中位数与众数-八年级数学上北师大版
- 格式:ppt
- 大小:2.60 MB
- 文档页数:12
北师大版数学八年级上册《中位数与众数》教学设计1一. 教材分析北师大版数学八年级上册《中位数与众数》是学生在学习了平均数、方差等统计量的基础上,进一步研究数据的集中趋势和离散程度。
中位数与众数是描述数据集中趋势的两种统计量,它们能够反映出数据的一些不同特点。
本节课的内容对于学生来说是比较抽象的,需要通过具体的数据和实例来帮助学生理解和掌握。
二. 学情分析学生在学习本节课之前,已经掌握了平均数的计算和意义,也有一定的数据分析基础。
但是,对于中位数与众数的计算方法和意义,可能还不够清楚。
因此,在教学过程中,需要通过具体的数据和实例,帮助学生理解和掌握中位数与众数的概念和方法。
三. 教学目标1.理解中位数与众数的含义,掌握求一组数据的中位数与众数的方法。
2.能够运用中位数与众数解决实际问题,提高数据分析的能力。
3.培养学生的合作意识和团队精神,提高学生的数学思维能力。
四. 教学重难点1.教学重点:中位数与众数的含义,求一组数据的中位数与众数的方法。
2.教学难点:理解中位数与众数在实际问题中的应用,能够灵活运用。
五. 教学方法采用问题驱动的教学方法,通过具体的数据和实例,引导学生探究中位数与众数的含义和求法。
同时,运用小组合作的学习方式,培养学生的团队精神和合作能力。
六. 教学准备1.教学PPT,包括中位数与众数的定义、求法、实例等。
2.数据材料,用于引导学生探究中位数与众数。
3.练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个具体的数据实例,引导学生思考:一组数据的集中趋势可以用哪些统计量来描述?进而引出中位数与众数的概念。
2.呈现(10分钟)讲解中位数与众数的定义,并通过PPT展示具体的例子,让学生直观地感受中位数与众数的特点。
3.操练(10分钟)让学生分组讨论,每组选取一组数据,计算其中位数与众数,并解释其含义。
4.巩固(10分钟)让学生独立完成练习题,巩固所学知识。
教师巡回指导,解答学生疑问。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第6单元中位数与众数一、选择题1.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.92.已知一组数据3、4、4、5、6、7、4、7,那么这组数据的()A.中位数是5.5,众数是4B.中位数是5,平均数是5C.中位数是5,众数是4D.中位数是4.5,平均数是53.孔晓东同学在“低碳黄冈绿色未来”演讲比赛中,6位评委给他的打分如下表:评委代号ⅠⅡⅢⅣⅤⅥ评分859080959090则他得分的中位数为()A.95B.90C.85D.804.中国奥运冠军朱启南在亚运会男子10米气步枪决赛中,凭借最后3枪的出色发挥,以总成绩702.2环夺得冠军。
第六章数据的分析2中位数与众数教学目标教学反思1.掌握中位数、众数的概念;2.能求出一组数据的中位数和众数;3.在具体情境中体会平均数、中位数和众数三者的差别.教学重难点重点:中位数、众数的概念及求法;难点:平均数、中位数和众数三者的差别.教学过程情景导入在当今信息时代,信息的重要性不言而喻,人们经常要求一些信息“用数据说话”,所以对数据作出恰当的评判是很重要的.下面请看一例:某次数学考试,小英得了78分,全班共32人,其他同学的成绩为1个100分,4个90分,22个80分,2个62分,1个30分,1个25分.小英计算出全班的平均分为77.4分,所以小英告诉妈妈说,自己这次数学成绩在班上处于“中上水平”.小英对妈妈说的情况属实吗?你对此有何看法?引导学生展开讨论,作出评判:平均数是我们常用的一个数据代表,但是在这里,利用平均数把倒数第五的成绩说成处于班级的“中上水平”显然是不属实的.原因是全班的平均分受到了两个极端数据30分和25分的影响,利用平均数反应问题就出现了偏差.引出中位数与众数.新课讲授1.某公司员工的月工资如下:经理说:我公司员工收入很高,月平均工资为2 700元.职员C说:我的工资是1 900元,在公司算中等收入.教学反思职员D说:我们好几个人工资都是1 800元.一位应聘者心里在琢磨:这个公司员工收入到底怎样呢?问题1:你怎样看待该公司员工的收入?学生小组讨论,教师点拨:上述问题中,经理、职员C、职员D从不同的角度描述了该公司的收入情况:(1)月平均工资2 700元,指所有员工工资的平均数是2 700元,但只有正、副经理的工资比平均工资高,是他两人的工资把平均工资“拉”高了.(2)职员C的工资是1 900元,恰好居于所有员工工资的“正中间”(恰有4人的工资比他高,有4人的工资比他低),我们称1 900元是这组数据的中位数.