岩石统一能量屈服准则
- 格式:pdf
- 大小:573.79 KB
- 文档页数:15
五种常见的屈服准则及其优缺点、适用范围屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
一、几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca准则,Von-Mises准则,Mnhr-Coulomb准则,Drucker Prager准则,Zienkiewicz-Pande准则。
其中后三种适用于混凝土和岩土材料的准则。
1. Tresca屈服准则当最大剪应力达到一定数值时,材料开始屈服。
这就是Tresca屈服条件,也称为最大剪应力条件。
规定σ1≥σ2≥σ3时,上式可表示为:如果不知道σ1、σ2、σ3的大小顺序,则屈服条件可写为:换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。
2. Mises屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为:或其中,k为常数,可根据简单拉伸试验求得:或根据纯剪切试验来确定:它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。
这时有:换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。
或者说,材料处于塑性状态时,其等效应力是不变的定值,该定值取决于材料变形时的性质,而与应力状态无关。
Mises屈服准则的物理意义:当材料的单位体积形状改变的弹性能达到某一常数时,质点就发生屈服。
故Mises屈服准则又称为能量准则。
3. Mnhr Coulomb准则Tresca屈服条件和Mises屈服条件主要是对金属材料成立的两个屈服条件,但是这两个屈服条件如果简单地应用于岩土材料,会引起不可忽视的偏差。
岩土力学屈服准则及其特点岩土力学是土木工程领域中的重要学科之一,研究土体和岩石在外力作用下的力学性质和行为。
岩土力学中的屈服准则是指在应力条件下,土体或岩石的屈服发生的准则,也被称为破坏准则或破坏判据。
不同的屈服准则适用于不同的材料和应变条件,常用的几种屈服准则包括摩尔—库仑准则、穆克—库仑准则、德里奇—龙格准则和麦克考利准则等。
1. 摩尔—库仑准则:摩尔—库仑准则是最常用的岩土力学屈服准则之一,适用于岩石和混凝土等脆性材料。
该准则认为,当材料中最大主应力达到其抗压强度时,材料发生屈服和破坏。
2. 穆克—库仑准则:穆克—库仑准则适用于黏塑性土体,认为土体的屈服和破坏是由于主应力差异引起的。
当土体中最大主应力差异达到一定程度时,土体发生屈服和破坏。
3. 德里奇—龙格准则:德里奇—龙格准则适用于砂土和黏土等细粒土体,认为土体的屈服和破坏是由于应力路径引起的。
当土体中的应力路径达到一定条件时,土体发生屈服和破坏。
4. 麦克考利准则:麦克考利准则适用于岩石和土体,认为材料的屈服和破坏是由于剪切应变能达到一定程度引起的。
当剪切应变能达到一定条件时,材料发生屈服和破坏。
这些屈服准则具有以下特点:1. 适用性广泛:不同的屈服准则适用于不同类型的土体和岩石,能够满足不同材料的力学性质和行为。
2. 简单易用:这些屈服准则通常基于简化的假设和实验数据得出,具有较高的实用性和可操作性。
3. 数学表达简洁:这些屈服准则通过简洁的数学表达式描述材料的屈服和破坏条件,便于工程应用和计算。
4. 实验验证可靠:这些屈服准则的提出和应用通常基于大量的实验数据,经过多次验证和修正,具有较高的可靠性和准确性。
5. 工程应用广泛:这些屈服准则在土木工程领域广泛应用于岩土工程设计、施工和安全评估等方面,对工程实践具有重要意义。
岩土力学中的屈服准则是研究土体和岩石在外力作用下的力学性质和行为的基础,不同的屈服准则适用于不同材料和应变条件,具有广泛的适用性和工程应用价值。
五种常见的屈服准则及其适用范围 屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
1.几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca 准则,Von-Mises 准则 ,Mnhr- Coulomb 准则,Drucker Prager 准则,Zienkiewicz-Pande 准则。
其中后三种适用于混凝土和岩土材料的准则1.1 Tresca 屈服准则当最大剪应力达到一定数值时,材料开始屈服。
