最新北师大课标版七年级数学上册《应用一元一次方程—追赶小明》教案1(优质课一等奖教学设计)
- 格式:doc
- 大小:45.00 KB
- 文档页数:6
第五章一元一次方程 6 应用一元一次方程——追赶小明教学重点与难点教学重点:1.画出“线段图”找相等关系.2.会进行文字语言、图形语言、符号语言的相互转换.教学难点:借助画“线段图”寻找行程问题中的等量关系.学情分析认知基础:学生在小学阶段学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系.前几节课又学习了解一元一次方程及一些运用方程模型解决的实际问题的有关知识.学生是学习的“主人”,教学应以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习.本节课让学生主动地参与数学活动,并通过亲身实践,演示追赶过程,更进一步认识和体会方程的作用.活动经验基础:学生在小学已能利用线段图来解决一些简单的应用题,并且在本章前几节的学习中,已初步感受到方程是解决实际问题的一种有效途径,学生已具备一定的分析问题、解决问题的能力,已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓.教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.3.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.4.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.教学方法教材首先由一个实际实例“追赶小明”创设问题情境,激发学生去分析问题、探究解决问题的方法,然后通过画“线段图”建立一元一次方程模型解决问题.目的是培养学生把生活中的实际问题转化为数学模型的能力,让学生体会数学在生活中的作用.教学时是让学生根据事实提出问题并尝试去解决问题,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,梳理所学知识,培养学生的数学能力.教学过程一、情境引入设计说明让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“追赶小明”这一事件,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题,便于引起每位同学的兴趣.小明每天早上要在7:50之前赶到距家1 000米的学校上学.一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是爸爸以180米/分钟的速度去追小明.问题1:爸爸能追上小明吗?问题2:爸爸追上小明用了多长时间?问题3:追上小明时,距离学校还有多远?请让我们一起学习本节,解决这些疑惑.教学说明出示主题故事时,问题1、2、3事先没有直接给出,而是先问学生听到这个故事后想知道什么.绝大部分学生会关注爸爸能不能追上小明、爸爸追上小明用了多长时间、在距离学校多远的地方追上小明等等.根据学生关注点提供质疑的时机,唤起学生“主角”意识,同时提供广阔的思维和探究平台.二、探究学习设计说明列方程解一些实际问题的过程是一个数学建模的过程,及时鼓励学生通过亲身体验、观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力.1.亲身演示,自主探索师:这是行程问题中的追赶问题,我们请两位同学分别扮演小明和爸爸来演示一下追赶的过程.2.语言描述师:根据刚才的演示,你发现了哪些等量关系?(1)爸爸要追上小明,爸爸的速度与小明的速度关系怎样?(2)爸爸从家出发到追上小明时,两人所用的时间有何关系?(3)两人所行的总路程有何关系?3.图形语言师:如下图,你能用简单的“线段图”表示演示的追赶过程吗?4.建立方程模型,得出结论路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?解:(1)设爸爸追上小明用了x分钟.根据题意,得80×5+80x=180x.解得x=4.因此,爸爸追上小明用了4分钟.(2)因为180×4=720(米),1 000-720=280(米).所以,追上小明时,距离学校还有280米.教学说明在学生亲身体验追赶过程的基础上,比较容易画出“线段图”,可以让他们独立完成,教师可以适当帮助一些有问题的学生.充分利用生活实践自己去提出问题并解决问题,这样更有利于扩展学生的思考空间,亲身体会数学变式问题的趣味性,感受到数学的实用性.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.