程林松 2、渗流力学-第二章
- 格式:pdf
- 大小:1.38 MB
- 文档页数:37
《渗流力学》课程教学大纲课程编号:02041002课程名称:渗流力学英文名称:Fluid Flow Through Porous Media课程类型:必修课课程性质:专业基础课总学时:56 讲课学时:48 实验学时:8学分: 4适用对象:石油工程专业、海洋油气工程、资源勘查工程先修课程:油层物理一、编写说明(一)制定大纲的依据根据《渗流力学》专业本科生培养计划要求制定本教学大纲。
(二)课程简介“渗流力学”是流体力学的一个分支,是研究流体在多孔介质中流动规律的一门学科。
本课程讲述的内容是“渗流力学”中的一个分支——地下渗流部分。
专门研究地下油气水及其混合物在地层中的流动规律。
(三)课程的地位和作用本课程是油气田开发与开采的理论基础,是石油工程专业和海洋油气工程专业的主干课程,同时也是资源勘查工程专业的选修课。
明确渗流理论是油气田开发,提高油田采收率等理论的基础,为学好专业课和解决有关地下油、气、水的渗流问题打好基础。
(四)课程性质、目的和任务本课程是石油工程专业和海洋油气工程专业本科学生的一门专业基础课,目的是通过各个教学环节使学生掌握油、气、水在地下流动规律,以及研究流体渗流规律的基本方法。
本课程的任务是使学生能掌握渗流力学基础概念、基本理论及解决渗流问题的基本技能。
(1)使学生掌握油、气、水渗流的基本规律及建立方程的基本方法;(2)培养学生用所学的渗流力学理论分析和解决渗流问题能力;(3)通过实验课培养学生严谨作风及动手能力。
(五)与其他课程的联系由于渗流力学是一门专业基础课,所以是其他专业课的基础,为学好其他专业课打下牢固的基础。
(六)对先修课的要求要求在学习本门课程之前,学好油层物理这门专业基础课,同时对高等数学中的求导,积分等知识能够熟练的应用。
一、大纲内容绪论渗流力学发展史,本课程研究方向。
第一章渗流的基础知识和基本定律(一)教学目的和任务使学生全面掌握渗流力学的基本概念和基本定律,使学生了解本课程的学习目的,为今后的学习打下基础。
第一章 油气渗流基本定律和渗流数学模型一、基本概念1、何谓多孔介质?在油气层中,分哪几类?2、什么叫渗流、渗流力学、油气层渗流研究对象是什么?3、现阶段油气渗流力学的研究特征是什么?4、什么叫含油边缘和计算含油边缘?5、何为开敞式和封闭式油藏?区别是什么?6、什么叫折算压力?怎样求地层中某一点折算压力?7、什么叫地层压力系数和压力梯度曲线?8、常见的驱油能量有哪些?有哪些最基本驱动方式?9、何为渗流速度?为什么要引入它?它与流体质点的真实速度的区别何在? 10、什么叫线性渗流定律、其物理意义是什么?怎样确定其适用范围? 11、岩石渗透率的物理意义和单位是什么?各种单位制之间有什么联系? 12、何谓非线性渗流的指数式?其物理意义是什么?13、何谓非线性渗流的二项式?其物理意义是什么?它与指数式有何区别和联系? 14、什么叫流压和静压?15、什么叫渗流数学模型?其一般构成是什么?16、建立渗流微分方程应从哪几个方面考虑?分几个步骤进行?17、简述分别用积分法和微分法推导单相流体稳定渗流微分方程的步骤? 18、分别写出液体、气体和岩石的状态方程。
二、计算题1、有一未打开油层,如图:其中P A =18MPa,h=10m,原油重度γ=0.8,求P B =?2、四口油井的测压资料如下表,已知原油比重0.8,油水界面的海拔为-950m ,试分析在哪3为-1000m ,位于含水区的一口探井实测地层中部原始地层压力为11.7MPa ,油层中部海拔-1300m ,已知原油比重为0.85,地层水比重为1.0,求该油田油水界面的海拔深度。