这就是Tresca 屈服条件,也称为最大剪应力条件。
k =max τ规定时321σσσ≥≥,上式可表示为:k 2-31=σσ 如果不知道321、、σσσ的大小顺序,则屈服条件可写为:0]4)][(4)][(4)[(221322322221=------k k k σσσσσσ换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca 屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。
1.2 Mises 屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为22k J =或22132322216)()()(k =-+-+-σσσσσσ其中, k 为常数,可根据简单拉伸试验求得3/222s k J σ==,或根据纯剪切试验来确定, 222s k J τ==它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。
这时有:const k J r ===222σ 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。
五种常见的屈服准则及其适用范围屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
1.几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca准则,Von-Mises准则 ,Mnhr- Coulomb准则,Drucker Prager准则,Zienkiewicz-Pande准则。
其中后三种适用于混凝土和岩土材料的准则1.1 Tresca屈服准则当最大剪应力达到一定数值时,材料开始屈服。
这就是Tresca屈服条件,也称为最大剪应力条件。
规定时,上式可表示为:如果不知道的大小顺序,则屈服条件可写为:换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。
1.2 Mises屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为或 其中, 为常数,可根据简单拉伸试验求得,或根据纯剪切试验来确定, 它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。
这时有: 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。
或者说,材料处于塑性状态时,其等效应力是不变的定值,该定值取决于材料变形时的性质,而与应力状态无关。
Mises屈服准则的物理意义:当材料的单位体积形状改变的弹性能达到某一常数时,质点就发生屈服。
故Mises屈服准则又称为能量准则。
1.3 Mnhr Coulomb准则Tresca屈服条件和Mises屈服条件主要是对金属材料成立的两个屈服条件,但是这两个屈服条件如果简单地应用于岩土材料,会引起不可忽视的偏差。
1.简述岩石的强度特性和强度理论,并就岩石的强度理论进行简要评述。
答:岩石作为一种天然工程材料的时候,它具有不均匀性、各向异性、不连续等特点,并且受水力学作用显著。
在地表部分,岩石的破坏为脆性破坏,随着赋存深度的增加,其破坏向延性发展。
岩石强度理论是判断岩石试样或岩石工程在什么应力、应变条件下破坏。
当然岩石的破坏与诸多因素有关,如温度、应变率、湿度、应变梯度等。
但目前岩石强度理论大多只考虑应力的影响,其他因素影响研究并不深入,故未予考虑。
(1). 剪切强度准则a. Coulomb-Navier 准则Coulomb-Navier 准则认为岩石的破坏属于在正应力作用下的剪切破坏,它不仅与该剪切面上剪应力有关,而且与该面上的正应力有关。
岩石并不沿着最大剪切应力作用面产生破坏,而是沿其剪切应力和正应力最不利组合的某一面产生破裂。
即: ϕστtan +=C式中为岩石材料的内摩擦角,为正应力,C 为岩石粘聚力。
b. Mohr 破坏准则根据实验证明:在低围压下最大主应力和最小主应力关系接近于线性关系。
但随着围压的增大,与关系明显呈现非线性。
为了体现这一特点,莫尔准则在压剪和三轴破坏实验的基础上确定破坏准则方程,即: ()στf =此方程可以具体简化为斜直线、双曲线、抛物线、摆线以及双斜直线等各种曲线形式,具体视实验结果而定。
@虽然从形式上看,库仑准则和莫尔准则区别只是在于后者把直线推广到曲线,但莫尔准则把包络线扩大或延伸至拉应力区。
