2018年下学期沪科版八年级数学第一次月考测试卷
- 格式:doc
- 大小:112.50 KB
- 文档页数:4
沪科版八年级数学上册第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)点A(2,6)与点B(-4, 6)关于直线()对称A . x=0B . y=0C . x=-1D . y=-12. (2分)(2017·冠县模拟) 函数y= 的自变量x的取值范围是()A . x≥0且x≠2B . x≥0C . x≠2D . x>23. (2分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1 ,已知在AC上一点P(2.4,2)平移后的对应点为P1 ,点P1绕点O逆时针旋转180°,得到对应点P2 ,则P2点的坐标为()A . (1.4,﹣1)B . (1.5,2)C . (1.6,1)D . (2.4,1)4. (2分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A . 4小时B . 4.4小时C . 4.8小时D . 5小时5. (2分) (2017七下·三台期中) 以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分) (2019八下·哈尔滨期中) 圆周长公式C=2πr ,下列说法正确是().A . 是变量,2是常量B . 是变量,是常量C . 是变量,是常量D . 是变量 ,是常量7. (2分)北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么()A . 汉城与纽约的时差为13小时B . 汉城与多伦多的时差为13小时C . 北京与纽约的时差为14小时D . 北京与多伦多的时差为14小时8. (2分) (2017八上·郑州期中) 下列说法正确的是()A . 点在第一象限B . 纵坐标为0的点在y轴上C . 已知一点到x轴的距离为2,到y轴的距离为5,则这个点的坐标为(5,2)D . 横坐标是负数,纵坐标是正数的点在第二象限9. (2分)如图,直角梯形ABCD中D点的坐标为(3,7),AD=5,则A的坐标为()A . (2,7)B . (-2,7)C . (2,-7)D . (-5,7)10. (2分)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟时,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A . (4,0)B . (5,0)C . (0,5)D . (5,5)11. (2分)(2017·天桥模拟) 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是()A . (﹣2,﹣4)B . (﹣2,4)C . (2,﹣3)D . (﹣1,﹣3)12. (2分) (2018八上·秀洲月考) 函数的图象大致为()A .B .C .D .二、填空题 (共6题;共10分)13. (1分) (2019七上·道里期末) 若排列用有序数对表示,那么表示排列的有序数对为________.14. (1分) (2015九上·盘锦期末) 函数的自变量x的取值范围是________.15. (1分) (2015七下·徐闻期中) 一只蚂蚁在点A(1,﹣2)向下平移5个单位长度得到点B,则点B的坐标是________.16. (5分)点P(-2,m)在第二象限的角平分线上,则m=____。
第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5B.C.D.72、()的图象如图所示,当时,的取值范围是()A. B. C. D.3、函数y=+ 中自变量x的取值范围是()A.x≤3B.x<3C.x≠3D.x>34、对于一次函数y=x+2,下列结论错误的是( )A.函数值随自变量增大而增大B.函数图象与x轴交点坐标是(0,2) C.函数图象与x轴正方向成45°角 D.函数图象不经过第四象限5、已知一次函数y=kx﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A. B. C. D.6、已知二次函数y=2(x-1)(x-m-3)(其中m为常数),该函数图象与y轴交点在x轴上方,则m的取值范围正确的是()A.m>3B.m>-3C.m<3D.m<-37、在平面上画出三条直线,两两相交,交点的个数最多应该是()A.1个B.2个C.3个D.4个8、用100元钱在网上书店恰好可购买m本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A. B. C.D.9、港口依次在同一条直线上,甲、乙两艘船同时分别从两港出发,匀速驶向港,甲、乙两船与港的距离(海里)与行驶时间(小时)之间的函数关系如图所示,则下列说法正确的有()①两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达港时,乙船还需要一个小时才到达港⑤点的坐标为A.1个B.2个C.3个D.4个10、已知一次函数和的图像都经过点A(-2,0)且与y轴分别交于B,C两点,那么△ABC的面积为()A.2B.3C.4D.611、如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()A. B. C. D.12、函数y=自变量x的取值范围是()A.x<1B.x>﹣1C.x≤1D.x≤﹣113、如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx的解集为()A.1<x<B.1<x<3C.﹣<x<1D. <x<314、函数y= 中,自变量x的取值范围是( )A.x=-2B.x=1C.x≠-2D.x≠115、若k > 4,则一次函数 y = (4 - k)x + k - 4的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、函数y=+(x﹣2)0中,自变量x的取值范围是________.17、已知直线经过点,,则________ (用不等号).18、如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是________.①第24天的销售量为200件;②第10天销售一件产品的利润是15元;③第12天与第30天这两天的日销售利润相等;④第30天的日销售利润是750元.19、如图,在平面直角坐标系中,点A在x轴上,△ABO是直角三角形,∠ABO=90°,点B 的坐标为(﹣1,2),将△ABO绕原点O顺时针旋转90°得到△A1B1O,则过A1, B两点的直线解析式为________ .20、如图,直线经过点,则关于的不等式的解集是________.21、如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是________.22、写出一个同时满足下面两个条件的一次函数的解析式________.