑤假言推理 <1>的证明树③⑥析取三段论① p →r前提引入 ② ⌝r前提引入 ③ ⌝p ①②拒取式 ④ ⌝q →p 前提引入 ⑤ q③④拒取式 <2>令p : 小王是理科生,q :小王是文科生,r :小王的数学成绩很好.前提:p →r ,⌝q →p ,⌝r结论:q证明:⌝q p →q ⌝p ⌝r →p <2> 的证明树 r <3>令p : 明天是晴天,q :明天是雨天,r :我看电影,s :我看书. 前提: p ∨q ,p →r ,r →⌝s 结论: s →q证明:① ② sr →⌝s附加前提引入 前提引入 ③ ⌝r①②拒取式 ④ p →r前提引入 ⑤ ⌝p③④拒取式 ⑥ p ∨q前提引入 ⑦ q ⑤⑥析取三段论习题四4.1.将下面命题用0元谓词符号化:<1>小王学过英语和法语. <2>除非李建是东北人,否则他一定怕冷.<1>令F<x>: x学过英语;F<x>: x学过法语; a:小王.符号化为F<a>∧F<b>.或进一步细分,令L<x,y>: x学过y;a:小王; b1: 英语;b2:法语.则符号化为L<a,b1>∧L<a,b2>.<2>令F<x>: x是东北人;G<x>: x怕冷; a:李建.符号化为⌝F<a>→G<a>或⌝G<a>→F<a>.或进一步细分,令H<x,y>: x是y 地方人;G<x>:x 怕冷;a:小王;b: 东北. 则符号化为⌝H<a,b>→G<a>或⌝G<a>→ H<a,b>.4.2.在一阶逻辑中将下面命题符号化,并分别讨论个体域限制为<a>,<b>时命题的真值:<1>凡有理数都能被2整除.<2>有的有理数能被2整除. 其中<a>个体域为有理数集合,<b>个体域为实数集合.<1><a>中, ∀xF<x>,其中,F<x>: x能被2整除, 真值为0.<b>中, ∀x<G<x> ∧F<x>>,其中, G<x>:x为有理数,F<x>同<a>中,真值为0.<2><a>中, ∃xF<x>,其中,F<x>: x能被2整除, 真值为1.<b>中, ∃x<G<x> ∧F<x>>, 其中,F<x>同<a>中,G<x>:x为有理数,真值为1.4.3.在一阶逻辑中将下面命题符号化,并分别讨论个体域限制为<a>,<b>时命题的真值:<1>对于任意的x,均有x2-2=<x+2><x- 2>.<2>存在x, 使得x+5=9.其中<a>个体域为自然数集合,<b>个体域为实数集合.<1><a>中,∀x<x2-2=<x+2><x- 2>>,真值为1.<b>中, ∀x<F<x>→ <x2-2=<x+2><x- 2>>>>, 其中,F<x>:x为实数,真值为1.<2><a>中,∃x<x+5=9>,真值为1.<b>中, ∃x<F<x> ∧ <x+5=9>>,其中,F<x>: x为实数,真值为1.4.4.在一阶逻辑中将下列命题符号化:<1>没有不能表示成分数的有理数. <2>在北京卖菜的人不全是外地人.<3>乌鸦都是黑色的. <4>有的人天天锻炼身体.没指定个体域, 因而使用全总个体域.<1>⌝∃x<F<x>∧⌝G<x>>或∀x<F<x>→G<x>>,其中,F<x>:x为有理数,G<x>:x能表示成分数.<2>⌝∀x<F<x>→G<x>>或∃x<F<x>∧⌝G<x>>,其中,F<x>:x在北京卖菜,G<x>:x是外地人.<3>∀x<F<x> →G<x>>,其中,F<x>: x是乌鸦,G<x>: x是黑色的.<4>∃x<F<x> ∧G<x>>,其中,F<x>:x是人,G<x>:x天天锻炼身体.4.5.在一阶逻辑中将下列命题符号化:<1>火车都比轮船快. <2>有的火车比有的汽车快. <3>不存在比所有火车都快的汽车. <4>"凡是汽车就比火车慢"是不对的.因为没指明个体域,因而使用全总个体域<1>∀x∀y<F<x> ∧G<y>→H<x,y>>,其中,F<x>: x是火车,G<y>:y是轮船,H<x,y>:x比y快.<2>∃x∃y<F<x> ∧G<y>∧H<x,y>>, 其中, F<x>:x是火车,G<y>:y是汽车,H<x,y>:x比y快.<3>⌝∃x<F<x>∧∀y<G<y>→H<x,y>>>或∀x<F<x>→∃y<G<y>∧⌝H<x,y>>>,其中,F<x>:x是汽车,G<y>:y是火车,H<x,y>:x比y快.<4>⌝∀x∀y<F<x>∧G<y>→H<x,y>>或∃x∃y<F<x>∧G<y>∧⌝H<x,y>>,其中,F<x>:x是汽车,G<y>:y是火车,H<x,y>:x比y慢. 4.6.略4.7.将下列各公式翻译成自然语言,个体域为整数集®,并判断各命题的真假.<1>∀x∀y∃z<x- y=z>;<2>∀x∃y<x⋅y =1>.