4、已知一油藏中的两点,如图,h=10m,P A =9.35MPa, P B =9.5MPa,原油重率γ=0.85,问油的运移方向如何?BA h =10m5、已知一个边长为5cm 正方形截面岩心,长100cm ,倾斜放置,如图所示,入口端(上部)压力1P =0.2MPa ,出口端(下部)压力2P =0.1MPa ,h=50cm ,液体重率0.85,渗流段长度L=100cm ,液体粘度μ=2mPa.s ,岩石渗透率K=12m μ,求流量Q 为多少?6、在上题基础上如果将h 改为0,其结果又将如何?通过计算说明什么?(其它条件不变)7、某实验室测定园柱形岩芯渗透率,岩芯半径为1cm ,长度5cm ,在岩芯两端建立压差,使粘度为1mPa.s 的液体通过岩芯,在二分钟内测量出通过的液量为15cm 3,从水银压力计上知道两端的压差为157mmHg ,试计算岩芯的渗透率。
渗流力学知识点总结一、渗流基本理论1.渗流的基本概念渗流是指流体在多孔介质中的流动现象。
多孔介质是由孔隙和固体颗粒组成的介质,流体可以通过孔隙和固体颗粒之间的空隙进行流动。
渗流现象在自然界和工程领域都有着广泛的应用,如地下水的运移、石油的开采、地下储层的注水等。
2.渗透性与渗透率渗透性是指单位压力下单位面积介质对流体的渗透能力,通常用渗透率来描述。
渗透率是介质内渗流速度与流体粘滞力之比。
一般来说,渗透性越大,渗透率越高,介质对流体的渗透能力越强。
3.渗透压力与渗透率渗透压力是指多孔介质内部由于孔隙中流体分布不均匀而产生的压力。
渗透压力的大小与介质的孔隙结构、流体的性质、地下水位等因素有关,它是影响渗流速度和方向的重要因素。
4.达西定律达西定律是描述渗透性与渗流速度之间关系的定律,它指出在流体粘滞力不考虑的条件下,渗透速度与渗透压力成正比,与渗透率成反比。
达西定律为渗流理论研究提供了重要的基础。
二、多孔介质渗流规律1.多孔介质的渗流特性多孔介质是由孔隙和固体颗粒组成的介质,它具有复杂的微观结构和介质性质。
渗流在多孔介质中受到许多因素的影响,如介质的孔隙度、渗透率、渗透性等,这些因素决定了渗流规律的复杂性和多样性。
2.渗流方程渗流方程是描述多孔介质中流体运移规律的方程,它通常由渗流方程和质量守恒方程两部分组成。
渗流方程描述了流体在多孔介质中的流动规律,它是渗流力学研究的核心内容。
3.多孔介质的稳定性多孔介质中的渗流现象可能受到介质本身的稳定性限制。
孔隙结构、流体的性质以及渗透压力等因素都会影响介质的稳定性,这对渗流速度和方向产生重要影响。
4.非均质多孔介质中的渗流非均质多孔介质中的渗流现象通常较为复杂,其渗透率、孔隙度、渗透性等参数都可能在空间上呈现非均匀性。
对非均质多孔介质中渗流规律的研究对于实际工程应用具有重要意义。
三、非线性渗流1.非线性渗流模型非线性渗流模型是描述介质非线性渗流现象的数学模型。
《渗流力学》课程教学大纲课程编号: 020092080总学时及其分配:48;理论课48学时。
学分数:3适用专业:采矿工程专业(煤及煤层气工程方向)任课学院、系部:能源学院一、课程简介“渗流力学”是流体力学的一个分支,是研究流体在多孔介质中流动规律的一门学科。
本课程讲述的内容是“渗流力学”中的一个分支-地下渗流部分。
专门研究地下水、气及其混合物在地层中的流动规律。
本课程是油气田勘探与开采的理论基础,是采矿工程专业煤层气开采方向的专业基础课和核心课,同时也是地质勘查专业、安全工程专业的专业基础课。
