氢原子光谱玻尔氢原子理论
- 格式:pptx
- 大小:337.89 KB
- 文档页数:13
氢原子的光谱线解析与理论解释光谱线是物质在光的作用下发出或吸收的特定频率的电磁波。
而氢原子的光谱线解析与理论解释,一直以来都是物理学家们研究的热点之一。
本文将从氢原子的光谱线的观测、解析以及理论解释等方面进行探讨。
首先,我们来看氢原子的光谱线的观测。
早在19世纪初,德国物理学家巴尔末发现了氢原子的光谱线,这一发现为后来的研究奠定了基础。
通过将氢气放电于真空管中,巴尔末观察到了一系列明亮的彩色线条。
这些线条经过仔细测量和分类,被分为了几个系列,分别称为巴尔末系列、帕邢系列和卢瑟福系列。
这些系列中的每一个线条都对应着氢原子在特定能级之间跃迁所产生的光。
接下来,我们来解析氢原子的光谱线。
根据量子力学的理论,氢原子的能级是量子化的,即只能取特定的数值。
这就意味着氢原子在不同能级之间的跃迁所产生的光具有特定的频率和波长。
而这些频率和波长正是观察到的光谱线。
例如,巴尔末系列中的线条对应着氢原子的基态到第一激发态之间的跃迁,帕邢系列对应着第一激发态到第二激发态之间的跃迁,而卢瑟福系列则对应着更高能级的跃迁。
那么,为什么氢原子的能级是量子化的呢?这就涉及到氢原子的理论解释。
根据量子力学的理论,氢原子的能级由薛定谔方程给出。
薛定谔方程是描述微观粒子的波函数演化的方程,通过求解薛定谔方程,可以得到氢原子的能级和波函数。
而氢原子的能级量子化的原因是由于氢原子中的电子和质子之间的库仑相互作用。
这种相互作用会导致电子在氢原子中的运动受到限制,从而使得电子只能在特定的能级上存在。
此外,氢原子的光谱线还可以通过波尔模型进行解释。
波尔模型是根据经典力学和电磁学的理论,对氢原子的能级和光谱线进行解释的简化模型。
根据波尔模型,氢原子的电子绕着质子作圆周运动,而电子的能级由其运动半径决定。
当电子从一个能级跃迁到另一个能级时,会吸收或发射特定频率的光子,从而产生光谱线。
波尔模型的成功在一定程度上解释了氢原子的光谱线,但它是建立在经典力学和电磁学的基础上,无法解释一些量子效应。
高中物理氢原子光谱知识点一、氢原子光谱的发现历程。
1. 巴尔末公式。
- 1885年,巴尔末发现氢原子光谱在可见光区的四条谱线的波长可以用一个简单的公式表示。
巴尔末公式为(1)/(λ)=R((1)/(2^2) - (1)/(n^2)),其中λ是谱线的波长,R称为里德伯常量,R = 1.097×10^7m^-1,n = 3,4,5,·s。
- 巴尔末公式的意义在于它反映了氢原子光谱的规律性,表明氢原子光谱的波长不是连续的,而是分立的,这是量子化思想的体现。
2. 里德伯公式。
- 里德伯将巴尔末公式推广到更一般的形式(1)/(λ)=R((1)/(m^2)-(1)/(n^2)),其中m = 1,2,·s,n=m + 1,m + 2,·s。
当m = 1时,对应赖曼系(紫外区);当m = 2时,就是巴尔末系(可见光区);当m = 3时,为帕邢系(红外区)等。
二、氢原子光谱的实验规律与玻尔理论的联系。
1. 玻尔理论对氢原子光谱的解释。
- 玻尔提出了三条假设:定态假设、跃迁假设和轨道量子化假设。
- 根据玻尔理论,氢原子中的电子在不同的定态轨道上运动,当电子从高能级E_n向低能级E_m跃迁时,会发射出频率为ν的光子,满足hν=E_n-E_m。
- 结合氢原子的能级公式E_n=-(13.6)/(n^2)eV(n = 1,2,3,·s),可以推出氢原子光谱的波长公式,从而很好地解释了氢原子光谱的实验规律。
例如,对于巴尔末系,当电子从n(n>2)能级跃迁到n = 2能级时,发射出的光子频率ν满足hν = E_n-E_2,进而可以得到波长与n的关系,与巴尔末公式一致。
2. 氢原子光谱的不连续性与能级量子化。
- 氢原子光谱是分立的线状光谱,这一现象表明氢原子的能量是量子化的。
在经典理论中,电子绕核做圆周运动,由于辐射能量会逐渐靠近原子核,最终坠毁在原子核上,且辐射的能量是连续的,这与实验观察到的氢原子光谱不相符。