三、思维拓展设计说明改变引例情境,学生通过展开讨论,动手画出线段图,在进行图形语言、符号语言与文字语言的相互转化中,理解题中的等量关系,不同的思路就会出现等量关系的不同表现形式,从而列出不同的式子.两个拓展题目有利于培养学生思维的灵活性,凸显“线段图”的直观演示,是建立方程的有利工具.拓展1:如果爸爸要赶在小明进校门之前把书送到,那么小明爸爸的速度最少应为多少?拓展2:若当小明到校后发现忘带英语书,打电话通知爸爸送来.爸爸立即以180米/分钟的速度从家出发,同时小明以100米/分钟的速度从学校返回,两人几分钟后相遇?答案:拓展1:解:如上图,设小明爸爸的速度最少应为x 米/分钟.根据题意,得⎝ ⎛⎭⎪⎫1 00080-5x =1 000. 化简,得7.5x =1 000.x =4003. 因此,小明爸爸的速度最少应为4003米/分钟. 拓展2:解:如上图,设两人x 分钟后相遇.根据题意,得180x +100x =1 000.化简,得280x =1 000.x =257. 因此,两人257分钟后相遇. 教学说明(1)学生了解题意,画出线段图,建议教师让学生板演“线段图”,通过展示不同学生的“线段图”进行比较、分析,取长补短,让学生去体会怎样画“线段图”等量关系表示的更清楚,同时,提示学生体会提出的问题,边解决问题,边在图上标注一些相关的点,为了说明方便,也可借助字母表示点,这样经过再次补充,充实自己的线段图,结合线段图找出等量关系,同时丰富了画“线段图”的体验及画图技巧.(2)拓展2的情境由追击变成了相遇,解决这个问题时,有的同学一下找不着思路.教学时让学生亲身体验相遇过程,同时把这个问题分解成几个小问题,边引导边提问,逐一解决,降低难度,帮助学生理出思路,解决问题.(3)及时引导学生借助“线段图”对追击问题和相遇问题的基本等量关系进行总结.四、总结反思学生们思考总结这节课的收获,从知识与方法两方面去概括.知识方面:1.向学生们进一步指出行程问题中路程、速度、时间之间的关系.2.列方程解应用题设、列、解、答四步骤要齐全.方法方面:1.要借助“线段图”分析,寻找数量关系.2.注意抓住其中不变的量.3.对于复杂的数学问题的分析,借助“线段图”比较容易理解,借助方程更易求解.同时,要养成认真、细致的良好习惯.评价与反思1.教师是教材的主导者和创造者;学生是学习的主体;方法是教学的主线.本节充分利用教材引例资源,让学生运用亲身体验、讨论交流、动手画图、合理表达等手段进行知识探究.在此基础上,改变实际问题情境进行变式思维训练,丰富学生画“线段图”的体验及画图技巧,发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.本节采用了启发引导与学生自主探索相结合的方法,让学生自己提出问题后,自己寻求解决问题的途径,使学生真正成为学习的主人,由于学生提出问题的难易有所不同,这里需要教师灵活引导,先解决易解决的问题,先易后难,教师适时点拨学习有困难的学生.学生解答之后可采用生生互评、师生共评的方式,此时学生也能得到成功的喜悦.3.这节课教学效果良好,能让学生感受数学与实际结合的魅力,能感受到列方程解一些实际问题的过程是一个数学化的过程,这个过程中常常需要文字语言、图形语言、符号语言的互译转换.4.本节课的可贵之处还在于在引导学生从身边的现实问题转化为数学模型的过程中,教师始终把自己摆在组织者、引导者、参与者的立场上,要相信学生,给学生提供充分展示自己的机会.学生的能力不可低估.在整节课中,从始至终,所有问题学生基本上可以通过合作交流全部解决,所以教师应注意以培养学生的能力为出发点,避免一言堂.在课堂交流中,采用学生教学生,生生互动的形式更容易调动学生学习的积极性.这节数学课的课堂教学应该说较好地体现了素质教育的真谛.。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》说课稿一. 教材分析《6 应用一元一次方程—追赶小明》这一节的内容,是在学生已经掌握了方程的解法的基础上进行学习的。
本节内容通过追赶小明的故事情境,引导学生运用一元一次方程解决实际问题,进一步理解和掌握一元一次方程的应用。
教材通过这个故事情境,让学生体会数学与生活的紧密联系,培养学生的数学应用意识。
二. 学情分析面对的是一群七年级的学生,他们对方程的解法已经有了初步的认识和了解,具备了一定的数学基础。
但是,对于如何将实际问题转化为方程,以及如何运用方程解决实际问题,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生将实际问题转化为方程,并通过解决问题的过程,加深对一元一次方程应用的理解和掌握。
三. 说教学目标1.知识与技能目标:通过追赶小明的故事,让学生理解和掌握一元一次方程在实际问题中的应用。