(3)9个员工中有3个人的工资为1 800元,出现的次数最多,我们称1 800元是这组数据的众数.问题2:你认为用哪个数据表示该公司员工收入的平均水平更合适?学生讨论,教师总结用中位数1 900元或众数1 800元表示该公司员工收入的平均水平更合适些,因为平均数2 700元受到了极端值的影响.结合上述问题的探究,引入中位数、众数的概念:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.教师指出:平均数、中位数、众数都是数据的代表,它们刻画了一组数据的“平均水平”.让学生用中位数、众数的概念,解释引例中小英的数学成绩的问题.求中位数的一般步骤:1.将这一组数据从大到小(或从小到大)排序;2.两种情况:a.如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.b.如果数据的个数是偶数,则处于中间两个数的平均数就是这组数据的中位数.求众数:不用排序,直接数每个数出现的次数.出现次数最多的数据就是众数.练习:对于一组数据:3,3,2,3,6,3,10,3,6,3,2,下列说法教学反思正确的是()A. 这组数据的众数是3B. 这组数据的众数与中位数的数值不相等C. 这组数据的中位数与平均数的数值相等D. 这组数据的平均数与众数的数值相等答案:A2.平均数、中位数和众数都是数据的代表,它们刻画了一组数据的“平均水平”.计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但它容易受极端值的影响.如体操比赛评分中,个别裁判不公正打分将直接影响运动员的成绩,为此一般先去掉一个最高分和一个最低分,然后求其余得分的平均数作为运动员的得分.中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据信息.一组数据中某些数据多次重复出现时,众数往往是人们尤为关心的一个量.如选举,就是选择名字出现次数最多的那个人,因而可以将当选者的名字当作“众数”,但各个数据的重复次数大致相等时,众数往往没有特别意义.课堂练习1.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别是 .2.某校八年级(1)班50名学生参加数学质量监测考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的平均分是__________,众数是 .(2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.3.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案1.25.5厘米 25.5厘米2.(1)85.08分 88分 (2)86分 (3)不能说张华同学的成绩处于全班中游偏上水平.因为全班同学总成绩的中位数是86分,张华同学的成绩为83分,低于全班成绩的中位数.3.(1)(2)①因为平均数都相同,八年级的众数最高, 所以八年级的成绩好一些.②因为平均数都相同,七年级的中位数最高, 所以七年级的成绩好一些.(3)因为七、八、九各年级前三名学生决赛成绩的平均分分别是93、91、94,所以从各年级参加决赛的选手中分别选出3人参加总决赛,九年级的实力更强一些.课堂小结(学生总结,老师点评) 中位数、众数的定义教学反思平均数、中位数、众数的特征布置作业习题6.3板书设计第六章数据的分析2中位数与众数。
6.2中位数与众数(解析)知识精讲中位数(1)将一组数据按从小到大(或从大到小顺)的顺序进行排列,(2)如果数据个数为奇数,则中间的那个数就是中位数,(3)如果数据的个数为偶数,则中位数应是中间两个数据的平均数.一组数据3、8、6、7、2、8、6、8的中位数(1)从小到大进行排列:2、3、6、6、7、8、8、8(2)共8个数字,中位数为第4、第5个数(3)676.52+=众数一组数据中出现次数最多的数据(1)一组数据,1、2、3、4、5、5,众数为5(2)一组数据:1、2、3、3、5、5,众数为3、5(3)一组数据:2、2、3、3、5、5,没有众数易错点:如果一组数据中有两个或两个以上的数据出现的次数一样,都是最多,则以上数据是这组数据的众数. 如果所有数据出现的次数都一样,那么这组数据没有众数,譬如:1,2,3,4,5没有众数.三点剖析一.考点:中位数、众数.二.重难点:中位数、众数.三.易错点:1.如果一组数据中有两个或两个以上的数据出现的次数一样,都是最大,那么这些个数据是这组数据的众数. 如果所有数据出现的次数都一样,那么这组数据没有众数,譬如:1,2,3,4,5没有众数.2.