高考物理专题 抛体运动与匀速圆周运动
- 格式:docx
- 大小:619.26 KB
- 文档页数:31
抛体复习总结:1、曲线运动的概念及性质:所有物体的运动从轨迹的不同可以分为两大类,即直线运动和曲线运动。
运动轨迹是直线的运动称为直线运动;运动轨迹是曲线的运动称为曲线运动。
2、曲线运动的速度:曲线运动中质点在某一时刻的(或在某一点的瞬时速度方向,就是质点从该时刻(或该点)脱离曲线后自由运动的方向,也就是曲线上这一点的切线方向。
3、曲线运动的性质速度是矢量,速度的变化,不仅指速度大小的变化,也包括速度方向的变化。
物体曲线运动的速度(即轨迹上各点的切线方向)时刻在发生变化,所以曲线运动是一种变速运动,一定具有加速度。
4、物体做曲线运动的条件曲线运动既然是一种变速运动,就一定有加速度,由牛顿第二定律可知,也一定受到合外力的作用。
当运动物体所受合外力的方向跟物体的速度方向在一条直线上(同向或反向)时,物体做直线运动。
这时合外力只改变速度大小,不改变速度的方向,当合外力的方向跟速度方向不在同一直线上时,可将合外力分解到沿着速度方向和垂直于速度方向上,沿着速度方向的分力改变速度大小,垂直于速度方向的分力改变速度的方向,这时物体做曲线运动。
若合外力与速度方向始终垂直,物体就做速度大小不变、方向不断改变的曲线运动。
若合外力为恒力,物体就做匀变速曲线运动。
总之,物体做曲线运动的条件是:物体所受的合外力方向跟它的速度方向不在同一直线上。
(二)运动的合成与分解:1、运动的合成与分解已知分运动的情况求合运动的情况叫运动的合成。
已知合运动的情况求分运动的情况叫运动的分解。
2、分运动与合运动一个物体同时参与两种运动时,这两种运动是分运动,而物体相对地面的实际运动都是合运动。
实际运动的方向就是合运动的方向。
3、合运动与分运动的特征(1)运动的独立性:一个物体同时参与两个(或多个)运动,其中的任何一个运动并不会受其他分运动的干扰,而保持其运动性质不变,这就是运动的独立性原理。
虽然各分运动互不干扰,但是它们共同决定合运动的性质和轨迹。
2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。
平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。
圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。
【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。
专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。
2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。
【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。
高二物理抛体运动的规律试题答案及解析1.自然界中某个量D的变化量,与发生这个变化所用时间的比值,叫做这个量D的变化率。
下列说法正确的是A.若D表示某质点做平抛运动的速度,则是恒定不变的B.若D表示某质点做匀速圆周运动的动量,则是恒定不变的C.若D表示某质点做竖直上抛运动离抛出点的高度,则一定变大。
D.若D表示某质点的动能,则越大,质点所受外力做的总功就越多【答案】A【解析】若D表示某质点做平抛运动的速度,则表示加速度,恒定不变.故A正确;若D表示某质点做匀速圆周运动的动量,则,表示向心力,大小不变,方向不停改变.故B错误;若D表示某质点做竖直上抛运动离抛出点的高度,则表示平均速度,平均速度在减小.故C错误;若D表示某质点的动能,则所受外力的功率,表示做功的快慢,不是做功的多少.故D错误.【考点】平抛运动;竖直上抛运动;圆周运动。
2.如图所示空间的某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果这个区域只有电场,则粒子从B点离开场区;如果这个区域只有磁场,则粒子从D点离开场区;设粒子在上述三种情况下,从A到B点、A到C点和A到D点所用的时间分别是t1、t2和t3,比较t1、t2和t3的大小,则有(粒子重力忽略不计) [ ]A.B.C.D.【答案】C【解析】带电粒子由A点进入这个区域沿直线运动,从C点离开场区,这个过程粒子受到的电场力等于洛伦兹力,水平方向做匀速直线运动,运动时间,如果只有电场,带电粒子从A点射出,做类平抛运动,水平方向匀速直线运动,运动时间:,如果这个区域只有磁场,则这个粒子从D点离开场区,此过程粒子做匀速圆周运动,速度大小不变,方向改变,所以速度的水平分量越来越小,所以运动时间:,所以,故C正确.【考点】带电粒子在复合场、电场、磁场中的运动情况3.(易错卷)如图所示,足够长的斜面上A点,以水平速度v抛出一个小球,不计空气阻力,它落到斜面上所用的时间为t1;若将此球改用2v水平速度抛出,落到斜面上所用时间为t2,则t1:t为:()2A.1 : 1B.1 : 2C.1 : 3D.1 : 4【答案】Bt,竖直方向有【解析】根据平抛运动分运动特点,水平方向x= v,θ为斜面的倾角,所以当初速度增大为原来的2倍时时间也增大为原来的2倍,B对;4.如右图是小球做平抛运动时的一闪光照片,该照片记下平抛小球在运动中的几个位置O、A、B、C,其中O为小球刚作平抛运动时初位置,O D为竖直线,照片的闪光间隔是1/30s,小球的初速度为 m/s(g = 10m/s2图中小方格均为正方形)。
2020-2022年(三年)全国高考物理真题精选——专题4抛体运动与圆周运动一.选择题(共15小题)1.(2022•广东)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P 点等高且相距为L 。
当玩具子弹以水平速度v 从枪口向P 点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t 。