学习该课程的目的,是把它作为认识煤层气藏、改造煤层气储层藏的工具,作为煤层气储层开发设计、动态分析、煤层气井开采、增产工艺、反求地层参数、提高采收率等的理论基础。
因此,它是采矿工程煤层气方向的主干专业基础课之一,是进一步学好《采气工程》、《煤层气试井理论与技术》的关键课之一,该门课的目的是让学生了解油气在储层中渗流的基本规律及研究油气在储层中渗流的基本方法。
二、课程教学的目标本课程是采矿工程专业煤层气方向本科学生的一门专业基础课和核心课,目的是通过各个教学环节使学生掌握油、气、水在地下流动规律,以及研究流体渗流规律的基本方法。
明确这些理论是油气田开发、煤层气开发、瓦斯抽采,提高油气采收率、瓦斯抽采效等的理论基础,为学好专业课和解决有关地下油、气、水的渗流问题打好基础。
本课程的任务是使学生能掌握渗流力学基础概念、基本理论及解决渗流问题的基本技能。
三、课程教学的基本内容及教学安排1. 绪论(3学时)知识要点:渗流力学的基本任务、研究方法、相关研究方向和国内外发展动态及一些与本学科相关的基本概念。
目标要求:了解渗流力学在石油天然气开发、瓦斯抽采、地下水流动中的重要性,知道如何学好渗流力学。
2. 第一章渗流的基本概念和基本规律(8学时)知识要点:知道油气藏及其简化,多孔介质及连续介质,渗流过程中的力学分析及驱动类型,渗流的基本规律和渗流方式,非线性渗流规律,低速下的渗流规律,两相渗流规律等基本概念。
第二章 单相不可压缩液体的稳定渗流【2-1】在圆形油藏中心有一口完善井,穿透四个K 、h 不同的小层(见表)。
各层的孔隙度0.2φ=,2000m e r =,10cm w r =,9MPa e p =,8MPa w p =,03mPa s μ=⋅, 求:(1) 油井总产量Q 。
(2) 平均地层渗透率p K 。
(3) 绘制地层压力分布曲线,求从供给边线到井距10m 处和1000m 处的压力损失。
(4) 求液体从供给边线处运动到井底所需的时间。
表2.1 不同厚度的渗透率厚度m 渗透率2m μ 1h1K 2h 2K 3h3K 4h4K【解】(1) 记四个小层的产量分别为1Q ,2Q ,3Q ,4Q ,则总产量为4123412()lne w i i ewp p Q Q Q Q Q K h r r πμ-=+++=∑ 612332(98)10(30.160.480.610 1.0)10319.6m /d 2000310ln0.1π---⨯=⨯+⨯+⨯+⨯⨯=⨯⨯(2) 令 Q Q =虚拟实际 则有112233442()2()()ln lnp e w e w e ew wK h p p p p K h K h K h K h r r r r ππμμ--=+++∴ 112233441()p K K h K h K h K h h=+++230.160.480.610 1.00.6536810μ⨯+⨯+⨯+⨯==+++m(3) 由达西公式有()12w w r p r r p Q dr dp Kh r μπ⋅=⎰⎰图2.6 压力分布曲线 epln ()2w wQ rp r p Kh r μπ=- ()ln ln e w w e w wp p rp r p r r r -=+110(10)8ln 8.47MPa 20000.1ln 0.1p =+= 10(10)98.470.53MPa e p p p ∆=-=-=同理 1000(1000)98.930.07MPa e p p p ∆=-=-= 压力分布曲线如图所示。
程林松2、渗流力学-第二章第二章单相不可压缩流体的稳定渗流规律本章要点第一、掌握三种基本流动状态(单向、平面径向、第一、掌握三种基本流动状态(单向、平面径向、球形径向)的数学模型及渗流特征。