中位数中数据的个数为偶数,则中位数是中间两个数据的平均数.中位数,众数例题1、一组数据:2,3,6,6,7,8,8,8的中位数是()A.6B.6.5C.7D.8【答案】B【解析】这组数据按照从小到大的顺序排列为:2,3,6,6,7,8,8,8,则中位数为:6+72=6.5.例题2、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.最高分与最低分数的差【答案】C【解析】由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.例题3、若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【答案】C【解析】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.例题4、为筹备学校元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.加权平均数D.众数【答案】D【解析】吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.例题5、下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是()年龄13141516频数5713A.中位数是14B.中位数可能是14.5C.中位数是15或15.5D.中位数可能是16 【答案】 D【解析】 5+7+13=25,由列表可知,人数大于25人,则中位数是15或(15+16)÷2=15.5或16.例题6、 两组数据:3,a ,2b ,5与a ,6,b 的平均数都是8,若将这两组数据合并为一组数据.(1)求出a ,b 的值;(2)求这组数据的众数和中位数.【答案】 (1)126a b =⎧⎨=⎩(2)众数为12;中位数是6【解析】 (1)∵两组数据:3,a ,2b ,5与a ,6,b 的平均数都是8, ∴23235246a b a b +=--⎧⎨+=-⎩,解得:126a b =⎧⎨=⎩;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6, 12出现了3次,最多,即众数为12.随练1、 宝应县青少年活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如下表:则全体参赛选手年龄的中位数是__________岁. 【答案】 15【解析】 参赛的人数为:5+19+12+14=50(人),则第25位和第26位年龄的平均数即为全体参赛选手年龄的中位数,则中位数为:15152+=15.随练2、 某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是( ) A.93,96 B.96,96 C.96,100 D.93,100 【答案】 B【解析】 把数据从小到大排列:92,93,95,96,96,98,100, 位置处于中间的数是:96,故中位数是96; 次数最多的数是96,故众数是96随练3、 本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:那么这30名同学四月份诗词背诵数量的众数和中位数分别是( )年龄组13岁 14岁 15岁 16岁 参赛人数 5 19 12 14诗词数量(首)4 5 6 7 8 9 10 11 人数 34457511A.11,7B.7,5C.8,8D.8,7【答案】 D【解析】 这组数据中8出现的次数最多,则其众数为8;30个数据的中位数为第15、16个数据的平均数,则其中位数为7772+=, 随练4、 一组由小到大排列的数据为-1,0,4,x ,6,16,这组数据的中位数为5,则这组数据的众数可能是( )A.5B.6C.-1D.5.5【答案】 B【解析】 根据题目提供的数据,可以看到这组数据的中位数应是4与x 和的平均数,即452x+=, 所以求出x =6,这样这组数据中出现次数最多的就是6,即众数是6.随练5、 已知一组从小到大排列的数据:1,x ,y ,2x ,6,10的平均数与中位数都是5,则这组数据的众数是________. 【答案】 6【解析】 ∵一组从小到大排列的数据:1,x ,y ,2x ,6,10的平均数与中位数都是5, ∵11(12610)(2)562x y x x y +++++=+=, 解得x =3、y =4,则这组数据为1、3、4、6、6、10 ∵这组数据的众数是6.