不计空气阻力。
下列关于子弹的说法正确的是( )A .将击中P 点,t 大于L vB .将击中P 点,t 等于L vC .将击中P 点上方,t 大于L vD .将击中P 点下方,t 等于Lv 2.(2021•全国)一迫击炮先后以大小相同的速度发射甲、乙两颗炮弹,炮筒与水平地面间的夹角分别为θ1、θ2(θ1<θ2<90°)。
两炮弹的射程分别为s 1、s 2,所到达的最大高度分别为h 1、h 2,假定空气阻力可以忽略,则( )A .s 1一定大于s 2B .s 1可能等于s 2C .h 1一定大于h 2D .h 1可能等于h 2 3.(2021•江苏)如图所示,A 、B 两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是( )A .A 比B 先落入篮筐B .A 、B 运动的最大高度相同C .A 在最高点的速度比B 在最高点的速度小D .A 、B 上升到某一相同高度时的速度方向相同4.(2021•辽宁)1935年5月,红军为突破“围剿”决定强渡大渡河。
首支共产党员突击队冒着枪林弹雨依托仅有的一条小木船坚决强突。
若河面宽300m ,水流速度3m/s ,木船相对静水速度1m/s ,则突击队渡河所需的最短时间为( )A .75sB .95sC .100sD .300s5.(2020•新课标Ⅱ)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。
若摩托车经过a 点时的动能为E 1,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。
学科教师辅导教案组长审核:一)例题解析1.(2017•武汉模拟)如图是中世纪的不学者依据观察画出的斜向上方抛出的物体的运动轨迹,该轨迹可分为3段,第1段是斜向上方的直线,第2段是圆运动的一部分,第3段是竖直向下的直线.如果空气阻力不可忽略,关于这3段轨迹( )A .第1段轨迹可能正确B .第2段轨迹可能正确C .第3段轨迹可能正确D .3段轨迹不正确二)相关知识点讲解、方法总结基本规律(以斜上抛为例,如图所示)(1)水平方向:v 0x =v 0cos θ,F 合x =0,在最高点,v x =v 0cos θ。
射程x =v 20sin2θg。
(2)竖直方向:v 0y =v 0sin θ,F 合y =mg ,在最高点,v y =0,射高y =v 20sin 2θ2g。
三)巩固练习1.(2017春•普宁市校级期中)地面上足够高处有四个小球,在同一位置同时以相同的速率v 向上、向下、向左、向右抛出四个小球,不计空气阻力,经过1s 时四个小球在空中的位置构成的图形正确的是( )A .B .C.D.2.(2017春•禅城区校级期中)如图是做斜抛运动物体的轨迹,C点是轨迹的最高点,AB是轨迹上等高的两个点.下列叙述中正确的是(不计空气阻力)()A.物体在C点速度为零B.物体在A点速度与物体在B点速度相同C.物体在A点、B点的水平速度均大于物体在C点的速度D.物体在A、B、C各点的加速度都相同考点二:平抛运动一)例题解析1.如图所示,在斜面底端的正上方h处水平抛出一个物体,飞行一段时间后,垂直地撞在倾角为53°的斜面上。
不计空气阻力,sin53°=08,重力加速度为g,可知物体完成这段飞行的时间为()A.B.C.D.条件不足,无法计算2.(2018•新课标Ⅱ卷一模)如图所示,在高尔夫球场上,某人从高出水平地面h的坡顶以速度v0水平击出一球,球落在水平地面上的C点。
已知斜坡AB与水平面的夹角为θ,不计空气阻力。
物理知识点复习提纲(二)(人教版必修2适用)专题四:抛体运动和圆周运动【知识要点】1、运动的合成与分解(A级)(1)运动的合成与分解指的是位移、速度、加速度的合成与分解。
由于它们都是矢量,所以遵循平行四边形定则。
(2)合运动与分运动具有等时性、独立性。
(3)合运动的性质讨论:两个匀速直线运动的合运动一定是匀速直线运动;匀速直线运动和匀变速直线运动的合运动可能是匀变速直线运动或匀变速曲线运动。
2、平抛运动的规律(B级)(1)定义:将物体以一定初速度水平抛出去,物体只在重力作用下的运动叫平抛运动,其轨迹是抛物线的一部分。
(2)平抛运动是匀变速曲线运动,在任何相等的时间内速度变化大小相等,方向相同。
(3 )对平抛运动的处理办法:先进行运动的分解再进行运动的合成。
Vx=V0Vy=gt V= V02+(gt)2,tanθ=Vy/Vx=gt/V0X=V0·t Y=1/2gt2 S= X2+Y2 ,tanα=Y/X= gt/2V0a x =0 a y=g a=0(4)物体做平抛运动的时间由决定;物体做平抛运动的水平射程由和决定。
【例题分析】例1、在高空匀加速水平飞行的飞机上自由释放一物,若空气阻力不计,飞机上人看物体的运动轨迹是( A )A.倾斜的直线B.竖直的直线C.不规则曲线D.抛物线例2、如图所示,在高度分别为h A、h B(h A>h B)两处以v A、v B相向水平抛出A、B两个小物体,不计空气阻力,已知它们的轨迹交于C点,若使A、B两物能在C处相遇,应该是( B) 必须大于v BA。
.vB。
A物必须先抛C。
v B必须大于v AD。
A、B必须同时抛3、匀速圆周运动(A 级)(1)定义:物体做圆周运动,在任意相等的时间内里通过的弧长均相等的运动。
(2)特点:速度大不变,方向时刻在变化,故不是匀变速曲线运动。
(3)描述匀速圆周运动的物理量:线速度:描述质点沿圆弧运动的快慢,V=S/t=2πR/T=R·w角速度:描述质点绕圆心转动的快慢,w=θ/t=2π/T周期:质点绕圆周运动一圈所用时间.国际单位s,T越小,运动越快.T=1/f向心加速度:只改变速度的大小,而不改变速度的方向。
2021高考物理统考版二轮复习学案:专题复习篇专题1 第3讲抛体运动与圆周运动含解析抛体运动与圆周运动[建体系·知关联][析考情·明策略]考情分析近几年高考对本讲的考查集中在平抛运动与圆周运动规律的应用,命题素材多与生产、生活、体育运动学结合,题型以选择题为主.素养呈现1.运动合成与分解思想2。