条件:①y随x的增大而减小;②图象经过点(0,2).23、如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是________.24、若函数y﹦(m+1)x+m2﹣1是正比例函数,则m的值为________25、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(升)与行驶时间t(小时)的关系如下表,行驶时间t(时)0 1 2 3油箱余油量y(升)100 84 68 52与行驶路程x(千米)的关系如图.则A型车在实验中的速度是________千米/时.三、解答题(共5题,共计25分)26、已知,当时,;当时,. 求出k,b的值;27、某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该种水果的进价为8元/kg,下面是他们在活动结束后的对话:小丽:如果以10元/kg的价格销售,那么每天可售出300kg.小强:如果以13元/kg的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(kg)与销售单价x(元)之间存在一次函数关系.求y(kg)与x(元)(x>0)的函数关系式.28、正比例函数y=kx 和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x 轴于点B(4,0).求正比例函数和一次函数的表达式.29、已知函数y=(2-m)x+m-1,若函数图象过原点,求出此函数的解析式.30、在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和(2,0),求这个一次函数的解析式.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、B5、D6、B7、C8、A9、D10、D11、B12、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
2017-2018学年安徽省蚌埠市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.二次根式√12x−1中字母x的取值范围是( )A. x≥2B. x>2C. x≥12D. x>123.下列方程中,是关于x的一元二次方程的是( )A. x+1x=0 B. ax2+bx+c=0C. (x−1)(x+2)=1D. 3x2−2xy−5y2=04.下列计算正确的是( )A. √20=2√10B. √2⋅√3=√6C. √4−√2=√2D. √(−3)2=−35.用配方法将方程x2+6x−11=0变形,正确的是( )A. (x−3)2=20B. (x−3)2=2C. (x+3)2=2D. (x+3)2=206.将√32×8化简,正确的结果是( )A. 6√2B. ±6√2C. 3√8D. ±3√87.下列性质中,平行四边形不一定具备的是( )A. 邻角互补B. 对角互补C. 对边相等D. 对角线互相平分8.当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,则5个整数的和最大是( )A. 21B. 22C. 23D. 249.已知关于x的方程(a−1)x2−2x+1=0有实数根,则a的取值范围是( )A. a≤2B. a>2C. a≤2且a≠1D. a<−210.如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是( )A. 4B. 3C. 2D. 1二、填空题(本大题共6小题,共18.0分)11.当a=−2时,二次根式√2−a的值是______.12.如果一个n边形的内角和等于它的外角和的3倍,则n=______.13.如果√(2a−1)2=2a−1,则a的取值范围是______.14.已知一组数据x1,x2,x3,平均数和方差分别是2,32,那么另一组数据2x1−1,2x2−1,2x3−1的平均数和方差分别是,______.15.关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是______.1/ 1216.在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若AB=4,BC=6,则CE+CF的值为______.三、解答题(本大题共7小题,共52.0分)17.我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2−4x−1=0②x(2x+1)=8x−3③x2+3x+1=0④x2−9=4(x−3)我选择第______个方程.18.已知关于x的一元二次方程(a+c)x2+2bx+(a−c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=−1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.19.计算:(1)计算:√8−√2(1+√2)(结果保留根号);(2)当x=2+√3时,求代数式x2−4x+2的值.20.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).21.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售______件,每件盈利______元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.22.如图,分别延长▱ABCD的边CD,AB到E,F,使DE=BF,连接EF,分别交AD,BC于G,H,连结CG,AH.求证:CG//AH.3/ 1223.将一副三角尺如图拼接:含30∘角的三角尺(△ABC)的长直角边与含45∘角的三角尺(△ACD)的斜边恰好重合.已知AB=2√3,P是AC上的一个动点.(1)当点P运动到∠ABC的平分线上时,连接DP,求DP的长;(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时▱DPBQ的面积.答案和解析【答案】1. B2. D3. C4. B5. D6. A7. B8. A9. A10. B11. 212. 813. a≥1214. 3,615. x3=−4,x4=−116. 10+5√3或2+√317. ①或②或③或④18. 解:(1)把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以△ABC为等腰三角形;(2)根据题意得△=(2b)2−4(a+c)(a−c)=0,即b2+c2=a2,所以△ABC为直角三角形;(3)∵△ABC为等边三角形,∴a=b=c,∴方程化为x2+x=0,解得x1=0,x2=−1.19. 解:(1)√8−√2(1+√2)=2√2−√2−2=√2−2;(2)∵x=2+√3,∴x2−4x+2=(x−2)2−2=3−2=1.