<1>可选的翻译:①"任意两个整数的差是整数."②"对于任意两个整数,都存在第三个整数,它等于这两个整数相减."③"对于任意整数x和y,都存在整数z,使得x- y=z."选③,直接翻译,无需数理逻辑以外的知识.以下翻译意思相同, 都是错的:"有个整数,它是任意两个整数的差.""存在一个整数,对于任意两个整数,第一个整数都等于这两个整数相减."❶ "存在整数z,使得对于任意整数x 和y,都有x- y= z."这3个句子都可以符号化为∃z∀x∀y<x- y=z>.0量词顺序不可随意调换.<2>可选的翻译:①"每个整数都有一个倒数."②"对于每个整数,都能找到另一个整数,它们相乘结果是零."③"对于任意整数x,都存在整数y, 使得x⋅y =z."选③,是直接翻译,无需数理逻辑以外的知识.4.8.指出下列公式中的指导变元, 量词的辖域,各个体变项的自由出现和约束出现:<3>∀x∃y<F<x,y>∧ G<y,z>> ∨ ∃xH<x,y, z>∀x∃y<F<x,y>∧ G<y,z>>∨ ∃x H<x,y,z>前件∀x∃y<F<x,y>∧G<y,z>>中,∀ 的指导变元是x, ∀ 的辖域是∃y<F<x,y>∧G<y,z>>;∃ 的指导变元是y, ∃ 的辖域是<F<x,y>∧G<y,z>>.后件∃xH<x,y,z>中, ∃ 的指导变元是x, ∃ 的辖域是H<x,y,z>.整个公式中, x约束出现两次, y约束出现两次,自由出现一次;z 自由出现两次.4.9.给定解释I如下:<a>个体域D I为实数集合\.<b>D I中特定元素↓a=0.<c>特定函数↓f<x,y>=x-y,x,y∈D I.<d>特定谓词↓F<x,y>:x=y,↓G<x,y>:x<y,x,y∈D I.说明下列公式在I下的含义,并指出各公式的真值:<1>∀x∀y<G<x,y>→⌝F<x,y>><2> ∀x∀y<F<f<x,y>,a>→G<x,y>><3>∀x∀y<G<x,y>→⌝F<f<x,y>,a>><4> ∀x∀y<G<f<x,y>,a> →F<x,y>><1>∀x∀y<x<y→x≠y>,真值为1.<2>∀x∀y<<x-y=0> →x<y>, 真值为0.<3>∀x∀y<<x<y>→ <x-y≠0>>,真值为1.<4>∀x∀y<<x-y<0> → <x=y>>,真值为0.4.10.给定解释I如下:<a>个体域D=Æ<Æ为自然数>.<b>D中特定元素↓a=2.<c>D上函数↓f<x,y>=x+y,↓g<x,y>=x·y.<d>D上谓词↓F<x,y>:x=y.说明下列公式在I下的含义,并指出各公式的真值:<1> ∀xF<g<x,a>,x><2> ∀x∀y<F<f<x,a>,y> →F<f<y,a>,x>><3> ∀x∀y∃z<F<f<x,y>,z><4> ∃xF<f<x,x>,g<x,x>><1>∀x<x·2=x>,真值为0.<2>∀x∀y<<x+2=y> → <y+2=x>>,真值为0.<3>∀x∀y∃z<x+y=z>,真值为1.<4>∃x<x+x=x·x>,真值为1.4.11.判断下列各式的类型:<1> F<x,y> → <G<x,y>→ F<x,y>>.<3> ∀x∃yF<x,y>→ ∃x∀yF<x,y>.<5> ∀x∀y<F<x,y>→ F<y,x>>.<1> 是命题重言式p → <q → p>的代换实例,所以是永真式.<3> 在某些解释下为假<举例>, 在某些解释下为真<举例>, 所以是非永真式的可满足式.<5> 同<3>.4.12.P69 12. 设I 为一个任意的解释,在解释I 下,下面哪些公式一定是命题?<1> ∀xF<x,y>→ ∃yG<x,y>.<2> ∀x<F<x> → G<x>>∧ ∃y<F< y>∧ H< y>>.<3> ∀x<∀yF<x,y>→ ∃yG<x,y>>.<4> ∀x<F<x> ∧ G<x>> ∧ H< y>.<2>, <3>一定是命题,因为它们是闭式.4.13.略4.14.证明下面公式既不是永真式也不是矛盾式:<1> ∀x<F<x> →∃y<G<y> ∧H<x,y>>><2> ∀x∀y<F<x> ∧G<y>→H<x,y>><1> 取个体域为全总个体域.解释I1: F<x>:x为有理数,G<y>: y为整数,H<x,y>: x<y在I1下: ∀x<F<x>→∃y<G<y> ∧H<x,y>>>为真命题,所以该公式不是矛盾式.解释I2:F<x>,G<y>同I1,H<x,y>: y整除x.在I2下: ∀x<F<x>→∃y<G<y> ∧H<x,y>>>为假命题,所以该公式不是永真式.