氢原子的能级与光谱·爱因斯坦1905年提出光量子的概念后,不受名人重视,甚至到1913年德国最著名的四位物理学家(包括普朗克)还把爱因斯坦的光量子概念说成是“迷失了方向”。
可是,当时年仅28岁的玻尔,却创造性地把量子概念用到了当时人们持怀疑的卢瑟福原子结构模型,解释了近30年的光谱之谜。
§1 氢原子的能级与光谱一、玻尔的氢原子理论(一)玻尔的基本假设1.定态假设:原子只可能处于一系列不连续的能量状态E1, E2, E3,…。
处于这些状态的原子是稳定的,电子虽作加速运动,但不辐射电磁波。
2.频率条件:原子从某一定态跃迁至另一定态时,则发射(或吸收)光子,其频率满足玻尔在此把普朗克常数引入了原子领域。
(二)玻尔的氢原子理论 1.电子在原子核电场中的运动(1)基本情况:核不动;圆轨道;非相对论。
(2) 用经典力学规律计算电子绕核的运动·电子受力:·能量:得f f = - 14πε0 ( )Ze 2r 21 ε0 ( ) Ze2 r = m ( )υ2r1 2E = m υ2 - 1 4πε0 ( ) Ze2 r E = -Ze 28πε0r2.轨道角动量量子化条件玻尔假定:在所有圆轨道中,只有电子的角动量满足下式的轨道才是可能的。
玻尔引进了角动量的量子化。
3.轨道和速度 ·r n = n 2r 1 ,(玻尔半径) r 1= 0.529 Å· υn= υ1/n ,4πε0h 2 r 1 = ( me 2 )( ) 1 Z 4πε0hυ1 = Ze 2)可见, 随n↑⇒r n↑,υn↓4.能级---能量量子化将r n代入前面E式中,有n = 1,2,3,…)R:里德伯常数(见后)基态能量:E1= -13.6 eV可见,随n↑⇒E n↑,∆E n↓*玻尔的理论是半经典的量子论:对于电子绕核的运动,用经典理论处理;对于电子轨道半径,则用量子条件处理。
1第4节 氢原子光谱 玻尔理论一、 氢原子光谱,422-=n n B λ∞=,,5,4,3 nA =7.3645B αH βH γH ∞H ,∞→nB =∞λ巴耳末系,:线系极限∞H =:线系极限波长B =∞λA 7.3645波数:沿波线单位长度内波的个数 ν~cνλν==1~λ )121()121(441(1411~2222222nR n B n B n n B -=-=-=-==λν,5,4,3=n 里德伯公式:里德伯恒量1710096776.14-⨯==m BR 帕邢系:, )131(1~22n R -==λν,6,5,4=n 原子光谱实验规律:“原子光谱都是彼此分立的线状光谱,每一条光谱线的波数由 两个光谱项的差值决定” 里兹并合原理,, )()(~n T k T -=νN k n ∈,k n >、:光谱项)(k T )(n T 氢原子:,2)(k R k T =2)(nRn T =碱金属原子:,2)()(α+=k R k T 2)()(β+=n Rn T 、都给定,给出一条光谱线的波数k n 一定,所有的取值对应的谱线构成一个谱线系 k n 不同,给出不同的谱线系 k二、 玻尔理论1、 原子的有核模型1911,卢瑟夫,粒子散射实验α 有核模型 与经典理论矛盾 按照经典理论: 原子光谱应是连续的,原子是不稳定的2、 玻尔的氢原子理论c2(1) 定态假设:原子只能处在一系列具有不连续能量的 稳定状态:定态,不辐射电磁波 定态1, 定态2,,, , 1E 2E , 轨道1, 轨道2, ,(2) 跃迁假设:的定态的定态 n E →k E 光子频率 hE E nk -=ν <,吸收一个光子,>,放出一个光子n E k E n E k E (3)角动量量子化假设:电子绕核转动的角动量:, n hnL ==π2 ,3,2,1=n:量子数n :约化普朗克常数,SI :=π2h = π2h= Js 341005.1-⨯三、 氢原子结构和氢原子光谱 1、 轨道半径(1) 20224r e r V m πε= (2),n mVr L == ,3,2,1=n (,)V m r P r L⨯=⨯=θθsin sin rmV rP L == ,, 222023141 n r e mr πε=22204n me r ⋅= πε ,3,2,1=n , 1=nA ==529.042201mer πε ,2=n 2122⋅=r r ,3=n2133⋅=r r21n r r n ⋅=<<<321r r r :玻尔半径A =529.01r 结论:电子的轨道半径是量子化的 2、 定态能量,, r e mV E 022421πε-=20224r e r V m πε=r e mV 022821πε= ,210202188n r e re E ⋅-=-=πεπε ,3,2,1=nVm e3,,,1=n eV r e E 6.1381021-=-=πε2=n eV E E 4.32/212-== ,,3=n ,51.13/213eV E E -== 21/n E E n =<<<321E E E 的定态:基态,的定态,激发态 1=n 1>n 结论:氢原子的定态能量是量子化的 每一个定态能量称为一个能级∞=n4=n51.1-3=neV 4.3-2=neV 6.13-1=n3、 氢原子光谱氢原子 ,n E →k E k n >辐射光子频率==h E E k n -=ν)(12121k E n E h -)11(221nk h E -- 波数, ==c νν~11(221n k hc E --k n > 令,, hc E R 1-===λν1~)11(22n k R -k n >= hcER 1-=1710097373.1-⨯m 例:赖曼系中波长最短的谱线光子能量是多少? 答:eV 6.13例:巴耳末系中波长最短的谱线光子能量是多少? 答:eV 4.3例:写出氢原子光谱各谱线系的极限波数表达式解:,, ==λν1~11(22n k R -∞→n 2)(~k R =∞ν赖曼系 (), = 1=k R =∞)(~赖ν1710097.1-⨯m 巴耳末系(), 2=k 1710274.04)(~-⨯==∞m R 巴ν5=n 赖曼系4四、 玻尔理论的缺陷氢原子及 类氢离子光谱 , ,, H +He +2Li +3Be Z= 1, 2, 3, 4碱金属元素的原子光谱,光谱的精细结构 塞曼效应,谱线宽度、强度、偏振逻辑上,玻尔理论自相矛盾 认识原子结构的里程碑 “定态”、“能级”、“跃迁” 例:氢原子由量子数为的定态()的定态 n →1-n 求:(1)辐射光子频率1-→n n ν (2)很大时,n 1-→n n νn ν≈:电子在第轨道上的转动频率n νn 解:(1)= 1-→n n ν22121211)1(12])1([1n n n h E n E n E h h E E n n --⋅-=--=--= ()22102)1(128n n n h r e --⋅πε10218r e E πε-= (2)= () n νn n n n n r mV mV r V ππ222=20224nn n r e r V m πε== (,) 31020214214nh r e n r e n ⋅=⋅πεππε n r mV n n =21n r r n ⋅= 很大时,== n 1-→n n ν22102)1(128n n n h r e --⋅πε310214nh r e ⋅≈πεn ν对应原理:当量子数很大时,量子方程应过渡到经典方程 n 经典理论是量子理论在很大时的极限 n 例:氢原子某谱线系的极限波长为,其中一条谱线A 3647 波长为A 6565求:该谱线对应的氢原子初态和末态的能级能量 ()1710097.1-⨯=m R 解:,,, ==λν1~11(22n k R -∞→n 21k R =∞λ2==∞λR k ,,= =λ1)121(22n R -221211n R -=λR nλ14112-=R R λλ44-344=-=R Rn λλ 初态,3=n eV E E 51.13/213-==末态,2=n eV E E 4.32/212-==。