课后练习1、 如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是( )A.27B.29C.30D.31 【答案】 C【解析】 暂无解析2、 一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,3 【答案】 A【解析】 ∵这组数据的众数是2, ∴x =2,将数据从小到大排列为:2,2,2,4,4,7, 则平均数=(2+2+2+4+4+7)÷6=3.5, 中位数为:3.3、 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( ) A.a <13,b =13 B.a <13,b <13C.a >13,b <13D.a >13,b =13 【答案】 A【解析】 ∵原来的平均数是13岁, ∴13×23=299(岁),∴正确的平均数299112.961323a -=≈<,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁, ∴b =13.4、 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90B.众数是5C.中位数是90D.平均分为87.5【答案】 C【解析】 根据折线统计图可得: 最高分为95,故A 错误;90分的人数有5个,人数最多,则众数是90,故B 错误;根据排序后的数据,可得第5和第6个数据落在90分这一组,故中位数为90,故C 正确;平均分为(2×80+85+5×90+2×95)÷10=88.5,故D 错误.5、 6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图: 根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整; (2)写出下表中a 、b 、c 的值: (3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析: ①从平均数和中位数方面比较一班和二班的成绩; ②从平均数和众数方面比较一班和二班的成绩;平均数(分)中位数(分)众数(分)一班 a b 90二班 87.6 80 c③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.【答案】(1)(2)a=87.6;b=90;c=100(3)①一班成绩好于二班②二班成绩好于一班③一班成绩好于二班【解析】(1)一班中C级的有25﹣6﹣12﹣5=2人.故统计图为:(2)a=(6×100+12×90+2×80+70×5)÷25=87.6;b=90c=100;(3)①从平均数和中位数的角度,一班和二班平均数相等,一班的中位数大于二班的中位数,故一班成绩好于二班.②从平均数和众数的角度,一班和二班平均数相等,一班的众数小于二班的众数,故二班成绩好于一班.③从B级以上(包括B级)的人数的角度,一班有18人,二班有12人,故一班成绩好于二班.6、一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_________【答案】7 6【解析】本题考查众数、平均数的概念.根据众数为1,求出a的值,然后根据平均数的概念求解.∵众数为1,∴a=1.∴平均数为1+2+1+0+2+17=667、在“爱满扬州”慈善一日捐款活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.第11题图(1)这50名同学捐款的众数为_____元,中位数为_______元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数【答案】【解析】(1)解:15,15;(4分).解:x=150×(5×8+10×14+15×20+20×6+25×2)=13;解:600×13=7800(元);答:估计该校学生的捐款总数为7800元8、为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)若规定居民生活用水收费标准为2.80元/立方米,请你估算小申家一个月(按30天计算)的水费是多少元?(1立方米=1000升)【解答】解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)100800×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)8001000×30×2.80=67.20(元).答:小申家一个月(按30天计算)的水费是67.20元.。