2.过程与方法目标:通过独立探究和合作交流,培养学生将实际问题转化为方程的能力,提高学生的数学应用能力。
3.情感态度与价值观目标:通过解决实际问题,让学生体会数学与生活的紧密联系,增强学生学习数学的兴趣和信心。
四. 说教学重难点1.教学重点:一元一次方程在实际问题中的应用。
2.教学难点:如何引导学生将实际问题转化为方程,并运用方程解决问题。
五. 说教学方法与手段在教学过程中,我将采用情境教学法、探究教学法和合作交流法。
通过故事情境的引入,激发学生的学习兴趣;通过独立探究和合作交流,引导学生主动参与学习,提高学生的数学应用能力。
六. 说教学过程1.引入新课:通过讲述追赶小明的故事,引导学生思考如何通过数学方法解决这个问题。
2.探究教学:让学生独立思考,如何将实际问题转化为方程,并通过合作交流,共同解决问题。
3.巩固新知:通过解决类似的问题,让学生加深对一元一次方程应用的理解和掌握。
4.课堂小结:引导学生总结本节课所学的内容,并反思自己的学习过程。
七. 说板书设计板书设计如下:1.课题:《6 应用一元一次方程—追赶小明》2.教学内容:a.一元一次方程在实际问题中的应用b.如何将实际问题转化为方程c.方程的解法步骤八. 说教学评价教学评价主要通过以下几个方面进行:1.学生的课堂参与度:观察学生在课堂上的积极性、主动性和合作意识。
《追赶小明》教案一、教材及学情分析追赶小明是北师大版七年级(上)第五章应用一元一次方程最后一节的内容。
教材首先由一个实际实例“追赶小明”创设问题情境,激发学生去分析问题、探究解决问题的方法,然后通过画“线段图”建立一元一次方程模型解决问题.目的是培养学生把生活中的实际问题转化为数学模型的能力,让学生体会数学在生活中的作用.教学时是让学生根据事实提出问题并尝试去解决问题,让学生在自主探索、互相启迪、合作交流中提高分析问题和解决问题的能力,梳理所学知识,培养学生的数学能力.认知基础:学生在小学阶段学过有关行程问题的应用题,熟悉路程、时间、速度之间的关系.前几节课又学习了解一元一次方程及一些运用方程模型解决的实际问题的有关知识.学生是学习的“主人”,教学应以学生为中心,从学生已有的生活经验出发,创设有助于学生自主学习的情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,促使学生在教师的指导下生动活泼地、主动地、富有个性地学习.本节课让学生主动地参与数学活动,并通过亲身实践,演示追赶过程,更进一步认识和体会方程的作用.活动经验基础:学生在小学已能利用线段图来解决一些简单的应用题,并且在本章前几节的学习中,已初步感受到方程是解决实际问题的一种有效途径,学生已具备一定的分析问题、解决问题的能力,已初步形成合作、交流、勇于探究与实践的良好学风,学生间互相评价和师生互动气氛较浓.二、教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤.发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题.3.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识.4.培养学生文字语言、图形语言、符号语言这三种语言转换的能力.三、教学重难点、教学重点:1.画出“线段图”找相等关系.2.会进行文字语言、图形语言、符号语言的相互转换.教学难点:借助画“线段图”寻找行程问题中的等量关系.四、教学设计情境创设小明每天早上要在7:50之前赶到距家1 000米的学校上学.一天,小明以80米/分钟的速度出发,5分钟后,小明的爸爸发现他忘了带语文书.于是爸爸以180米/分钟的速度去追小明.问题1:爸爸能追上小明吗?问题2:爸爸追上小明用了多长时间?问题3:追上小明时,距离学校还有多远?设计说明列方程解一些实际问题的过程是一个数学建模的过程,及时鼓励学生通过亲身体验、观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力.1.亲身演示,自主探索师:这是行程问题中的追赶问题,我们请两位同学分别扮演小明和爸爸来演示一下追赶的过程.2.语言描述师:根据刚才的演示,你发现了哪些等量关系?(1)爸爸要追上小明,爸爸的速度与小明的速度关系怎样?(2)爸爸从家出发到追上小明时,两人所用的时间有何关系?(3)两人所行的总路程有何关系?3.图形语言师:如下图,你能用简单的“线段图”表示演示的追赶过程吗?4.建立方程模型,得出结论路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?教学说明在学生亲身体验追赶过程的基础上,比较容易画出“线段图”,可以让他们独立完成,教师可以适当帮助一些有问题的学生.充分利用生活实践自己去提出问题并解决问题,这样更有利于扩展学生的思考空间,亲身体会数学变式问题的趣味性,感受到数学的实用性.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.活动一:小强和小斌每天早晨坚持跑步,小斌每秒跑4米,小强每秒跑6米。