销售公司平均数方差中位数众数甲9 5.297乙917.088(2)①∵甲、乙的平均数相同,而S甲2<S乙2,∴甲汽车销售公司比乙汽车销售公司的销售情况较稳定;②因为甲汽车销售公司每月销售的数量在平均数上下波动,而乙汽车销售公司每月销售的数量处于上升势头,从六月份起都比甲汽车销售公司销售数量多,所以乙汽车销售公司的销售有潜力.21. 20+2x;40−x22. 证明:在▱ABCD中,AB//CD,AD//CB,AD=CB,∴∠E=∠F,∠EDG=∠DCH=∠FBH,又DE=BF,∴△EGD≌△FHB(AAS),∴DG=BH,∴AG=HC,又∵AD//CB,∴四边形AGCH为平行四边形,∴AH//CG.23. 解:在Rt△ABC中,AB=2√3,∠BAC=30∘,∴BC=√3,AC=3.5/ 12(1)如图(1),作DF⊥AC.∵Rt△ACD中,AD=CD,∴DF=AF=CF=32.∵BP平分∠ABC,∴∠PBC=30∘,∴CP=BC⋅tan30∘=1,∴PF=12,∴DP=√PF2+DF2=√102.(2)当P点位置如图(2)所示时,根据(1)中结论,DF=32,∠ADF=45∘,又∵PD=BC=√3,∴cos∠PDF=DFPD =√32,∴∠PDF=30∘.∴∠PDA=∠ADF−∠PDF=15∘.当P点位置如图(3)所示时,同(2)可得∠PDF=30∘.∴∠PDA=∠ADF+∠PDF=75∘.故∠PDA的度数为15∘或75∘;(3)当点P运动到边AC中点(如图4),即CP=32时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上.∵四边形DPBQ为平行四边形,∴BC//DP,∵∠ACB=90∘,∴∠DPC=90∘,即DP⊥AC.而在Rt△ABC中,AB=2√3,BC=√3,∴根据勾股定理得:AC=3,∵△DAC为等腰直角三角形,∴DP=CP=12AC=32,∵BC//DP,∴PC是平行四边形DPBQ的高,∴S平行四边形DPBQ =DP⋅CP=94.【解析】1. 解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2. 解:∵二次根式√1有意义,2x−1∴2x−1>0,解得x>1.2故选:D.根据二次根式及分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.3. 解:A、是分式方程,故A错误;B、a=0时是一元一次方程,故B错误;C、是一元二次方程,故C正确;D、是二元二次方程,故D错误;故选:C.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4. 解:A、√20=2√5,故A错误;B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;C、√4−√2=2−√2,故C错误;D、√(−3)2=|−3|=3,故D错误.故选:B.根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.此题考查了二次根式的化简和二次根式的运算.注意二次根式的性质:√a2=|a|.5. 解:把方程x2+6x−11=0的常数项移到等号的右边,得到x2+6x=11,方程两边同时加上一次项系数一半的平方,得到x2+6x+9=11+9,配方得(x+3)2=20.故选:D.在本题中,把常数项−11移项后,应该在左右两边同时加上一次项系数6的一半的平方.本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6. 解:原式=√32×23=√32×22×2=√32×√22×√2=6√2.故选:A.7/ 12根据二次根式的乘法,可化简二次根式,可得答案.本题考查了二次根式的性质与化简,二次根式的乘法运算是解题关键.7. 解:A、平行四边形邻角互补,正确,不合题意;B、平行四边形对角不一定互补,错误,符合题意;C、平行四边形对边相等,正确,不合题意.D、平行四边形对角线互相平分,正确,不合题意;故选:B.直接利用平行四边形的性质:对角相等、对角线互相平分、对边平行且相等,进而分析得出即可.此题主要考查了平行四边形的性质,熟练掌握相关性质是解题关键.8. 解:根据中位数的定义5个整数从小到大排列时,其中位数为4,前两个数不是众数,因而一定不是同一个数.则前两位最大是2,3,根据众数的定义可知后两位最大为6,6.这5个整数最大为:2,3,4,6,6∴这5个整数可能的最大的和是21.故选:A.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.9. 解:当a−1=0,即a=1时,原方程为−2x+1=0,解得:x=12,∴a=1符合题意;当a−1≠0,即a≠1时,∵关于x的方程(a−1)x2−2x+1=0有实数根,∴△=(−2)2−4(a−1)=8−4a≥0,解得:a≤2且a≠1.综上所述:a的取值范围为a≤2.故选:A.分二次项系数a−1=0和a−1≠0两种情况考虑,当a−1=0时,解一元一次方程可得出x的值,由此得出a=1符合题意;当a−1≠0时,根据根的判别式△=8−4a≥0,即可去除k的取值范围.综上即可得出结论.本题考查了解一元一次方程、根的判别式以及解一元一次不等式,分二次项系数a−1= 0和a−1≠0两种情况考虑是解题的关键.10. 解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,△BCD的面积=△ABD的面积,∵AE⊥BD于点E,CF⊥BD于点F,∴CF//AE,△BCD的面积=12BD⋅CF,△ABD的面积=12BD⋅AE,∴CF=AE,①正确;∴四边形CFAE是平行四边形,∴EO=FO,(故②正确);∵OB=OD,∴DE=BF,③正确;由以上可得出:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE,△DOA≌△COB等.(故④错误).故正确的有3个.故选:B.根据平行四边形的性质与判定以及全等三角形的判定与性质分别分析得出即可.此题主要考查了平行四边形的性质与判定以及全等三角形的判定与性质等知识,证明四边形CFAE是平行四边形是解题关键.11. 解:当a=−2时,二次根式√2−a=√2+2=2.把a=−2代入二次根式√2−a,即可得解为2.本题主要考查二次根式的化简求值,比较简单.12. 解:由题意得:180(n−2)=360×3,解得:n=8,故答案为:8.根据多边形内角和公式180∘(n−2)和外角和为360∘可得方程180(n−2)=360×3,再解方程即可.此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.13. 解:∵√(2a−1)2=|2a−1|=2a−1,∴2a−1≥0,,解得:a≥12故答案为:a≥1.2由√(2a−1)2=2a−1可知2a−1≥0,解之可得答案.本题主要考查二次根式的性质,熟练掌握二次根式的性质:√a2=|a|及绝对值的性质是解题的关键.14. 解:∵数据x1,x2,x3的平均数是2,∴数据2x1−1,2x2−1,2x3−1的平均数是2×2−1=3;∵数据x1,x2,x3的方差是3,2=6;∴数据2x1−1,2x2−1,2x3−1的方差是22×32故答案为:3;6.