上海交通大学本科学位课程 电路实验 RLC串、并联谐振
- 格式:pdf
- 大小:6.90 MB
- 文档页数:57
实验三 RLC 串联电路的谐振一、实验目的1. 通过对电路谐振现象的探讨,进一步理解串联谐振电路的特点。
2. 学习串联电路频率特性曲线的绘制。
3. 了解品质因数Q 对谐振曲线的影响。
二、实验原理与说明 1. RLC 串联电路电路如图2-2-26所示,在正弦电压作用下,电路的阻抗Z 为 ||)1(Z jX R CL j R Z =+=-+=ωω 当CL ωω1=时,阻抗虚部为零,ϕ为零,端口电压与电流同相,电路处于谐振状态,谐振角频率为LC10=ω 谐振频率为LCf π210=当电路参数一定时,改变电源频率而实现谐振,称为变频调谐。
2. 串联电路在谐振点的特点(1)谐振时回路总阻抗R Z =为最小,ϕ为零,回路呈电阻性。
(2)当电路电压U 一定时,串联电路电流在谐振点最大,RU I I ==0。
(3)CL 001ωω=,谐振时电感电压和电容电压大小相等、相位相反,即 .00...U jQ L j RU L j I U LO ===ωω.1..0U jQ C j IU CO -==ω 式中,CL R R U U Q LO 10===ω,称为品质函数。
(4)谐振时电阻电压R U .等于总电压U .。
3. 电流谐振曲线电路中电流与电源频率的关系称为幅频率特性,表明其关系的特性曲线称为电流谐振曲线,表达式为)1(22|)(|)(CL R R Z UI ωωωω-+==)(100220ωωωω-+=Q I式中,ω为谐振角频率,当U 为常数,L 、C 一定时,电流谐振曲线如图2-2-27所示,品质因数高的曲线陡。
4. U L 与U C 的频率特性电感电压和电容电压的频率特性如图2-2-28所示,其图形也与Q 值有关,当Q >0.707时,U L 与U C 才出现峰值,并且均在谐振点附近。
他们与角频率关系为()CL R LULI U L ωωωω122-+==()CL R U CI LU C ωωωω11122-+==三、实验任务(1) 自拟实验线路,用变频调谐方法实现谐振,测量谐振点的电压U RO (电阻电压)、U LO (电感电压)、U CO (电容电压),并将结果记入表2-2-11中。
rlc串联并联谐振电路特点串联并联谐振电路特点及其应用串联谐振电路是由电感、电容和电阻元件组成的。
当电感、电容和电阻元件串联形成的电路中谐振频率与输入信号频率相匹配时,电路会表现出特殊的特点。
首先,串联谐振电路具有频率选择性。
当输入信号频率接近谐振频率时,电路中的电感和电容元件形成回路,实现能量的存储与释放,从而增强了电路的响应。
而在其他频率下,电路中的电感和电容元件起到阻抗的作用,导致电压幅度减小,电路的响应则减弱。
其次,串联谐振电路具有阻抗最小的特点。
在谐振频率时,电感和电容元件的阻抗对消,电路中总的阻抗最小。
这导致电路对输入信号的阻抗较低,使得电路能够吸收更多的能量,从而达到最大的电流和电压响应。
另外,串联谐振电路还具有相位特性。
在电路的谐振频率时,电阻元件的电压与电流处于同相位,而电感元件的电压与电流处于相位滞后90度,电容元件的电压与电流处于相位超前90度。
这种相位特性可以被用来滤波和频率选择的应用。
并联谐振电路与串联谐振电路类似,只是电感和电容元件是并联连接的。
并联谐振电路具有的特点与串联谐振电路类似,但其频率选择性与阻抗最小点的位置相反。
在并联谐振电路中,电路在谐振频率时具有最大的阻抗,而在其他频率下阻抗较低。
串联和并联谐振电路在实际应用中具有广泛的用途。
它们可以作为滤波器、频率选择器和信号调节器使用。
谐振电路也常用于无线传输系统、天线系统、音频放大器以及其他需要特定频率响应的电子设备中。
总之,串联和并联谐振电路具有频率选择性、阻抗最小的特点,并且可以应用于多种电子设备中。
通过合理设计和搭建谐振电路,可以实现各种功能的电路响应。
上海交通大学基本电路理论课程教学小论文(2008-2009第一学期)RLC 并联并联谐振谐振谐振电路电路电路的应用的应用F0503023 丁顺(5050309627)摘要摘要::本论文主要讨论的是并联谐振电路在信号选择中的应用,首先先回顾带通滤波器,然后引入两种信号选择中常用的两种元件。