c. 双剪的强度准则Mohr 强度准则是典型的单剪强度准则,没有考虑第二主应力的作用。
我国学者俞茂宏从正交八面体的三个主应力出发,提出了双剪强度理论和适用于岩土介质的广义双剪强度理论,并得到了双剪统一强度理论:() 3211t b b σσσασ=+--αασσσ++≤1312 ()t b b σασσσ=-++31211 αασσσ++≥1312 式中和b 为两个材料常数,是岩石单轴抗拉强度。
五种常见的屈服准则及其适用范围 屈服准则表示在复杂应力状态下材料开始进入屈服的条件,它的作用是控制塑性变形的开始阶段。
屈服条件在主应力空间中为屈服方程。
1.几种常用的屈服准则五种常用的屈服准则,它们分别是Tresca 准则,Von-Mises 准则 ,Mnhr- Coulomb 准则,Drucker Prager 准则,Zienkiewicz-Pande 准则。
其中后三种适用于混凝土和岩土材料的准则1.1 Tresca 屈服准则当最大剪应力达到一定数值时,材料开始屈服。
这就是Tresca 屈服条件,也称为最大剪应力条件。
k =max τ规定时321σσσ≥≥,上式可表示为:k 2-31=σσ 如果不知道321、、σσσ的大小顺序,则屈服条件可写为:0]4)][(4)][(4)[(221322322221=------k k k σσσσσσ换言之当变形体或质点中的最大切应力达到某一定值时,材料就发生屈服。
或者说,材料处于塑性状态时,其最大切应力是一个不变的定值,该定值只取决于材料在变形条件下的性质,而与应力状态无关。
所以Tresca 屈服准则又称为最大切应力不变条件。
这种模型与静水压力无关,也不考虑中间应力的影响。
在平面上屈服条件为一个正六边形,在主应力空间内,屈服曲面为一个正六面柱体。
Tresca 屈服准则不足之处就是不包含中间主应力,没有反映中间主应力对材料屈服的影响。
1.2 Mises 屈服准则当与物体中的一点应力状态对应的畸变能达到某一极限值时,该点便产生屈服,其表达式为22k J =或22132322216)()()(k =-+-+-σσσσσσ其中, k 为常数,可根据简单拉伸试验求得3/222s k J σ==,或根据纯剪切试验来确定, 222s k J τ==它所代表的屈服面是一个以空间对角线为轴的圆柱体,在平面上屈服条件是一个圆。
这时有:const k J r ===222σ 换言之当等效应力达到定值时,材料质点发生屈服,该定值与应力状态无关。
岩石材料的强度理论总结屈服准则又称塑性条件,它是描述不同应力状态下物体某点进入塑性状态并使塑性变形继续进行所必须满足的条件。
一般来说,材料的屈服准则可分为三类:(1)应力表示的屈服准则;(2)应变表示的屈服准则;(3)能量表示的屈服准则。
在传统塑性理论中,最早应用的是1864年由屈瑞斯卡(Tresca)提出的屈瑞斯卡屈服准则,它适用于金属材料。
关于岩石的强度准则,最初是引用金属和土体的强度准则,后来发现岩石抗拉强度和抗压强度相差很大,静水压力的大小影响岩石材料脆塑性破坏等性质,这些金属和土体的准则不适合岩石材料。
几百年来各国学者提出了很多个岩石强度准则,但没有一个强度准则能够被所有人接受。
其中Mohr -Coulomb 强度准则,Drucker-Prager 强度准则,双剪统一强度理论和Hoek-Brown 强度准则在岩石力学中具有较大的影响。
1. Tresca 准则该准侧主要针对的是金属类材料和φ=0的纯黏土分析,又称最大剪应力屈服准则,即,当材料的最大剪应力达到某一极限值T k 时,材料产生屈服,其函数表示为:222222122331()4()4()40T T T f k k k σσσσσσ⎡⎤⎡⎤⎡⎤=--⋅--⋅--=⎣⎦⎣⎦⎣⎦(1) k T 为Tresca 准则材料常数,由实验测定。
当进行单向压缩实验时,σ2=σ3=0,σ1=σs ,得k T =12σs ⁄;当进行纯剪切实验时,σ2=0,σ3=−σ1=τs ,则k T =τs 。
在主应力空间中,Tresca 准则的屈服面是一个以静水压力线或空间对角线为轴的正六角柱体,在偏平面上是一个六边形,而在σ2=0的平面内则是一个具有两个直角的正六边形。
在p-q 平面为两条平行于p 轴的直线,说明Tresca 准则与静水压力无关。
2. Mises 准则Mises 准则是针对Tresca 准则没有考虑σ2对屈服的影响以及屈服面有棱角的缺陷,在对金属材料的实验分析基础上,同时考虑三个主应力影响的屈服准则,它考虑了材料的形状变化能,即当材料的形状变化比能达到一定程度时,材料开始屈服,故又称能量屈服准则。