第五章一元一次方程《应用一元一次方程—追赶小明》一、教学目标1、知识与技能目标知道列方程解应用题的步骤,能够在现实中运用他们。
进一步发展分析问题的能力、表达能力、抽象能力以及问题解决的能力。
2、过程与方法目标通过观察、探索、理解与运用,学生进一步体会到方程的模型作用,提高应用数学的意识。
借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题。
3、情感与态度目标通过观察发现、自主探索、合作交流等活动,使学生体验到成功的喜悦,增强学习乐趣。
并通过师生的共同活动,积累一定的解决实际问题的经验。
二、教学重点和难点重点:熟悉追及问题中的路程、时间、速度之间的关系。
从而实现从文字语言到图形语言、从图形语言到符号语言的转化。
难点:借助“线段图”分析复杂问题中的数量关系,从而解决实际问题。
三、教学过程设计1、复习巩固、获得新知先在黑板上写出以下几个题目,并让学生举手回答:①兔子每秒跑4m,那么它5s跑 m。
②兔子4分钟能从比赛的起点跑到终点(全长200米),那么它的速度是m/min。
③假设比赛全程是1200米,兔子以4m/s的速度从起点跑到终点需要min。
④以上题目涉及到的三个量之间的关系是什么?以上四题都是关于路程、速度、时间的问题,虽然看似简单,但却是解决追及问题的前提,只有学生掌握了三个量之间的关系,才能更好地解决关于一元一次方程的应用问题。
2、创设情境、激趣导学小明每天早上要在7:50之前赶到距家1000米的学校上学。
一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。
于是爸爸以180米/分的速度去追小明。
问题:1.爸爸追上小明用了多少时间?2.追上时距学校还有多远?完成自学指导3、当堂训练、应用强化设计了2道练习题:(1)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米。
①如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?②如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?本题的目的在于让学生掌握基础知识,以便让学生更好地运用基础知识,解决较难的问题。
北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教学设计一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容是北师大版数学七年级上册的一部分,主要介绍了如何利用一元一次方程解决实际问题。
通过小明和同学之间的追赶游戏,引出一元一次方程在现实生活中的应用,让学生体会数学与生活的紧密联系。
本节内容旨在让学生掌握一元一次方程的解法,并能应用于解决实际问题。
二. 学情分析学生在学习这一节内容前,已经学习了二元一次方程和一元一次方程的解法,具备了一定的数学基础。
但部分学生对一元一次方程在实际问题中的应用还不够清晰,需要在教学中加以引导和培养。
此外,学生对于实际问题的分析能力、数学思维的培养也需要在教学过程中给予关注。
三. 教学目标1.知识与技能:使学生掌握一元一次方程的解法,并能应用于解决实际问题。
2.过程与方法:通过解决追赶小明的实际问题,培养学生运用一元一次方程解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,体会数学与生活的紧密联系。
四. 教学重难点1.重点:一元一次方程的解法及其在实际问题中的应用。
2.难点:如何将实际问题转化为一元一次方程,并运用解法求解。
五. 教学方法1.情境教学法:通过设置追赶小明的场景,激发学生兴趣,引导学生主动参与。
2.案例教学法:分析追赶小明的问题,引导学生发现并总结一元一次方程的解法。
3.小组合作学习:鼓励学生分组讨论,培养学生的团队协作能力和沟通能力。
4.引导发现法:教师引导学生发现问题、分析问题,培养学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,展示追赶小明的场景和问题。
2.练习题:准备相关练习题,巩固学生对一元一次方程的掌握。
3.教学道具:准备一些实物道具,如小车、棋子等,用于模拟追赶游戏。
七. 教学过程1.导入(5分钟)利用课件展示追赶小明的场景,引导学生关注实际问题。