最后,讨论的是收音机的原理,这是前面所讲的元件的综合应用。
关键词关键词::并联谐振电路 带通滤波器 实际并联谐振电路 调频放大器 天线接收模型前言前言::通过这个学期电路基础的学习,使我对于电路的原理有了更深的理解。
在电路学习中,给我印象最深的是RLC 中的谐振问题,徐雄老师上课说过,可以通过RLC 电路的谐振,实现收音机的选台问题,因此,我专门查找了参考书,来深入了解一下RLC 谐振在信号的选择中的应用。
正文正文::首先,我们先回顾一下上课所讲的带通滤波器,这里我们着重讨论的是并联谐振带通滤波器。
用并联谐振电路构成的带通滤波器如图一所示。
并联谐振电路在谐振时阻抗最大。
因此,图中的电路起分压作用。
在谐振时,振荡电路的阻抗远大于电阻值,所以大部分输入电压加在振荡电路上,在谐振中心频率时输出电压最大。
对高于谐振频率或低于此规律的信号,振荡电路的阻抗逐渐减小,输入电压的大部分加在了R 的两端。
结果,振荡电路两端的输出电压逐渐减小,产生了带通的特性。
理想情况下,此带通滤波器的中心频率就是其谐振频率。
但在实际情况中,要考虑电感所产生的内阻,因此,其中心频率发生变化。
此时电路图二如图所示。
令L X L ω= 1C X Cω=2211111()(()()C W LW L W L C W L W L C W L Z jX R jX R jX R jX j j X R jX R jX X R X =+−+−−=+=++−+将第二项的分子拆开成两个分式,再与首项相加:222211((W L C W L W LR Xj j Z X R X R X =−+++ 由于j 项数值应该相等:图一 并联谐振电路构成的带通滤波器。
实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告实验报告祝金华PB15050984 实验题目:R、L、C串联谐振电路的研究实验目的: 1. 学习用实验方法绘制R、L、C串联电路的幅频特性曲线。
2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q值)的物理意义及其测定方法。
实验原理 1. 在图1所示的R、L、C串联电路中,当正弦交流信号源Ui的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流也随f而变。
取电阻R上的电压UO作为响应,当输入电压Ui的幅值维持不变时,在不同频率的信号激励下,测出UO之值,然后以f为横坐标,以UO为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。
L图 1 图22. 在f=fo=12πLC处,即幅频特性曲线尖峰所在的频率点称为谐振频率。
此时XL=Xc,电路呈纯阻性,电路阻抗的模为最小。
在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui 同相位。
从理论上讲,此时Ui=UR=UO,UL=Uc=QUi,式中的Q 称为电路的品质因数。
3. 电路品质因数Q值的两种测量方法一是根据公式Q=UC测定,Uc为谐振时电容器C上的电压(电感上的电压无法测量,故Uo不考虑Q=UL测定)。
另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据QUo=fO求出Q值。
式中fo为谐振频率,f2和f1是失谐时,亦即输出电压的幅度下降到f2-f1最大值的1/2 (=0.707)倍时的上、下频率点。
Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。
在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。
预习思考题1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。