平抛运动规律3.圆周运动规律及两类模型素养落实1.掌握渡河问题、关联速度问题的处理方法2。
应用平抛运动特点及规律解决相关问题3.掌握圆周运动动力学特点,灵活处理相关问题考点1|曲线运动和运动的合成与分解1.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质。
(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则。
2.渡河问题中分清三种速度(1)合速度:物体的实际运动速度。
(2)船速:船在静水中的速度。
(3)水速:水流动的速度,可能大于船速。
3.端速问题解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解,常见的模型如图所示。
甲乙丙丁[典例1]如图所示的机械装置可以将圆周运动转化为直线上的往复运动.连杆AB、OB可绕图中A、B、O三处的转轴转动,连杆OB在竖直面内的圆周运动可通过连杆AB使滑块在水平横杆上左右滑动。
已知OB杆长为L,绕O点做逆时针方向匀速转动的角速度为ω,当连杆AB与水平方向夹角为α,AB杆与OB杆的夹角为β时,滑块的水平速度大小为()A.错误!B.错误!C.错误!D.错误![题眼点拨]①“连杆OB在竖直平面的圆周运动"表明B点沿切向的线速度是合速度,可沿杆和垂直杆分解.②“滑块在水平横杆上左右滑动”表明合速度沿水平横杆。
D[设滑块的水平速度大小为v,A点的速度的方向沿水平方向,如图将A点的速度分解:滑块沿杆方向的分速度为v A分=v cos α,B点做圆周运动,实际速度是圆周运动的线速度,可以分解为沿杆方向的分速度和垂直于杆方向的分速度,设B的线速度为v′,则v′=Lω,v B=v′·cos θ=v′cos(β-90°)=Lωsin β,又二者沿分杆方向的分速度是相等的,即v A分=v B分,联立解得v=错误!,故本题正确选项为D。
1.(2015·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6hC.L 12g 6h <v <12 (4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h2.(多选)(2015·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max.选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则()图2A.选择路线①,赛车经过的路程最短B.选择路线②,赛车的速率最小C.选择路线③,赛车所用时间最短D.①、②、③三条路线的圆弧上,赛车的向心加速度大小相等3.(2015·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点.已知h=2 m,s= 2 m.取重力加速度大小g=10 m/s2.图3(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.(2015·南通二模)如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向2.(多选)(2015·盐城二模)如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D.tan α与时间t成正比3.(多选)(2015·南昌二模)如图6所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d,杆上的A点与定滑轮等高,杆上的B点在A点下方距离为d处.现将环从A处由静止释放,不计一切摩擦阻力,下列说法正确的是()图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰.(2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等.(4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.(√)(2)变速运动一定是曲线运动.(×)(3)做曲线运动的物体所受的合外力一定是变力.(×)考题二平抛(类平抛)运动的规律4.(2015·镇江模拟)高楼上某层窗口违章抛出一石块,恰好被曝光时间(光线进入相机镜头的时间)为0.2 s的相机拍摄到,图7是石块落地前0.2 s时间内所成的像(照片已经放大且方格化),每个小方格代表的实际长度为1.5 m,忽略空气阻力,g取10 m/s2,则()图7A.石块水平抛出的初速度大小约为225 m/sB.石块将要落地时的速度大小约为7.5 m/sC.图乙中像的反向延长线与楼的交点就是石块抛出的位置D.石块抛出位置离地高度约为28 m5.(2015·武汉四月调研)在水平地面上的O点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是()图8A.甲先到达最大高度处B.乙先到达最大高度处C.乙先到达A点D.甲先到达水平地面6.(2015·赣州模拟)如图9,斜面与水平面之间的夹角为45°,在斜面底端A点正上方高度为10 m处的O点,以5 m/s的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g=10 m/s2)()图9A.2 B.0.5C.1 D. 21.平抛运动规律图10以抛出点为坐标原点,水平初速度v0方向为x轴正方向,竖直向下的方向为y轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.(2015·绵阳三诊)如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零B.