提问:“如何用数学方法表示小明和同学之间的距离和速度关系?”2.呈现(10分钟)呈现追赶小明的问题,引导学生分析问题,发现其中的数学关系。
北师大版数学七年级上册5.6《应用一元一次方程——追赶小明》教学设计一. 教材分析《北师大版数学七年级上册5.6<应用一元一次方程——追赶小明>》这一节主要通过一个实际问题引导学生应用一元一次方程解决问题。
通过列方程、解方程的过程,让学生掌握一元一次方程在实际问题中的应用。
教材通过追赶小明的例子,让学生理解速度、时间和路程之间的关系,并运用一元一次方程求解实际问题。
二. 学情分析学生在之前的学习中已经接触过一元一次方程的基本概念和解法,但对于如何将实际问题转化为方程,并将方程应用于解决实际问题可能还有一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题转化为方程,并通过实际问题让学生理解一元一次方程在实际生活中的应用。
三. 教学目标1.知识与技能:学生会将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。
2.过程与方法:学生通过自主探究、合作交流的方式,掌握一元一次方程在实际问题中的应用。
3.情感态度与价值观:学生体会数学与生活的紧密联系,培养解决实际问题的能力。
四. 教学重难点1.重点:学生能将实际问题转化为一元一次方程,并能运用一元一次方程求解实际问题。
2.难点:学生如何将实际问题转化为方程,并理解方程在实际问题中的应用。
五. 教学方法采用问题驱动法、情境教学法和合作交流法。
通过设置追赶小明的实际问题,激发学生的学习兴趣,引导学生自主探究、合作交流,从而掌握一元一次方程在实际问题中的应用。
六. 教学准备1.教师准备:教师需要准备与追赶小明相关的实际问题,以及解题过程中可能用到的数学知识。
2.学生准备:学生需要预习相关的一元一次方程知识,并准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过讲解一个简单的实际问题,引导学生思考如何将实际问题转化为方程。
例如,教师可以提出一个问题:如果小明每分钟跑60米,小红每分钟跑70米,小明比小红慢多少米?让学生思考如何用数学方法表示这个问题。
应用一元一次方程——追赶小明【教学目标】1.知识技能(1)借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤。
(2)能充分利用行程中的速度、路程、时间之间的关系列方程解应用题。
2.能力训练要求(1)培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识。
(2)培养学生文字语言、图形语言、符号语言这三种语言转换的能力。
3. 情感与价值观要求(1)通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气。
(2)体验生活中的数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣。
【教学重难点】利用一元一次方程解追击问题【教学过程】温故与预习1.列方程解应用题的一般步骤有哪些?2.行程问题主要研究、、三个量的关系。
第一环节:情境引入多媒体展示熊大熊二与光头强的追击视频。
目的:让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的动画视频,采用生动活泼的影像效果,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣。
二、第二环节:自主学习小明每天早上7:30从家出发,他要在7:50之前赶到距家1000米的学校上学。
一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。
于是爸爸以180米/分的速度去追小明。
根据以上情景,让学生作出线段图,并尝试解答题目中的问题。
目的:此时让学生结合生活中的实际情况提出问题,使学生亲身体会到问题的实质所在,明确解决这些问题的必要性,教师没有直接提出如何解决问题,而是让学生自己思考,使课堂具有开放性,从而能引起学生的极大兴趣,产生强烈的思考欲望。
由学生分析,学生画出线段图师生一起分析题目中的等量关系。
目的:列方程解一些实际问题的过程是一个数学化的过程,及时鼓励学生通过观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力。
《应用一元一次方程—追赶小明》教案
教学目标
1、知识与技能
能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.