根据方差和平均数的变化规律可得:数据2x1−1,2x2−1,2x3−1的平均数是2×2−×22,再进行计算即可.1,方差是32本题考查方差的计算公式的运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15. 解:∵关于x的方程a(x+m)2+b=0的解是x1=−2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=−2或x+2=1,解得x=−4或x=−1.故答案为:x3=−4,x4=−1.把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.16. 解:∵四边形ABCD是平行四边形,∴AB=CD=4,BC=AD=6,9/ 12①如图:∵S▱ABCD=BC⋅AE=CD⋅AF=12,∴AE=2,AF=3,在Rt△ABE中:BE=√AB2−AE2=2√3,在Rt△ADF中,DF=√AD2−AF2=3√3,∴CE+CF=BC−BE+DF−CD=2+√3;②如图:∵S▱ABCD=BC⋅AE=CD⋅AF=12,∴AE=2,AF=3,在Rt△ABE中:BE=√AB2−AE2=2√3,在Rt△ADF中,DF=√AD2−AF2=3√3,∴CE+CF=BC+BE+DF+CD=10+5√3;综上可得:CE+CF的值为10+5√3或2+√3.故答案为:10+5√3或2+√3.根据平行四边形面积求出AE和AF,然后根据题意画出图形:有两种情况,求出BE、DF的值,求出CE和CF的值,继而求得出答案.此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握分类讨论思想思想与数形结合思想的应用.17. 解:我选第①个方程,解法如下:x2−4x−1=0,这里a=1,b=−4,c=−1,∵△=16+4=20,=2±√5,∴x=4±2√52则x1=2+√5,x2=2−√5;我选第②个方程,解法如下:x(2x+1)=8x−3,整理得:2x2−7x+3=0,分解因式得:(2x−1)(x−3)=0,可得2x−1=0或x−3=0,,x2=3;解得:x1=12我选第③个方程,解法如下:x2+3x+1=0,这里a=1,b=3,c=1,∵△=9−4=5,∴x=−3±√5,2则x1=−3+√52,x2=−3−√52;我选第④个方程,解法如下:x2−9=4(x−3),变形得:(x+3)(x−3)−4(x−3)=0,分解因式得:(x−3)(x+3−4)=0,可得x−3=0或x−1=0,解得:x1=1,x2=3①此方程利用公式法解比较方便;②此方程利用因式分解法解比较方便;③此方程利用公式法解比较方便;④此方程利用因式分解法解比较方便.此题考查了解一元二次方程−因式分解法,公式法,及直接开平方法,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18. (1)把x=−1代入方程得a+c−2b+a−c=0,整理得a=b,从而可判断三角形的形状;(2)根据判别式的意义得△=(2b)2−4(a+c)(a−c)=0,即b2+c2=a2,然后根据勾股定理可判断三角形的形状;(3)利用等边三角形的性质得a=b=c,方程化为x2+x=0,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.19. (1)先把√8化成2√2,再去掉括号,然后合并即可;(2)先对要求的式子进行配方,然后把x的值代入计算即可.此题考查了二次根式的化简求值,掌握混合运算的步骤和配方法的步骤是解题的关键.20. (1)根据平均数、方差、中位数的概念求值,并填表;(2)根据方差分析稳定性,根据销售趋势看销售前景即可求出答案.此题考查了平均数、方差、中位数的求法及意义,以及从不同角度评价数据的能力.21. 解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40−x元,故答案为:(20+2x),(40−x);(2)根据题意,得:(20+2x)(40−x)=1200解得:x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)不能,∵(20+2x)(40−x)=2000此方程无解,故不可能做到平均每天盈利2000元.(1)根据:销售量=原销售量+因价格下降而增加的数量,每件利润=实际售价−进价,列式即可;(2)根据:总利润=每件利润×销售数量,列方程求解可得;(3)根据(2)中相等关系列方程,判断方程有无实数根即可得.本题主要考查一元二次方程的实际应用,理解题意找到题目蕴含的等量关系是列方程求解的关键.22. 由平行四边形的对边平行且相等,再利用平行线的性质得到一对角相等,利用AAS 得到三角形全等,利用全等三角形的对应边相等得到DG=BH,进而得到AG=HC,利11/ 12用一组对边平行且相等的四边形为平行四边形得到AGCH为平行四边形,即可得证.此题考查了平行线的性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23. (1)作DF⊥AC,由AB的长求得BC、AC的长.在等腰Rt△DAC中,DF=FA=FC;在Rt△BCP中,求得PC的长.则由勾股定理即可求得DP的长.(2)由(1)得BC与DF的关系,则DP与DF的关系也已知,先求得∠PDF的度数,则∠PDA 的度数也可求出,需注意有两种情况.(3)由于四边形DPBQ为平行四边形,则BC//DF,P为AC中点,作出平行四边形,求得面积.本题考查了解直角三角形的应用,综合性较强,难度系数较大.。
2017-2018学年沪科版数学八年级下册第一次月考试卷(满分150分)班级 姓名___ _ __ 得分 _______一、选择题(每题4分,共40分)1. 要使x 82-有意义,则字母x 应满足的条件是( ) A 、x 2< B 、x 02>≠且x C 、x 2≤ D 、x 2>2.下列方程中,关于x 的一元二次方程是 ( )(A )()()12132+=+x x (B )02112=-+x x(C )02=++c bx ax (D ) 1222-=+x x x3.若b b -=-3)3(2,则 ( )A.b>3B.b<3C.b ≥3D.b ≤34. 一元二次方程01-82=+x x 配方后,可变形为( )A.17)4(2=+xB.15)4(2=+xC.15)4(2=-xD.17)4-(2=x 5.已知1018222=++x x x x ,则x 等于 ( ) A.2 B.±2 C.4 D.±46.方程x(x-2)+x-2=0的解是 ( )A .2B .-2,1C .-1D .2,-17.若a 为方程05-2=+x x 的解,则12++a a 的值为( )A . 12B . 6C . 9D . 168.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒。