球形径向)的数学模型及渗流特征。
第二、了解井的不完善性,弄清表皮系数、折算第二、了解井的不完善性,弄清表皮系数、折算半径物理意义,了解稳定试井的原理、方法和应用。
半径物理意义,了解稳定试井的原理、方法和应用。
1第二章单相不可压缩流体的稳定渗流规律第一节本节要点1、掌握单向刚性稳定渗流渗流规律:速度、压力分布;产量公式。
2、掌握流场、势场的分布特征。
3、掌握渗透率发生变化时的渗流特征。
单向刚性稳定渗流2第二章单相不可压缩流体的稳定渗流规律1. 单向刚性稳定渗流地层模型pepw水平、均质、等厚的带状地层模型:长度为L,宽度为B,厚度为h,供给边缘压力为pe,排除端为pw。
液流沿x方向流动,流体粘度为μ,地层渗透率为K。
沿x方向流动,流体粘度为,地层渗透率为K。
3第二章单相不可压缩流体的稳定渗流规律2. 数学模型:方程的通解形式:4第二章单相不可压缩流体的稳定渗流规律3. 数学模型的解:Ⅰ. 压力分布:pe ? pw p( x ) = pe ? x Lpe ? p w p( x ) = p w + ( L ? x) LⅡ. 压力梯度分布:pe ? p w dp =? = C 1 = 常数 dx LⅢ. 速度分布:根据达西公式,可知渗流速度等于υ = ?K dp μ dx单向渗流时沿着渗流路程压力梯度恒定,所以渗流速度也恒定υx = ?K dp K p e ? p w = = C2 L μ dx μ5第二章单相不可压缩流体的稳定渗流规律从压力、速度分布公式中可以看出,压力、速度分布规律是直线分布;渗流速度也恒定,因此渗流场图中流线也是一些等距的互相平行的直线,如图所示。
p ? pw dp d =? e = C 1 = 常数 L dxp( x ) = pe ?pe ? pw x Lυx = ?K dp K p e ? p w = = C2 μ dx μ Lp( x ) = p w +pe ? p w ( L ? x) L压力分布曲线流线等压线分布曲线6第二章单相不可压缩流体的稳定渗流规律Ⅳ. 产量公式:单向流的渗流面积:A = Bh单向流时的产量公式:KBh ( pe ? pw ) ( pe ? pw ) Q = Bhυ x = = L R μ上式表明产量和压力差成线性关系,其中: 上式表明产量和压力差成线性关系,其中:R=μLKBh=μLKA是从供给边缘到排液坑道的渗流阻力。
渗流⼒学绪论:1.渗流⼒学:就是研究渗滤的运动状态和运动规律的学科。
渗流⼒学研究涉及三个主要⽅⾯:⼯程渗流、⽣物渗流、地下渗流2.渗流:流体通过多孔介质的流动称为渗流或渗滤3.多孔介质:由⾻架和相互连通的孔隙、裂缝、溶洞或各类⽑细管体系组成的材料第⼀章:1.油⽓藏:油⽓的储集的场所和流动空间油⽓藏作⽤:限制流体的流动范围、影响流体的渗流⼼态、决定流体的边界形状按圈闭条件分为:①构造油⽓藏(背斜油⽓藏、断层油⽓藏、刺穿接触油⽓藏);②地层油⽓藏(潜⼭油⽓藏、⽣物礁油⽓藏、不整合覆盖油⽓藏、地层超覆油⽓藏);③岩性油⽓藏(透镜状岩性油⽓藏、尖灭性岩性油⽓藏)根据流体在其中流动的空间特点分为:①层状油藏;②块状油藏2.多孔介质的特点:具有孔隙性、渗透性、⽐表⾯积⼤、孔隙结构复杂等基本特点绝对渗透率:岩⽯允许流体通过的能⼒有效渗透率:(相渗透率):岩⽯对于某⼀相流体的通过能⼒相对渗透率:有效渗透率与绝对渗透率的⽐值按结构分类(结构复杂性):1.粒间孔隙结构;2.纯裂缝结构;3.裂缝-孔隙结构;4.溶洞-孔隙结构;5.溶洞-裂缝-孔隙结构 3.