L=30mH fo=2. 改变电路的哪些参数可以使电路发生谐振,电路中R的数值是否影响谐振频率值?改变频率f,电感L,电容C可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。
实验7 RLC串联谐振电路的研究1 、实验目的( 1 )学习测定 RLC 串联电路谐振曲线的方法,加深对串联谐振电路特性的理解。
( 2 )学习对谐振频率、通频带和品质因数的测试方法。
2 、原理说明( 1 ) RLC 串联电路(图 4-7-1)的阻抗是电源角频率ω的函数,即当ωL- 1/ωC =0 时,电路处于串联谐振状态,谐振角频率为ω0= 谐振频率为f0=图4-7-1显然,谐振频率仅与元件 L 、C 的数值有关,而与电阻 R 和激励电源的角频率ω无关。
当ω<ω0时,电路呈容性,阻抗角φ< 0 ;当ω>ω0时,电路呈感性,阻抗角φ> 0 。
( 2 )电路处于谐振状态时的特性①由于回路总电抗 X0= ω0L-1/ω0C =0 ,因此,回路阻抗|Z0|为最小值,整个回路相当于一个纯电阻电路,激励电源的电压与回路的响应电流同相位。
②由于感抗ω0L 与容抗1/ω0C 相等,所以电感上的电压L与电容上的电压C数值相等,相位相差180 °。
电感上的电压(或电容上的电压)与激励电压之比称为品质因数Q ,即:在 L 和 C 为定值的条件下,Q 值仅仅决定于回路电阻 R 的大小。
③在激励电压(有效值)不变的情况下,回路中的电流 I= Us/R为最大值。
( 3 )串联谐振电路的频率特性①回路的响应电流与激励电源的角频率的关系称为电流的幅频特性(表明其关系的图形为串联谐振曲线),表达式为:当电路的 L 和 C 保持不变时,改变 R 的大小,可以得出不同 Q 值时电流的幅频特性曲线(如图 4-7-2 )。
显然, Q 值越高,曲线越尖锐。
为了反映一般情况,通常研究电流比 I/I0与角频率比ω/ω0之间的函数关系,即所谓通用幅频特性。
其表达式为:这里, I0为谐振时的回路响应电流。
图 4-7-3 画出了不同 Q 值下的通用幅频特性曲线,显然, Q 值越高,在一定的频率偏移下,电流比下降得越厉害。
幅频特性曲线可以由计算得出,或用实验方法测定。
rlc串联电路的谐振实验报告一、实验目的二、实验原理1. RLC串联电路的基本概念2. 谐振现象及其特点三、实验器材和仪器1. 实验器材清单2. 实验仪器清单四、实验步骤1. 实验前准备工作2. 测量电路中各元件的参数值3. 测量谐振频率和带宽五、实验数据处理与分析1. 计算电路品质因数Q和谐振频率f0的理论值2. 绘制电路的幅频特性曲线和相频特性曲线,并分析其特点。
六、实验结论与思考七、参考文献一、实验目的本次实验主要是通过对RLC串联电路进行谐振实验,掌握测量RLC串联电路中各元件参数值以及谐振频率和带宽的方法,了解谐振现象及其特点,掌握计算电路品质因数Q和谐振频率f0理论值的方法,并绘制出幅频特性曲线和相频特性曲线。
二、实验原理1. RLC串联电路的基本概念RLC串联电路是由电阻R、电感L和电容C三种元件串联而成的电路。
当交流电源接入这个电路时,由于电感和电容的存在,会产生阻抗,从而影响电路中的电流和电压。
在RLC串联电路中,当交流信号频率等于某一特定值时,会出现谐振现象。
2. 谐振现象及其特点谐振是指在某一特定频率下,RLC串联电路的阻抗达到最小值或最大值的现象。
当交流信号频率等于谐振频率f0时,RLC串联电路中的阻抗为纯阻抗,即只有R存在。
此时,如果在该频率下加入一个外加信号,则可以得到最大幅度的响应。
谐振现象具有以下特点:(1)在谐振频率f0处,RLC串联电路中的阻抗为纯阻抗。
(2)在谐振频率f0处,输入信号与输出信号之间相位差为0。
(3)当输入信号频率偏离f0时,输出信号幅度将随着频率增加而降低。
三、实验器材和仪器1. 实验器材清单:电阻箱、电容箱、电感箱、万用表、示波器等。
2. 实验仪器清单:Tektronix TDS2002C数字示波器等。
四、实验步骤1. 实验前准备工作(1)检查实验仪器是否正常工作。
(2)连接RLC串联电路,调整各元件的参数,使其符合实验要求。
(3)将示波器连接到电路中,以便观察信号的变化情况。