球A的速度大小为2gLC.水平转轴对杆的作用力为1.5mgD.水平转轴对杆的作用力为2.5mg8.(2015·哈尔滨第六中学二模)如图12所示,质量为m的竖直光滑圆环A的半径为r,竖直固定在质量为m的木板B上,木板B的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m的小球C.现给小球一水平向右的瞬时速度v0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v0必须满足()图12A.3gr≤v0≤5grB.gr≤v0≤3grC.7gr≤v0≤3grD.5gr≤v0≤7gr9.(2015·淮安三调)如图13所示,光滑杆AB长为L,B端固定一根劲度系数为k、原长为l0的轻弹簧,质量为m的小球套在光滑杆上并与弹簧的上端连接.OO′为过B点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a及小球速度最大时弹簧的压缩量Δl1;(2)当球随杆一起绕OO′轴匀速转动时,弹簧伸长量为Δl2,求匀速转动的角速度ω;(3)若θ=30°,移去弹簧,当杆绕OO′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A时球沿杆方向的速度大小为v0,求小球从开始滑动到离开杆过程中,杆对球所做的功W.1.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型).2.找向心力的来源是解决圆周运动的出发点,学会牛顿第二定律在曲线运动中的应用.3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四抛体运动与圆周运动的综合10.(多选)(2015·揭阳二模)如图14所示,小球沿水平面以初速度v0通过O点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则()图14A.球进入竖直半圆弧轨道后做匀速圆周运动B.若小球能通过半圆弧最高点P,则球在P点受力平衡C.若小球的初速度v0=3gR,则小球一定能通过P点D.若小球恰能通过半圆弧最高点P,则小球落地点到O点的水平距离为2R11.(2015·南京三模)如图15所示,半径可变的四分之一光滑圆弧轨道置于竖直平面内,轻道的末端B处切线水平,现将一小物体从轨道顶端A处由静止释放,若保持圆心的位置不变,改变圆弧轨道的半径(不超过圆心离地的高度).半径越大,小物体()图15A.落地时的速度越大B.平抛的水平位置越大C.到圆弧轨道最低点时加速度越大D.落地时的速度与竖直方向的夹角越大12.(2015·雅安三诊)如图16所示,参加某电视台娱乐节目的选手从较高的平台以v0=8 m/s 的速度从A点水平跃出后,沿B点切线方向进入光滑圆弧轨道,沿轨道滑到C点后离开轨道.已知A、B之间的竖直高度H=1.8 m,圆弧轨道半径R=10 m,选手质量m=50 kg,不计空气阻力,g=10 m/s2,求:图16(1)选手从A点运动到B点的时间及到达B点的速度;(2)选手到达C点时对轨道的压力.曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破:1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口.2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.(多选)(2015·广东六校联考)关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化2.(2015·湖南省十三校第二次联考)如图17所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图17A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC.小船沿轨迹AB运动位移最大、时间最长.速度最小,最小速度v min=a v bD.小船沿轨迹AB运动位移最大、速度最小.则小船的最小速度v min=a va2+b23.(多选)(2015·宜宾二诊)如图18所示,水平光滑长杆上套有一个质量为m A的小物块A,细线跨过O点的轻小光滑定滑轮一端连接A,另一端悬挂质量为m B的小物块B,C为O点正下方杆上一点,定滑轮到杆的距离OC=h.开始时A位于P点,PO与水平方向的夹角为30°.现将A、B同时由静止释放,则下列分析正确的是()图18A.物块B从释放到最低点的过程中,物块A的动能不断增大B.物块A由P点出发第一次到达C点的过程中,物块B的机械能先增大后减小C.PO与水平方向的夹角为45°时,物块A、B速度大小关系是v A=2 2v BD.物块A在运动过程中最大速度为2m B gh m A4.(2015·临汾四校二模)如图19所示,从倾角为θ的足够长的斜面顶端P以速度v0抛出一个小球,落在斜面上某处Q点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v0,小球仍落在斜面上,则以下说法正确的是()图19A.夹角α将变大B.夹角α与初速度大小无关C.小球在空中的运动时间不变D.PQ间距是原来间距的3倍5.(2015·莆田三校模拟)如图20所示,水平地面附近,小球B以初速度v斜向上瞄准另一小球A射出,恰巧在B球射出的同时,A球由静止开始下落,不计空气阻力.则两球在空中运动的过程中()图20A.A做匀变速直线运动,B做变加速曲线运动B.相同时间内B的速度变化一定比A的速度变化大C.两球的动能都随离地竖直高度均匀变化D.A、B两球一定会相碰6.(多选)(2015·洛阳第二次统考)如图21所示,一个质量为0.4 kg的小物块从高h=0.05 m的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O点水平飞出,击中平台右下侧挡板上的P点.