章节测试题1.【答题】在一次定位投篮比赛中,数学组老师投进的球数如下:1人投进6个,2人投进4个,1人投进5个3人投进3个,3人投进2个那么,数学组老师投进球数的众数是______,中位数为______,平均数为______.【答案】3个和2个 3个3.4个【分析】【解答】2.【题文】某商场一天中售出某品牌运动鞋16双,其中各种尺码的鞋的销售量如下表:鞋的尺码23.5 24 24.5 25 26销售量/双 1 3 4 6 2(1)这16双鞋的尺码组成的一组数据中,众数和中位数各是多少?(2)如果该商场10天进一次该品牌以上尺码的运动鞋,则最好怎么进货?请说明理由.【答案】解:(1)数据25出现的次数最多,∴众数是25cm.排序后第8,9个数据的平均数是24.75,∴中位数是24.75cm.(2)多进尺码为25cm的鞋,少进尺码为23.5cm的鞋.原因:尺码为23.5cm的鞋销售量最少,尺码为25cm的鞋销售量最多.【分析】【解答】3.【答题】某校环保小组的学生到某居民小区随机调查了20户居民一天丢弃的废塑料袋的情况,统计结果如下表:每户居民一天丢弃塑料袋的个数2 3 4 5户数8 6 4 2请根据表中提供的信息回答:(1)该居民小区这20户居民一天丢弃的废塑料袋的众数是______个,中位数是______个,平均数是______个;(2)若该居民小区共有500户,试估计该居民小区一个月(按30天计算)丢弃的废塑料袋的总个数.【答案】解:(1)2 3 3(2)如果共有居民500户,那么一个月共丢弃废塑料袋(个).【分析】【解答】4.【题文】上周五某校开展了赈灾捐款活动,其中八年级(2)班全体同学的捐款情况如下表:捐款金额 5元 10元 15元 20元 50元捐款人数 7人 18人12人 3人由于填表的同学不小心把墨水滴在表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合以上信息回答下列问题:(1)八年级(2)班共有多少人?(2)学生捐款金额的众数和中位数分别为多少元?【答案】解:(1)∵(人),∴八年级(2)班共有50人.(2)∵捐15元的同学人数为,∴学生捐款的众数为10元.又∵第25个数为10,第26个数为15,∴中位数为(元).【分析】【解答】5.【题文】某养鸡场有2500只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:)绘制出如下统计图.请根据相关信息解答下列问题:(1)求统计的这组数据的平均数、中位数;(2)根据样本数据,估计这2500只鸡中质量为的约有多少只.【答案】解:(1)观察条形统计图,,所以这组数据的平均数是1.52.将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,所以这组数据的中位数是1.5.(2)在所抽取的样本中,质量为2.0kg的数量有4只,,所以由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.(只).故质量为2.0kg的约有200只.【分析】【解答】6.【题文】今年天气干旱,为宣传节约用水,张华随机调查了某小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)张华一共调查了______户家庭,所调查家庭5月份用水量的众数是______;(2)求所调查家庭5月份用水量的平均数;(3)若该小区有300户居民,请你估计这个小区5月份的用水量【答案】解:(1)张华一共调查的家庭数:,有6户家庭每月用水量为4吨,出现次数最多,∴所调查家庭5月份用水量的众数是4吨.(2)所调查家庭5月份用水量的平均数.(3)(吨).答:5月份300户居民的用水量为1350吨.【分析】【解答】7.【答题】某校开展了主题为“青春·梦想”的艺术作品征集活动从八年级五个班收集到的作品数量(单位:件)分别为42,50,45,46,50,则这组数据的中位数是()A. 42件B. 45件C. 46件D. 50件【答案】C【解答】8.【答题】某中学为积极响应全民阅读的号召,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表,则在本次调查中,学生阅读时间的中位数是______.时间/时0.5 1 1.5 2 2.5人数12 22 10 5 3【答案】1【分析】【解答】9.【答题】据调查,某班30位同学所穿鞋子的尺码如下表,则该班这30位同学所穿鞋子尺码的众数是()码号/码33 34 35 36 37人数 3 6 8 8 5A. 8B. 35C. 36D. 35和36【答案】D【分析】【解答】10.【答题】如果一组数据6,7,,10,5的众数是7,那么这组数据的平均数为______.【分析】【解答】11.