设平均每次降价的百分率为x ,根据题意所列方程正确的是 ( )A.36(1-x )2=36-25 B.36(1-2x )=25C.36(1-x )2=25 D.36(1-x 2)=259. 若关于x 的方程0111=----x x x m 有增根,则m 的值是 ( ) A .3 B .2 C .1 D .-110.已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A .a>2B .a<2C .a<2且a≠1D .a<-2二、填空题(每题5分,共20分)11. 若最简二次根式1522+x 与-172-x 是同类二次根式,则x=__________.12.当255+-+-=x x y 时,x+y=____________13. 方程x x 3122=-的二次项为2x 2,则一次项系数是 .14.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(7,3)与(14,5)表示的两数之积是___________.三、解答题(共90分)15. 计算:(每题4分,共8分)(1)50232-85+ (2) 1213438512÷+⨯+)(16. 按要求解方程(8分)(1)x 2=2(x+1)(公式法) (2)(x+2)2=2x+4(因式分解法)17.(8分)已知实数,a ,b ,c 在数轴上的位置如图所示,化简222||()().a a c c ab -++--18.(8分)已知三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的根,求这个三角形的周长.19.(10分)若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。
第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。
2024-2025学年沪科版(上海)八年级科学上册月考试卷663考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、单选题(共8题,共16分)1、结构决定性质是化学学科的基本思想之一.下列关于物质组成和结构的说法错误的是()A. 水和过氧化氢的化学性质不同,是因为分子构成不同B. 金刚石和C60物质性质不同,是因为原子排列方式不同C. 不锈钢和锰钢的主要性能不同,是因为组成元素种类不同D. 钠元素和氧元素的化学性质不同,是因为钠原子和氧原子的电子层数不同2、以下家用电器中利用电流热效应工作的是()A. 电饭锅B. 洗衣机C. 电冰箱D. 电风扇3、如图所示,在探究电磁铁的磁性强弱与什么因素有关实验中,下列说法中正确的是A. 把滑动片向左滑动时,磁性减弱B. 把滑动片向左滑动时,磁性增强C. 若增加线圈匝数,磁性将减弱D. 若改变电流的方向,磁性将增强4、在配置50g 10%的氯化钠溶液时,下列情况可能导致溶液中氯化钠质量分数小于10%的是()①用量筒量取水时俯视读数;②配制溶液的烧杯用少量蒸馏水润洗;③在托盘天平的左盘放砝码右盘放氯化钠;④将水倒入烧杯时,有少量水溅出;⑤溶解时,用玻璃棒搅拌过快,使少量溶液溅出.A. ①②③④⑤B. 只有②③C. 只有①②③D. 只有②③⑤5、已知A+3B2 2C+2D。
现有7gA和24gB2恰好完全反应生成9gD。
已知C的相对分子质量为44,则B2的相对分子质量为()A. 28B. 16C. 32D. 366、植物进行呼吸作用的器官是()A. 茎、叶B. 根、茎、叶C. 根、茎、叶花、果实、种子D. 果实和种子7、下列说法中正确的是()A. 半导体在任何情况下都不能导电B. 超导体的电阻为零C. 原子不可再分D. 纳米是比米大的长度单位8、如图,在水中有一支试管处于悬浮状态,现用细棒在试管上端轻轻往下按一下,则( )A. 试管将下沉,最后沉底B. 试管将上浮,最后漂浮C. 试管先下沉,然后回到原来位置D. 试管先下沉,接着在原来位置上下运动评卷人得分二、填空题(共6题,共12分)9、乙醚是人类很早就使用的麻醉剂,分子结构如图所示,其中短线表示原子间的连接,如水分子的结构可表示为H—O—H。
月考检测卷(一)(时间:120分钟满分:150分)题号一二三四五六七八总分得分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数y=x+3x−1中,自变量x的取值范围是 ( )A.x≥-3B.x≥-3且x≠1C. x≠1D. x≠-3且x≠12.点P在第四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P 的坐标为 ( )A.( -3,-2)B.(3,-2)C.(2,3)D.(2,-3)3.点P(m−1,m+3))在平面直角坐标系的y轴上,则点 P的坐标为( )A.( -4,0)B.(0,-4)C.(4,0)D.(0,4)4.一次函数y=(k+2)x+k²−4的图象经过原点,则k的值为( )A.2B. -2C.2或-2D.35.在平面直角坐标系中,线段A′B′是由线段AB 经过平移得到的,已知点A( -2,1)的对应点为.A′(3,1),点 B 的对应点为.B′(4,0),则点 B 的坐标为 ( )A.(9,0)B.(-1,0)C.(3,-1)D.( -3,-1)6.若一次函数y=(1−3m)x+1的图象经过点A(x₁,y₁)和点B(x₂,y₂),当x₁<x₂时,y₁<y₂,则 m 的取值范围是 ( )A. m<0B. m>0C.m<13D.m>137.一次函数y=2(x-3)的图象在y轴上的截距是 ( )A.2B. -3C. -6D.68.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是 ( )A. x>2B. x<2C. x>3D. x<39.如图中表示一次函数 y =mx +n 与正比例函数:y=mnx;(m,n是常数,mn≠0)图象的是( )10.在同一条道路上,甲车从A地到B地,乙车从B地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是 ( )A.乙先出发的时间为0.5小时B.甲的速度是80 千米/小时C.甲出发0.5 小时后两车相遇D.甲到B 地比乙到A 地早 112小时二、填空题(本大题共4小题,每小题5分,满分20分)11.如果将电影票上“6排3 号”简记为(6,3),那么“9排21 号”可表示为 .12.已知直线y =x --n 与 y =2 x +m 的交点为( -2,3),则方程组 {x−y−n =0,2x−y +m =0的解是 .13.三角形ABC 中 BC 边上的中点为 M ,在把三角形 ABC 向左平移2 个单位,再向上平移3 个单位后,得到三角形A ₁B ₁C ₁的B ₁C ₁边上中点M ₁此时的坐标为(-1,0),则M 点坐标为 .14.已知一次函数y=(m+4)x+2m+2,无论m 取何值时,它的图象恒过的定点P ,则点 P 的坐标为 .若m 为整数,且它的图象不过第四象限,则m 的最小值为 .三、(本大题共2 小题,每小题8分,满分16 分)15.已知一次函数图象经过(3,5)和(-4,-9)两点,求此一次函数的表达式.16.