连续流体:把流体中的质点看成是在⼀个很⼩的体积中包含着很多分⼦的集合体,质点中流体的性质与周围质点中的流体性质成连续函数关系连续介质:是在质点的典型体积上表现出来的平均性质连续介质场:连续流体在连续介质中的流动,在研究其流动规律时,其物性是连续变化的,即其数学⽅程是连续的,在这种连续系统中流动的场4.渗流过程中的⼒:重⼒、惯性⼒、粘滞⼒、弹性⼒、⽑管⼒5.油藏中的压⼒:原始地层压⼒、供给压⼒、井底压⼒、折算压⼒(计算P19)6.油藏的驱动类型:重⼒⽔压驱动、弹性驱动、⽓压驱动、溶解⽓驱、重⼒驱动7.※达西定律8.渗流速度:渗流量与渗流截⾯积之⽐9.真实速度:渗流量与渗流截⾯的空隙⾯积之⽐10.渗流的基本⽅式:单相流、平⾯径向流、球⾯向⼼流11.⾮线性渗流指数形式:v=C (dp/dL)^n 式中C 为取决于岩层和流体性质的系数; n 为渗流指数, n ?(0.5~1), n=1时,渗流服从达西直线定律 12.启动压⼒梯度(吸附膜和⽔化膜的影响):在压⼒梯度较⼩时,流体不产⽣流动,渗流速度为零,当压⼒梯度⼤于某⼀值后,流体才发⽣流动,这⼀压⼒梯度值称为启动压⼒梯度 13.两相流体时,渗流阻⼒明显增加,且两相各⾃渗透率之和不等于单相渗流时的绝对渗透率。
第二章 单相不可压缩液体的稳定渗流【2-1】在圆形油藏中心有一口完善井,穿透四个K 、h 不同的小层(见表)。
各层的孔隙度0.2φ=,2000m e r =,10cm w r =,9MPa e p =,8MPa w p =,03mPa s μ=⋅,求:(1) 油井总产量Q 。
(2) 平均地层渗透率p K 。
(3) 绘制地层压力分布曲线,求从供给边线到井距10m 处和1000m 处的压力损失。
(4) 求液体从供给边线处运动到井底所需的时间。
表 不同厚度的渗透率厚度m渗透率2m μ 1h1K 2h 2K 3h3K 4h4K【解】(1) 记四个小层的产量分别为1Q ,2Q ,3Q ,4Q ,则总产量为4123412()lne w i i ewp p Q Q Q Q Q K h r r πμ-=+++=∑ 612332(98)10(30.160.480.610 1.0)10319.6m /d 2000310ln0.1π---⨯=⨯+⨯+⨯+⨯⨯=⨯⨯(2) 令 Q Q =虚拟实际 则有112233442()2()()ln lnp e w e w e ew wK h p p p p K h K h K h K h r r r r ππμμ--=+++∴ 112233441()p K K h K h K h K h h=+++ 230.160.480.610 1.00.6536810μ⨯+⨯+⨯+⨯==+++m(3) 由达西公式有()12w w r p r r p Q dr dp Kh r μπ⋅=⎰⎰图 压力分布曲epln ()2w wQ rp r p Kh r μπ=- ()ln ln e w w e w wp p rp r p r r r -=+110(10)8ln 8.47MPa 20000.1ln 0.1p =+= 10(10)98.470.53MPa e p p p ∆=-=-=同理 1000(1000)98.930.07MPa e p p p ∆=-=-= 压力分布曲线如图所示。
第一章 渗流力学基本概念和定律1、多孔介质(porous medium ):含有大量任意分布的彼此连通的且形状各异、大小不一的孔隙的固体介质。
2、渗流(permeability ):流体通过多孔介质的流动,也叫渗滤。
3、油藏:具有统一压力系统的油气聚集体4、渗流力学:研究流体在多孔介质中的运动形态和规律的科学。