现以O为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y=x2-6(单位:m),不计一切摩擦和空气阻力,g=10 m/s2,则下列说法正确的是()图21A.小物块从水平台上O点飞出的速度大小为1 m/sB.小物块从O点运动到P点的时间为1 sC.小物块刚到P点时速度方向与水平方向夹角的正切值等于5D.小物块刚到P点时速度的大小为10 m/s7.(2015·黄山二质检)如图22所示,一根质量不计的轻杆绕水平固定转轴O顺时针匀速转动,另一端固定有一个质量为m的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能()图22A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向8.(多选)(2015·安阳二模)如图23所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图23A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB 9.(2015·辽宁重点中学协作体4月模拟)如图24所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图24(1)若小球通过圆形轨道最高点A时给轨道的压力大小恰为小球的重力大小,求小球在B点的初速度多大?(2)若小球从B点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B点的初速度大小的范围.10.(2015·金丽衢十二校二次联考)如图25所示,半径R=2.5 m的光滑半圆轨道ABC与倾角θ=37°的粗糙斜面轨道DC相切于C点,半圆轨道的直径AC与斜面垂直.质量m=1 kg的小球从A点左上方距A点高h=0.45 m的P点以某一速度v0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D点.已知当地的重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图25(1)小球从P点抛出时的速度大小v0;(2)小球从C点运动到D点过程中摩擦力做的功W;(3)小球从D点返回经过轨道最低点B的压力大小.答案精析专题3 抛体运动与圆周运动真题示例1.D [发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有:3h -h =gt 212① L 12=v 1t 1② 联立①②得v 1=L 14g h 当速度最大时,球斜向右侧台面两个角发射,有(L 22)2+L 21=v 2t 2③ 3h =12gt 22④ 联立③④得v 2=12(4L 21+L 22)g 6h 所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12 (4L 21+L 22)g 6h,选项D 正确.] 2.ACD [赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr 2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.] 3.(1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v b v 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c⑥联立①②④⑤⑥可得v 水平=2103m/s.考题一 运动的合成与分解1.B [人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob 方向即可对甲实施救助.] 2.BD [由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.]3.CD [环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.]考题二 平抛(类平抛)运动的规律4.D [石块水平抛出的初速度大小v 0=x t =1.50.2 m /s =7.5 m/s ,故A 错误;石块将要落地时,由于时间短,可近似看成匀速运动,位移为x =1.5×12+32 m ≈4.74 m ,v =x t =4.740.2m /s=23.7 m/s ,即石块将要落地时的速度大小约为23.7 m/s ,故B 错误;石块在空中为平抛运动,轨迹为一条曲线,不是直线,不能反向延长求石块抛出位置,故C 错误;石块落地前0.2 s 时间内在竖直方向的平均速度v y =Δh t =3×1.50.2m /s =22.5 m/s ,即形成的像中间时刻的瞬时速度,形成的像总时间为0.2 s ,即从开始起经0.1 s 的瞬时速度为22.5 m/s ,可得:石块从抛出点至该点的时间t =v yg=2.25 s ,所以石块从抛出点至形成的像上端所需时间:t 上=(2.25-0.1)s =2.15 s ,对应形成的像上端离抛出点的竖直高度h =12gt 2上=12×10×2.152m ≈23.11 m ,加上形成的像在图片中的竖直高度为4.5 m ,h 总=27.61 m ≈28 m ,故D 正确.]5.C [斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图象可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.]6.A [如图所示,由三角形的边角关系可知,AQ =PQ所以在竖直方向上有,OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s.v y =gt =10 m/s 所以tan θ=v yv 0=2]考题三 圆周运动问题的分析7.C [球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.]8.D [在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有:2mgr +12m v 21=12m v 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12m v 22=12m v 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .] 