2、过程与方法
(1)经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径.
(2)体会“方程”是解决实际问题的有效模型,并进一步发展学生的文字语言、符号语言、图形语言的转换能力.
3、情感态度与价值观
感受我们身边的数学,体会家人对我们的爱,要热爱家人,热爱生活.
教学重难点
重点:能列出一元一次方程解决实际问题.
难点:利用线段图找到题中的等量关系.
教学准备
PPT课件.
教学过程
一、复习引入
1、问答题
(1)小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需___小时.
(2)甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米.这列火车每小时行驶多少千米?
2、抢答题
(1)用一元一次方程解决问题的基本步骤:___________ _.
(2)行程问题主要研究、三个量的关系.
路程=_____,速度=_____,时间=_____.
(3)若小明每秒跑4米,那么他10秒跑___米.
二、自主学习
例:小明早晨要在7:50以前赶到距家1000米的学校上学,一天,小明以80m/min的速度出发,5min后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180m/min的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
独立思考,完成上面的问题.
1、根据题目已知条件,画出线段图:
2、找出等量关系:
小明走过的路程=爸爸走过的路程.
3、板书规范写出解题过程:
解:(1)设爸爸追上小明用了xmin.
根据题意,得80×5+80x=180x
化简得100x=400.
解得,x=4.
因此,爸爸追上小明用了4min.
(2)180×4=720(m)
1000-720=280(m)
所以,追上小明时,距离学校还有280米.
(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导.请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处.) 分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题.
三、交流探究
甲、乙两站间的路程为450千米,一列快车从甲站开出,每小时行驶85千米,一列慢车从乙站开出,每小时行驶65千米.设两车同时开出,同向而行,则快车几小时后追上慢车?
(学生小组合作完成本题目,按照例题的方法步骤,通过画线段图,分析已知量,找等量关系,列方程解答.教师巡视学生并给予检查和指导.)
四、展示生成
1、通过个别学生分析已知条件,
引导大家正确画出线段图:
2、找出等量关系:
快车所用时间=慢车所用时间;
快车行驶路程=慢车行驶路程+相距路程.
3、解题过程:
解:设快车x小时追上慢车,
据题意得85x=450+65x.
解,得x=22.5.
答:快车22.5小时追上慢车.
(请书写规范的学生到前面板演,并讲解其解题思路,其他同学有不同看法可相互补充.)
五、议一议
育红学校七年级学生步行到郊外旅行,七(1)班的学生组成前队,步行的速度为4km/h,七(2)班的学生组成后队,速度为6km/h,前队出发1h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.
请根据以上的事实提出问题并尝试回答.
(分小组讨论,提出不同的可能的问题,并尝试解答,比较哪组几块又准确,想出的方法又多,小组派代表讲给大家听.)
问1:后队追上前队用了多长时?
问2:后队追上前队时联络员行了多少路?
问3:联络员第一次追上前队时用了多长时间?
问4:当后队追上前队时,他们已经行进了多少路程?
问5:联络员在前队出发多少时间后第一次追上前队?
学生尝试自己结合“线段图”解决自己提出的问题,教师适时给予指导.
课堂总结
引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.强调本课的重点内容是要学会借“线段图”来分析行程问题,并能掌握各种行程问题中的规律及等量关系.
1、会借“线段图”分析行程问题.
2、各种行程问题中的规律及等量关系.
同向追及问题:
(1)同时不同地——甲路程+路程差=乙路程;甲时间=乙时间.
(2)同地不同时——甲时间+时间差=乙时间;甲路程=乙路程.。