如图,三角形ABC 三个顶点的坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点 A₁,B₁,C₁,,画出三角形.A₁B₁C₁;(2)将三角形ABC 向左平移5个单位,再向下平移5个单位得到三角形 A₂B₂C₂,,画出三角形.A₂B₂C₂.四、(本大题共2 小题,每小题8分,满分16 分)17.在平面直角坐标系中,点A从原点O出发,沿x轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1 个单位长度,这时点A₁,A₂,A₃,A₄的坐标分别为A₁(0,0),A₂(1,1) ,A₃(2,0),A₄(3,−1),按照这个规律解决下列问题:(1)写出点.A₅,A₆,A₇,A₈的坐标;(2)试写出点.Aₙ的坐标(n是正整数).18.如图,直线y=kx+b分别与x轴、y轴交于点A(−2,0),B(0,3),直线y=1−mx分别与x轴交于点C,与直线AB交于点 D.已知关于x的不等式kx+b>1−mx的解集是x>−45.分别求出k,b,m的值.五、(本大题共2 小题,每小题10 分,满分20 分)19.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+b−4=0,点 C的坐标为(0,3).(1)求a,b的值及.S三角形ABC;(2)若点 M在x轴上,且S三角形ACM =13S三角形ABC,试求点 M的坐标.20.在平面直角坐标系中,O 为坐标原点,将三角形 ABC 进行平移,平移后点A,B,C的对应点分别是点D,E,F,点A,B,D,E的坐标分别为(0,a),(0,b),(a,12a),(m−b,12a+4).(1)若a=1,求m的值;(2)若点C(−a,14m+3),其中a>0..直线CE交y轴于点 M,且三角形BEM的面积为1,试探究AF和BF的数量关系,并说明理由.六、(本题满分12 分)21.在平面直角坐标系中,折线y=−|x−2|+1与直线y=kx+2k(k⟩0)如图所示.(1)直线y=kx+2k(k⟩0)与x轴交点的坐标为;(2)请用分段函数的形式表示折线y=−|x−2|+1;(3)若直线y=kx+2k(k⟩0)与折线y=−|x−2|+1有且仅有一个交点,直接写出k的取值范围.七、(本题满分12分)22.某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种文具盒的进价和售价如下表.预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒数量x(个)之间的函数关系如图所示.甲乙进价/元1631售价/元2138(1)求y与x之间的函数表达式;(2)若超市准备用不超过6 300元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?(3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的表达式,并求出获得的最大利润.八、(本题满分14分)23.如图,在平面直角坐标系中,长方形 OABC 的顶点 O 与坐标原点重合,顶点A,C分别在坐标轴上,顶点 B的坐标为(4,2).E为AB 的中点,过点D(6,0)和点 E的直线分别与BC,y轴交于点F,G.(1)求直线 DE 的函数表达式;(2)函数y=mx−1的图象经过点 F且与x轴交于点 H,求出点 F的坐标和m值;(3)在(2)的条件下,求出四边形 OHFG的面积.月考检测卷(一)1. B2. D3. D4. A5. B6. C7. C8. B9. C 10. D11.(9,21) 12.{x =−2,y =3 13.(1,-3) 14.(-2,-6) -115.解:设一次函数的表达式为y=kx+b.∵一次函数的图象经过(3,5)和(-4,9)两点,则有 {3k +b =5,−4k +b =−9.解得 {k =2,b =−1...一次函数的表达式为y=2x-1.16.解:(1)如图,三角形A ₁B ₁C ₁ 即为所求.(2)如图,三角形A ₂B ₂C ₂即为所求.17.解:(1)由图可得,A ₅(4,0),A ₆(5,1),A ₇(6,0),A ₈(7,-1).(2)根据图形可知,点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0,1,0,-1循环,∴点An 的坐标(n 是正整数)为A(n-1,0)或A(n-1,1)或A(n-1,0)或A(n-1,-1).18.解:∵直线y=kx+b 分别与x 轴、y 轴交于点A( -2,0),B(0,3),∴{−2k +b =0,b =3.解得过点 A ,B 的直线的表达式为 y =32x +3.∵关于x 的不等式kx+b>1-mx 的解集是 x >−45,.点 D 的横坐标为 −45. 将 x =−45代入 y =32x +3,解得 y =95.∴ 点 D 的坐标为 (−54,95).将 x =−45,y =95代入y=1-mx,得 95=1−(−45)m.解得m=1.19.解:(1)∵|a+2|+√b-4=0,∴a+2=0,b-4=0.∴a=-2,b=4.∴点A 的坐标为(-2,0),点B 的坐标为(4,0).又∵点C 的坐标为(0,3),∴AB=|-2-4|=6,CO=3. ∴S 三角形ABC =12AB ⋅CO =12×6×3=9.(2)设点M 的坐标为(x,0),则AM=|x-( -2)|=|x+2|.又: ⋅S 三角形ACM =13S 三角形ABC ,∴12AM ⋅OC =13×9.∴12|x +2|×3=3.∴ |x+2|=2,即x+2=±2,解得x=0或x=-4.故点M 的坐标为(0,0)或(-4,0).20.解:(1)当a=1时,根据三角形ABC 平移得到三角形DEF,点A(0,1),点B(0,b)的对应点分别为点 D (1,12),点 E (m−b ,92),得 {m−b =1,b−92=1−12.解得 {b =5,m =6.故m 的值为6.(2)AF=BF.理由如下:由三角形ABC 平移得到三角形DEF ,点A(0,a),点B(0,b)的对应点分别为点D (a ,12a ),点 E(m−b ,12a +4),得 {a =m−b,①a−12a =b−(12a +4).②由②得b=a+4.③ 把③代入①,得m=2a+4.∴14m +3=12a +4.∴点 C 与点 E 的纵坐标相等.∴CE∥x 轴.∴M (0,12a +4).∴三角形 BEM 的面积 =12BM ⋅EM =1.:a >0,∴BM =a +4−(12a +4)=12a,EM =a.∴14a 2=1.∴a =2.∴点A 的坐标为(0,2),点B 的坐标为(0,6),点 C 的坐标为( -2,5),点 D 的坐标为((2, 12).又∵在平移中,点 F 与点 C 是对应点,点 D 与点 A 是对应点,∴点F 的坐标为(0,4).∴AF=4-2=2,BF=6-4=2.∴AF=BF.21.解:(1)( -2,0)(2)∵函数y=-|x-2|+1,∴当x>2时,|x-2|=x-2.∴函数的表达式为y=-x+2+1=-x+3.当x≤2时,|x-2|=2-x,∴函数的表达式为y=x-2+1=x-1.∴用分段函数的形式表示折线为 y ={x−1(x ≤2),−x +3(x⟩2)(3)k 的取值范围是 k>1或 k =14.22.