9.见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有mg sin θ=ma 解得a =g sin θ小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为F N ,水平方向上有F N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有F N cos θ-k Δl 2sin θ-mg =0解得ω=mg sin θ+k Δl 2m (l 0+Δl 2)cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0,此时有mg tan θ=mω20L 0cos θ解得L 0=2L3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2] 根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12m v 20考题四 抛体运动与圆周运动的综合10.CD [不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =m v 2PR得v P =gR , mg ·2R +12m v 2P =12m v 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确.] 11.D [根据动能定理知mgH =12m v 2知总高度不变,末速度大小不变,故A 错误;根据平抛运动规律知H -R =12gt 2,x =v 0t ,mgR =12m v 20,得x =2gR ·2(H -R )g=2R (H -R ),平抛运动的水平位移随R 的增大先增大后减小,故B 错误;到圆弧轨道最低点时加速度a =v 20R =2g ,故加速度大小与R 无关,故C 错误;小物体落地时竖直分速度v y =gt ,设落地速度与水平方向的夹角为θ,有tan θ=gtv 0=g ·2(H -R )g2gR=H -RR,R 越大,落地时的速度与竖直方向的夹角越大,故D 正确.]12.(1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12m v 2C -12m v 2B在C 点:F N C -mg =m v 2CRF N C =1 200 N由牛顿第三定律得,选手对轨道的压力F N C ′=F N C =1 200 N ,方向竖直向下专题综合练1.AD [物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A 正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B 错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C 错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D 正确.]2.D [小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a v a 2+b2,所以C 错误,而D 正确.]3.AD [物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.]4.B [根据tan θ=12gt 2v 0t =gt2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.]5.C [A 球做的是自由落体运动,是匀变速直线运动,B 球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.]6.AB [从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m /s ,D 错误.]7.C [因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F 3的方向,故选C.]8.BC [因为A 、B 两物体的角速度大小相等,根据F n =mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A 错误;对A 、B 整体分析,F f B =2mrω2,对A 分析,有:F f A =mrω2,知盘对B 的摩擦力是B 对A 的摩擦力的2倍,故B 正确;A 所受的静摩擦力方向指向圆心,可知A 有沿半径向外滑动的趋势,B 受到盘的静摩擦力方向指向圆心,有沿半径向外滑动的趋势,故C 正确;对A 、B 整体分析,μB ×2mg =2mrω2B ,解得ωB =μB g r,对A 分析,μA mg =mrω2A ,解得ωA = μA gr,因为B 先滑动,可知B 先达到临界角速度,可知B 的临界角速度较小,即μB <μA ,故D 错误.] 9.(1)2 3 m /s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s。