5、油气层是油气储集的场所和流动空间6、定压边界油藏:层体延伸到地表,有边水供给区,在边界上保持一个恒定的压头。
7、封闭边界油藏:边界为断层或尖灭 没有边水供给 渗流中的力学分析及驱动类型:力学分析:重力、惯性力、粘滞力(大小用牛顿内摩擦定律表示1mPa·s =lcP )、弹性力、毛管力。
驱动类型:依靠何种能量把原油驱入井底。
弹性驱动、水压驱动、溶解气驱、气压驱动(主要靠气顶气或注入气的膨胀能或压能驱油的驱动方式。
刚性气压驱动、弹性气压驱动)、重力驱动 不同驱动方式及开采特征总结:1、能量补充充足(边、底水,气顶、注水/气):刚性驱动:刚性气/水驱;开采特征:Pe 、 Ql 、 Qo 有稳产段。
2、能量补充不充足(无边底水气顶注水注气或有而不足): 弹性驱动:弹性驱动、溶解气驱、弹性气/水驱;开采特征:Pe 、 Ql 、 Qo 均不断下降。
3、 凡是气驱的Rp 都有上升的过程,其它驱动方式Rp 不变。
溶解气驱、刚/弹性气驱4、 Qo 或Rp 的突然变化反映水或气的突破。
供给压力Pe :油藏中存在液源供给区时,在供给边缘上的压力。
井底压力Pw :油井正常生产时,在生产井井底所测得的压力称为井底压力,也称为流动压力,简称流压。
折算压力Pr :油藏中某点折算到某一基准面时的压力,它表示油层中各点流体所具有的总能量。
达西定律:在一定范围内△P 与Q 成直线关系,当流量不断增大,直线关系就会被破坏。
真实流速与渗流速度的关系达西定律适用条件: 液流处于低速、层流,粘滞力占主导地位,惯性主力很小,可忽略。
渗流力学绪论多孔介质:由固体骨架和相互连通的孔隙,裂缝,溶洞或各种类型的毛细管体系所组成的材料。
渗流力学与其他力学的区别:介质的不同。
第一章渗流的基本概念和基本规律油气藏:油气储集的场所和流动的空间。
油气藏按圈闭形成的类型:构造油气藏,地层油气藏,岩性油气藏。
构造油气藏的分类:背斜油气藏,断层油气藏,刺穿接触油气藏。
油气藏根据流体流动空间的特点:层状隐藏,块状油藏。
层状油藏的特点:1:油层平缓,分布面积大。
2:多油层,多旋回。
3:只考虑在水平方向上流动的流体。
块状油气藏得特点:有限的圈闭面积内相当厚的油藏,考虑纵向上流体的流动和交换;考虑毛管力和重力的作用。
纵向上分为三个区:纯油区,过渡区,纯水区。
过渡区:含束缚水过渡带,油水同生过渡带,残余油过渡带。
多孔介质的特点:孔隙性,渗透性,比表面积大及孔隙结构复杂。
渗透性:多孔介质允许流体通过的能力。
K= ;渗流:流体在多孔介质中的流动。
绝对渗透率:当岩石中的孔隙流体为一项时,岩石允许流体通过的能力。
有效渗透率:当岩石中有两种以上流体存在时,岩石桂其中一相的通过的能力。
相对渗透率:岩石的有效渗透率与绝对渗透率的比值。
比表面积:单位体积岩石所有岩石颗粒的总表面积或孔隙内表面积。
孔隙类型:粒间孔隙,裂缝,溶洞。
多孔介质巨大的比面和复杂的孔隙结构,使得渗流具有阻力大,流动速度慢的特点。
油气层孔隙结构分为:单纯介质(粒间孔隙结构和纯裂缝结构),双重介质(裂缝-孔隙结构和溶洞-孔隙结构),三重介质(大洞或大裂缝和微裂缝、微孔隙共生)。
理想结构模型:将岩石的孔隙空间看成是由一束等直径的微毛细管组成。
修正理想结构模型:变截面弯曲毛细管模型。
重力(动力或阻力),惯性力(阻力),粘滞力(阻力),弹性力(动力),毛管力(动阻力)原始地层压力:油藏开发前流体所受的压力。
供给压力:油藏中存在液源供给区时,在供给边缘上的压力。
井底压力:油井正常工作时,在生产井井底所测得的压力。