解:(1)设y 与x 之间的函数表达式为y=kx+b,根据题意,得 {250=50k +b,150k +b.解得∴y 与x 之间的函数表达式为y=-x+300.(2)根据题意,得16x+31(-x+300)≤6300,解得x≥200.∵x 为正整数,∴至少购进200 个甲种文具盒.(3)根据题意,得W=(21-16)x+(38-31)(-x+300)= -2x+2 100.∵k= -2<0,∴W 随x 的增大而减小.23.解:(1)设直线DE 的函数表达式为y=kx+b.∵顶点B 的坐标为(4,2),E 为AB 的中点,∴点E 的坐标为(4,1).∵点D 的坐标为(6,0),将D,E 的坐标代入y=kx+b,得 {0=6k +b,1=4k +b.解得 {k =−12,b =3.直线 DE 的函数表达式为 y =−12x +3.(2)∵点 F 的纵坐标为2,且点 F 在直线 DE 上,∴将y=2代入 y =−12x +3,得 −12x +3=2.解得x=2.∴点F 的坐标为(2,2).∵函数y=mx-1的图象经过点 F,将(2,2)代入y=mx-1,得2m-1=2.解得 m =32.(3)设直线 FH 交y 轴于点 K.对于 y =32x−1,当y=0时, 32x−1=0,解得 x =23,即点H 的坐标为(23,0).∴OH =23.当x=0时,y=-1,即点K 的坐标为(0,-1).∴OK=1.同理可得,点G 的坐标为(0,3),则KG=4.∵长方形OABC 的顶点与O 重合,点B 的坐标为(4,2),∴点C 的坐标为(0.2).∴CF=2.23=113.。
沪科版八年级数学第18章 勾股定理 单元测试卷一、选择题(每题3分,共30分)1、在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .82、如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. 53,54,1 B.3,4,5 C.6,8,10 D. 2,3,43、如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数有( )个A .0B .1C .2D .34、如图,数轴上点A 对应的数是0,点B 对应的数是1,BC ⊥AB ,垂足为B ,且BC =3,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为( )A .2.2B .C .√10D .5、)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.36、有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为( )A.3B.√41C.3或√41D.无法确定7、如图,已知正方形B的面积为144,正方形C的面积为169,那么正方形A的边长为()A.√5B.25C.5D.6.258、.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.365B.1225C.94D.3√349、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD5,则BC的长为()A.3-1B.3+1C.5-1D.5 +110、在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设这个人的身高是5尺,秋千的绳索始终拉的很直,则绳索长为()A.12.5尺B.13.5尺C.14.5尺D.15.5尺二、填空题(每小题3分,共24分)11、若CD是△ABC的高,AB=2√3,AC=2,BC=2√2,则CD的长为.12、.如图,在△ABC 中,∠ACB =90°,AC =40,CB =9,点M ,N 在AB 上,且AM =AC ,BN =BC ,则MN 的长为13、三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.14、如图所示,有两棵树,一棵树高10 m ,另一棵树高4 m ,两树相距8 m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 米 15、如图,长方形网格中每个小正方形的边长是1,△ABC 是格点三角形(顶点都在格点上),则点C 到AB 的距离为 .16、如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则x 2+(y −4)2的值为_________.17、如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________. M A BCN18、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为三、解答题(共66分)19、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.(8分)20、“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)(8分)21、已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,求BC的长(10分)22、如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗? (10分)23、如图,一个长为2.5m的梯子,斜靠在竖直的墙上,这时梯子的底端距离墙面0.7m;如果梯子顶端沿墙下滑0.4m,那么梯子底端将向左滑动多少米?(10分)24、如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.(8分)25、如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28°,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax﹣b2=0的一个根吗?说明理由.②若AD=EC,求的值.(12分)参考答案一、选择题ADDCD CCADC√612、8 13、直角24 14、10 15、1.2二、11、2316、16 17、√4118、24三、19、解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC=√AB2-AC2=√202-102=10√3.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=1BC=5√3,2∴CM=√BC2-BM2=√(10√3)2-(5√3)2=15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5√3,∴CD=CM-MD=15-5√3.20、解:如图,设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.21、解:分两种情况:①当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC 是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2; 综上所述,BC 的长为2或2. 