<2> 请读者给出不同解释,使其分别为成真和成假的命题即可.4.15.<1>给出一个非闭式的永真式.<2> 给出一个非闭式的永假式.<3> 给出一个非闭式的可满足式,但不是永真式.<1>F<x>∨ ⌝F<x>.<2>F<x>∧ ⌝F<x>.<3> ∀x<F<x,y>→ F<y,x>>.习题五5.1.略5.2.设个体域D={a,b,c}, 消去下列各式的量词:<1> ∀x∃y<F<x> ∧G<y>><2> ∀x∀y<F<x> ∨G<y>><3> ∀xF<x> →∀yG<y><4> ∀x<F<x,y>→∃yG<y>><1> ∀x∃y<F<x> ∧G<y>>⇔∀xF<x> ∧∃yG<y>⇔ <F<a>∧F<b>> ∧F<c>> ∧ <G<a>∨G<b>∨G<c>><2> ∀x∀y<F<x> ∨G<y>>⇔∀xF<x> ∨∀yG<y>⇔ <F<a>∧F<b> ∧F<c>>∨ <G<a> ∧G<b>∧G<c>><3> ∀xF<x> →∀yG<y>⇔ <F<a>∧F<b> ∧F<c>>→ <G<a>∧G<b>∧G<c>><4> ∀x<F<x,y>→∃yG<y>>⇔∃xF<x,y> →∃yG<y>⇔ <F<a,y> ∨F<b,y> ∨F<c,y>>→ <G<a>∨G<b> ∨G<c>>5.3.设个体域D={1,2},请给出两种不同的解释I1和I2,使得下面公式在I1下都是真命题,而在I2下都是假命题.<1> ∀x<F<x> →G<x>><2> ∃x<F<x> ∧G<x>><1>I1:F<x>:x≤2,G<x>:x≤3F<1>,F<2>,G<1>,G<2>均为真,所以∀x<F<x>→G<x>>⇔ <F<1> →G<1>∧ <F<2>→G<2>>为真.I2: F<x>同I1,G<x>:x≤0则F<1>,F<2>均为真,而G<1>,G<2>均为假,∀x<F<x>→G<x>>为假.<2>留给读者自己做.5.4.略5.5.给定解释I如下:<a>个体域D={3,4}.<b>↓f<x>为↓f<3>=4,↓f<4>=3.<c>↓F<x,y>为↓F<3,3>=↓F<4,4>=0,↓F<3,4>=↓F<4,3>=1.试求下列公式在I下的真值:(1)∀x∃yF<x,y>(2)∃x∀yF<x,y><3> ∀x∀y<F<x,y>→F<f<x>,f<y>>>(1)∀x∃yF<x,y>⇔ <F<3,3> ∨F<3,4>> ∧ <F<4,3> ∨F<4,4>>⇔ <0∨1> ∧ <1∨0>⇔1(2)∃x∀yF<x,y>⇔ <F<3,3> ∧F<3,4>> ∨ <F<4,3> ∧F<4,4>>⇔ <0∧1> ∨ <1∧0>⇔0<3> ∀x∀y<F<x,y>→F<f<x>,f<y>>>⇔ <F<3,3>→F<f<3>,f<3>>>∧ <F<4,3> →F<f<4>,f<3>>>∧ <F<3,4> →F<f<3>,f<4>>>∧ <F<4,4> →F<f<4>,f<4>>>⇔ <0→0> ∧ <1→1>∧ <1→1> ∧ <0→0>⇔15.6.略5.7.略5.8.在一阶逻辑中将下列命题符号化,要求用两种不同的等值形式.<1> 没有小于负数的正数.<2> 相等的两个角未必都是对顶角.<1>令F<x>:x小于负数,G<x>:x是正数.符合化为:∃⌝x<<F<x>∧ G<x>>⇔ ∀x<G<x>→ ⌝G<x>>.<2>令F<x>:x是角,H<x,y>:x和y 是相等的, L<x,y>:x与y是对顶角.符合化为:⌝∀x∀y<F<x>∧ F<y>∧ H<x,y>→ L<x,y>>⇔ ∃x∃y<F<x>∧ F<y>∧ H<x,y>∧ ⌝L<x,y>>⇔ ∃x<F<x>∧ <∃y<F<y>∧ H<x,y>∧ ⌝L<x,y>>>.5.9.略5.10.略5.11.略5.12.求下列各式的前束范式.<1>∀xF<x> → ∀yG<x,y>;<3>∀xF<x,y>↔ ∃xG<x, y>;<5>∃x1F<x1,x2>→ <F<x1>→ ∃⌝x2G<x1,x2>>.前束范式不是唯一的.<1> ∀xF<x> → ∀yG<x,y>⇔ ∃x<F<x> → ∀yG<x,y>>⇔ ∃x∀y<F<x>→ G<x,y>>.<3> ∀xF<x,y>↔ ∃xG<x,y>⇔ <∀xF<x,y>→ ∃xG<x,y>>∧ <∃xG<x,y> → ∀xF<x,y>>⇔ <∀x1F<x1,y>→ ∃x2G<x2,y>>∧ <∃x3G<x3,y>→ ∀x4F<x4,y>>⇔ ∃x1∃x2<F<x1,y> → G<x2,y>>∧ ∀x3∀x4<G<x3,y>→ F<x4,y>>⇔ ∃x1∃x2∀x3∀x4<<F<x1,y>→ G<x2,y>>∧ <G<x3,y>→ F<x4,y>>>.5.13.