【答题】(2020独家原创试题)全民健身活动越来越受人们的关注,某小区四位仰卧起坐爱好者在进行比赛时所做的仰卧起坐的个数从高到低排列依次为20,17,12,12,则这组数据的中位数是()A. 17B. 12C. 14.5D. 15.5【答案】C【分析】【解答】这组数据的中位数是,选C.12.【答题】一组数据3、-5、0、1、4的中位数是()A. 0B. 1C. -2D. 4【答案】B【分析】【解答】将这组数据从小到大排序为-5,0,1,3,4,则中位数为1,选B.13.【答题】某校在“爱护地球,绿化祖国”的活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:植树棵数 4 5 6 8 10人数30 22 25 15 8则这100名学生植树棵数的中位数为()A. 4B. 5C. 5.5D. 6【答案】B【分析】【解答】把100个数从小到大排序,最中间的两个数是5,5,所以中位数是.14.【答题】(2020重庆江北十八中校级月考)数据3、4、6、7、x的平均数是5,则这组数据的中位数是()A. 4B. 4.5C. 5D. 6【答案】C【分析】【解答】∵数据3、4、6、7、x的平均数是5,,解得x=5,把这组数据从小到大排序为3、4、5、6、7,最中间的数是5,∴这组数据的中位数是5,选C.15.【答题】将一组正整数从小到大排序为2,4,5,x,已知这组数据的中位数和平均数相等,那么x的值是______.【答案】7【分析】【解答】∵这组数据的中位数和平均数相等,,解得x=7.16.【答题】数据7,8,5,8,6,8,7的众数和中位数是()A. 8,7B. 8,5C. 7,8D. 7,5【答案】A【分析】【解答】在这组数据中出现次数最多的是8,即众数是8,把这组数据按照从小到大的顺序排列为5,6,7,7,8,8,8,最中间的数是7,∴中位数为7.选A.17.【答题】一组数据3,4,x,6,8的平均数是5,则这组数据的众数是()A. 3B. 4C. 6D. 8【答案】B【分析】【解答】根据题意,得,解得x=4,则这组数据为3,4,4,6,8,因为4出现的次数最多,所以这组数据的众数是4.选B.18.【答题】(2020独家原创试题)据统计,感染冠状病毒病的人数持续上升,正确佩戴口罩和护目镜能有效预防冠状病毒病,小明一共购买了四袋口罩,其中口罩的数量分别是10,10,x,9.已知这组数据的众数和平均数相等,则这组数据中x 的值为()A. 9B. 10C. 11D. 12【答案】C【分析】【解答】①当x=9时,众数为9或10,平均数,或10,∴此种情况不合题意,舍去;②当时,众数为10,,解得x=11.选C.19.【答题】(2020山东东营垦利六校期中)某市4月份某一周的最高气温统计如下:最高气温28 29 30 31(℃)天数 1 1 3 2则这周最高气温的众数与中位数分别是______.【答案】30℃和30℃【分析】【解答】由题表中的数据可知,30出现的次数最多,所以众数为30℃;将题表中的数据按从小到大的顺序排列,排在最中间的数是30,所以中位数为30℃.20.【答题】5名学生在一周内的做家务时间统计如下:3小时有1人,3个半小时有1人,4小时有2人,4个半小时有1人,则关于这组“做家务时间”的数据分析正确的是()A. 中位数是4小时,平均数是3.75小时B. 中位数是4小时,平均数是3.8小时C. 众数是4小时,平均数是3.75小时D. 众数是2小时,平均数是3.8小时【答案】B【分析】【解答】把这5名学生的做家务时间(单位:小时)从小到大排序为3,3,5,4,4,4.5,最中间的数是4,因此中位数是4小时,小时,选B.。
北师大版八年级上册数学第六章知识点复习:平均数、中位数、众数
一、平均数、中位数、众数的概念
1.平均数
平均数是指在一组数据中所有数据之和再除以数据的个数。
2.中位数
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。
3.众数
众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
二、平均数、中位数、众数的区别
1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.总数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
3.中位数仅与数据的排列有关,一般来说,部分数据
的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。
三、平均数、中位数、众数的联系
众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。
由为您提供的北师大版八年级上册数学第六章知识点复习:平均数、中位数、众数,祝您学习愉快!。