故答案为:2或2. 22、解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =12ab,S △C'A'D'=12ab,S 直角梯形A'D'BA =12(a+b)(a+b)=12(a+b)2,S △ACA'=12c 2.(2)由题意可知S △ACA'=S 直角梯形A'D'BA -S △ABC -S △C'A'D'=12(a+b)2-12ab-12ab=12(a 2+b 2),而S △ACA'=12c 2.所以 a 2+b 2=c 2.23、解:如图AB =CD =2.5米,AO =0.7米,BD =0.4,求AC 的长. 在直角三角形AOB 中,AB =2.5,AO =0.7,由勾股定理,得BO =2.4, ∵BD =0.4,∴OD =2,∵CD =2.5,在直角三角形COD 中,由勾股定理,得OC =1.5,∵OA =0.7,∴AC =0.8.即梯子底端将滑动了0.8米. 24、解:连接AC ,∵∠B =90°∴AC 2=AB 2+BC 2.∵AB =BC =2∴AC 2=8.∵∠D =90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.25、解:(1)∵∠ACB=90°,∠A=28°,∴∠B=62°,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90°﹣∠BCD=31°;(2)①由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得,x==﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根;②∵AD=AE,∴AE=EC=,由勾股定理得,a2+b2=(b+a)2,整理得,=.。
13{x x ≥
≤2018年八年级数学下册第一次月考测试卷
班级 姓名 考号 分数
一、选择题(24分)。
1、下列条件中能判定△ABC ≌△DEF 的是( )
A .A
B =DE ,B
C =EF ,∠A =∠
D B .∠A =∠D ,∠B =∠
E ,∠C =∠F
C .AC =DF ,∠B =∠F ,AB =DE
D .∠B =∠
E ,∠C =∠
F ,AC =DF
2、下列命题中正确的是 ( )
A .有两条边相等的两个等腰三角形全等
B .两腰对应相等的两个等腰三角形全等
C .两角对应相等的两个等腰三角形全等
D .一边对应相等的两个等边三角形全等
3、已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5,则线段DE 的长为 ( )
A .5
B .6
C .7
D .8
4、至少有两边相等的三角形是( )
A .等边三角形
B .等腰三角形
C .等腰直角三角形
D .锐角三角形
5、函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( )
A .x>0
B .x<0
C .x<2
D .x>2
6、已知x y >,则下列不等式不成立的是( )
A .66x y ->-
B .33x y >
C .22x y -<-
D .36
36x y -+>-+
7、将不等式组 的解集在数轴上表示出来,应是( )
A
8、如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)
与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则
不等式kx+b>ax 的解集是( )
A C
B D
A.x>1 B.x<1 C.x>2 D.x<2
二、填空题(18分)。
1、在△ABC中,AB=AC,∠A=44°,则∠B=度。
2、“直角三角形两条直角边的平方和等于斜边的平方”的逆定理是。
3、不等式930
x
->的非负整数解是。
4、如图,AB=AD,只需添加一个条件,就可以判定△ABC≌△ADE。
5、如图,在△ABC中,∠C=90°,D为BC上的一点,且DA=DB,DC=AC,则∠B=度。
(第4题图) (第5题图) (第6题图)
6、如图,△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,BD=1.5cm,则AB= cm。
三、解答题(58分)。
1、(8分)解下列不等式(组),并把它们的解集在数轴上表示出来。
(1)11
2
x
x
-
+≥(2)
2、(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠。
设顾客预计累计购物x元(x>300)。
(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;
(2)顾客到哪家超市购物更优惠?说明你的理由。
3(2)4
12
1
3
{x x
x
x
--≤
+
>-
3、(6分)有一个长方形足球场的长为x m,宽为70m。
如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛。
(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间)
4、(6分)已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2。
求证:AD平分∠BAC。
5、(6分)求证:等腰三角形两腰上的中线的交点到底边两个端点的距离相等。
6、(6分)已知:如图,等腰三角形ABC中,AC=BC,∠ACB=90°,直线l经过点C(点A、B都在直线l的同侧),AD⊥l,BE⊥l,垂足分别为D、E。
求证:△ADC≌△CEB。
7、(6分)如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高。
(1)求AB的长;(2)求△ABC的面积;(3)求CD的长。
8、(6分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合。
(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D 为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积。
9、(8分)已知A、B两个海港相距180海里.如图表示一艘轮船和一艘快艇沿相同路线从A港出发到B港航行过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)。
根据图象解答下列问题:
(1)请分别求出表示轮船和快艇行驶过程的函数表达式(不要求写出自变量的取值范围);
(2)快艇出发多长时间后能超过轮船?(3)快艇和轮船哪一艘先到达B港?。