将下列命题符号化,要求符号化的公式全为前束范式:<1> 有的汽车比有的火车跑得快.<2> 有的火车比所有的汽车跑得快.<3> 说所有的火车比所有的汽车跑得快是不对的.<4> 说有的飞机比有的汽车慢是不对的.<1>令F<x>:x是汽车,G< y>:y是火车,H<x,y>:x 比y跑得快.∃x<F<x> ∧ ∃y<G< y>∧ H<x,y>>⇔ ∃x∃y<F<x> ∧ G<y>∧ H<x,y>>.<2>令F<x>: x是火车,G<y>:y是汽车,H<x,y>:x 比y跑得快.∃x<F<x> ∧ ∀y<G< y> → H<x,y>>>⇔ ∃x∀y<F<x> ∧ <G<y> → H<x,y>>>.0错误的答案:∃x∀y<F<x>∧ G<y>→ H<x,y>>.<3>令F<x>: x是火车,G<y>:y是汽车,H<x,y>:x 比y跑得快.⌝∀x<F<x>→ ∀y<G<y>→ H<x,y>>>⇔ ⌝∀x∀y<F<x>→ <G<y>→ H<x,y>>>⇔ ⌝∀x∀y<F<x>∧ G<y>→ H<x,y>> <不是前束范式>⇔ ∃x∃y<F<x> ∧ G<y>∧ H<x,y>>.<4>令F<x>: x是飞机,G<y>:y是汽车,H<x,y>:x 比y跑得慢.⌝ ∃x<F<x>∧ ∃y<G<y>∧ H<x,y>>>⇔ ⌝ ∃x∃y<F<x>∧ G<y>∧ H<x,y>><不是前束范式>⇔ ∀x∀y⌝ <F<x>∧ G<y>∧ H<x,y>>⇔ ∀x∀y<F<x>∧ G<y>→ ⌝H<x,y>>.5.14.略5.15.在自然推理系统F中构造下面推理的证明:<1>前提: ∃xF<x> → ∀y<<F<y>∨ G<y>>→ R<y>>,∃xF<x>结论:∃xR<x>.<2>前提:∀x<F<x>→ <G<a> ∧R<x>>>,∃xF<x>结论:∃x<F<x> ∧R<x>><3>前提:∀x<F<x>∨G<x>>,⌝∃xG<x>结论:∃xF<x><4>前提:∀x<F<x>∨G<x>>,∀x<⌝G<x>∨⌝R<x>>,∀xR<x>结论:∀xF<x>①∃xF<x> → ∀y<<F<y> ∨ G<y>>→ R<y>> 前提引入②∃xF<x> 前提引入③∀y<<F<y> ∨ G<y>> → R<y>> ①②假言推理④<F<c>∨ G<c>>→ R<c> ③UI⑤F<c> ①EI⑥F<c>∨ G<c> ⑤附加⑦⑧R<c>∃xR<x>④⑥假言推理⑦EG<2>证明:①∃xF<x> 前提引入②F<c >①EI③∀x<F<x>→ <G<a>∧ <R<x>>> 前提引入④F<c> → <G<a>∧R<c>>④UI⑤G<a>∧R<c> ②④假言推理⑥R<c> ⑤化简⑦F<c>∧R<c> ②⑥合取⑧∃x<F<x>∧R<x>>⑥E G<3>证明:①⌝∃xG<x> 前提引入②∀x⌝G<x> ①置换③⌝G<c>②UI④∀x<F<x>∨G<x> 前提引入⑤F<c>∨G<c>④UI⑥F<c> ③⑤析取三段论⑦∃xF<x>⑥E G<4>证明:①∀x<F<x>∨G<x>> 前提引入②F<y>∨G<y>①UI③∀x<⌝G<x>∨⌝R<x>> 前提引入④⌝G<y>∨⌝R<y>③UI⑤∀xR<x> 前提引入⑥R<y >⑤UI⑦⌝G<y> ④⑥析取三段论⑧F<y> ②⑦析取三段论⑥∀xF<x> U G5.16.略。
离散数学(屈婉玲)答案_1-5章第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式 //最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p ∨(q ∧r))→(p ∨q ∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q) ⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确. 第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x ).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。
离散数学课后习题答案-屈婉玲(高等教育出版社)第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)? 0∨(0∧1) ?0(2)(p?r)∧(q∨s) ?(0?1)∧(1∨1) ?0∧1?0.(3)(?p∧?q∧r)?(p∧q∧r) ?(1∧1∧1)? (0∧0∧0)?0 (4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?117.判断下面一段论述是否为真:“?是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: ?是无理数1 q: 3是无理数0 r:2是无理数1s: 6能被2整除1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(?q→?p) (5)(p∧r) ?(?p∧?q) (6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ?q ?p ?q→?p (p→q)→(?q→?p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.1(1) ?(p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 11 1 1 0 1 0 0 1 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)?(p→(q∧r))(4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q) 证明(2)(p→q)∧(p→r)? (?p∨q)∧(?p∨r) ??p∨(q∧r)) ?p→(q∧r)(4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q)?(p∨?p)∧(p∨q)∧(?q∨?p)∧(?q∨q) ?1∧(p∨q)∧?(p∧q)∧1 ?(p∨q)∧?(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(?p→q)→(?q∨p) (2)?(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r) 解:(1)主析取范式(?p→q)→(?q?p)2??(p?q)?(?q?p)?(?p??q)?(?q?p)? (?p??q)?(?q?p)?(?q??p)?(p?q)?(p??q) ? (?p??q)?(p??q)?(p?q) ?m0?m2?m3?∑(0,2,3)主合取范式:(?p→q)→(?q?p)??(p?q)?(?q?p) ?(?p??q)?(?q?p)?(?p?(?q?p))?(?q?(?q?p)) ?1?(p??q) ?(p??q) ? M1 ?∏(1) (2) 主合取范式为:?(p→q)?q?r??(?p?q)?q?r ?(p??q)?q?r?0 所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7) 矛盾式的主析取范式为0 (3)主合取范式为:(p?(q?r))→(p?q?r)??(p?(q?r))→(p?q?r)?(?p?(?q??r))?(p?q?r)?(?p?(p?q?r))?((?q??r))?(p?q?r))?1?1 ?1所以该式为永真式.永真式的主合取范式为1 主析取范式为∑(0,1,2,3,4,5,6,7)3第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p?q,?(q?r),r 结论:?p(4)前提:q?p,q?s,s?t,t?r结论:p?q证明:(2)①?(q?r) 前提引入②?q??r ①置换③q??r ②蕴含等值式④r 前提引入⑤?q ③④拒取式⑥p?q 前提引入⑦Vp(3)⑤⑥拒取式证明(4):①t?r ②t ③q?s ④s?t ⑤q?t前提引入①化简律前提引入前提引入③④等价三段论4⑥(q?t)?(t?q) ⑤ 置换⑦(t?q)⑥化简⑧q ②⑥ 假言推理⑨q?p 前提引入⑩p ⑧⑨假言推理(11)p?q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p?(q?r),s?p,q 结论:s?r 证明①s 附加前提引入②s?p 前提引入③p ①②假言推理④p?(q?r) 前提引入⑤q?r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p??q,?r?q,r??s 结论:?p 证明:①p 结论的否定引入②p?q 前提引入③q ①②假言推理5。