复数的加减法的几何意义
- 格式:ppt
- 大小:243.00 KB
- 文档页数:3
复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义预习课本P107~108,思考并完成下列问题(1)复数的加法、减法如何进行?复数加法、减法的几何意义如何?(2)复数的加、减法与向量间的加减运算是否相同?1.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i.2.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).3.复数加、减法的几何意义设复数z 1,z 2对应的向量为,,则复数z 1+z 2是以,为邻边的OZ 1――→ OZ 2――→ OZ 1――→ OZ 2――→ 平行四边形的对角线 所对应的复数,z 1-z 2是连接向量与的终点并指向OZ ――→ OZ 1――→ OZ 2――→的向量所对应的复数.OZ 1――→[点睛] 对复数加、减法几何意义的理解它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.1.判断(正确的打“√”,错误的打“×”)(1)复数与向量一一对应.( )(2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( )答案:(1)× (2)× (3)×2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( )A .8i B .6C .6+8iD .6-8i答案:B3.已知复数z 满足z +i -3=3-i ,则z 等于( )A .0B .2iC .6D .6-2i 答案:D4.在复平面内,复数1+i 与1+3i 分别对应向量和,其中O 为坐标原点,OA ――→ OB ――→则||等于( )AB ――→A.B .22C. D .410答案:B复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以Error!解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|=.2[答案] (1)-2-i (2)2复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算. [活学活用]已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.解析:由条件知z 1+z 2=a 2-2a -3+(a 2-1)i ,又z 1+z 2是纯虚数,所以Error!解得a =3.答案:3复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C 分别表示0,3+2i ,-2+4i.求:(1) 表示的复数;AO ――→(2)对角线表示的复数;CA ――→(3)对角线表示的复数.OB ――→[解] (1)因为=,所以表示的复数为-3-2i.AO ――→ -OA ――→ AO ――→(2)因为=-,所以对角线表示的复数为(3+2i)-(-2+4i)=5CA ――→ OA ――→ -OC ――→ CA ――→-2i.(3)因为对角线=+,所以对角线表示的复数为(3+2i)+(-2+OB ――→ OA ――→ OC ――→ OB ――→4i)=1+6i.复数与向量的对应关系的两个关注点(1)复数z =a +b i(a ,b ∈R)是与以原点为起点,Z (a ,b )为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[活学活用] 复平面内三点A ,B ,C ,A 点对应的复数为2+i ,向量对应的复数为1+2i ,BA ――→向量对应的复数为3-i ,求点C 对应的复数.BC ――→解:∵对应的复数为1+2i ,对应的复数为3-i.BA ――→ BC ――→∴=-对应的复数为(3-i)-(1+2i)=2-3i.AC ――→ BC ――→ BA ――→又∵=+,OC ――→ OA ――→ AC ――→∴C 点对应的复数为(2+i)+(2-3i)=4-2i.复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( )A .1 B.12C .2 D.5(2)若复数z 满足|z ++i|≤1,求|z |的最大值和最小值.3[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z1,Z2,Z3,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以点Z 的集合为线段Z1Z2.问题转化为:动点Z 在线段Z1Z2上移动,求|ZZ3|的最小值,因为|Z1Z3|=1.所以|z+i+1|min=1.[答案] A(2)解:如图所示, ||==2.OM ――→(-\r(3))2+(-1)2所以|z |max =2+1=3,|z |min =2-1=1.[一题多变]1.[变条件、变设问]若本例题(2)条件改为已知|z |=1且z ∈C ,求|z -2-2i|(i 为虚数单位)的最小值.解:因为|z |=1且z ∈C ,作图如图:所以|z -2-2i|的几何意义为单位圆上的点M 到复平面上的点P (2,2)的距离,所以|z -2-2i|的最小值为|OP |-1=2-1.22.[变条件]若题(2)中条件不变,求|z -|2+|z -2i|2的最大值和最小值.3解:如图所示,在圆面上任取一点P ,与复数z A =,z B =2i 对应点A ,B 相连,得向3量,,再以,为邻边作平行四边形.PA ――→ PB ――→ PA ――→ PB ――→P 为圆面上任一点,z P =z ,则2||2+2||2=||2+(2||)2=7+4||2,(平行四边形四条边的PA ――→ PB ――→ AB ――→ PO ′――→ PO ′――→平方和等于对角线的平方和),所以|z -|2+|z -2i|2=.312(7+4|z -32-i |2)而max =|O ′M |+1=1+,|z -32-i |432min =|O ′M |-1=-1.|z -32-i |432所以|z -|2+|z -2i|2的最大值为27+2,最小值为27-2.34343层级一 学业水平达标1.已知z =11-20i ,则1-2i -z 等于( )A .z -1 B .z +1C .-10+18iD .10-18i解析:选C 1-2i -z =1-2i -(11-20i)=-10+18i.2.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-4解析:选B z =1-(3-4i)=-2+4i ,故选B.3.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B z =z 2-z 1=(1+2i)-(2+i)=-1+i ,实部小于零,虚部大于零,故位于第二象限.4.若z 1=2+i ,z 2=3+a i(a ∈R),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1解析:选D z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.5.设向量,,对应的复数分别为z 1,z 2,z 3,那么( )OP ――→ PQ ――→ OQ ――→A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0解析:选D ∵+=,∴z 1+z 2=z 3,即z 1+z 2-z 3=0.OP ――→ PQ ――→ OQ ――→6.已知x ∈R ,y ∈R ,(x i +x )+(y i +4)=(y -i)-(1-3x i),则x =__________,y =__________.解析:x +4+(x +y )i =(y -1)+(3x -1)i∴Error!解得Error!答案:6 117.计算|(3-i)+(-1+2i)-(-1-3i)|=________.解析:|(3-i)+(-1+2i)-(-1-3i)|=|(2+i)-(-1-3i)|=|3+4i|= =5.32+42答案:58.已知z 1=a +(a +1)i ,z 2=-3b +(b +2)i(a ,b ∈R),若z 1-z 2=4,则a +b =3233________.解析:∵z 1-z 2=a +(a +1)i -[-3b +(b +2)i]=+(a -b -1)i =4,323(32a +33b )3由复数相等的条件知Error!解得Error!∴a +b =3.答案:39.计算下列各式.(1)(3-2i)-(10-5i)+(2+17i);(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 015-2 016i).解:(1)原式=(3-10+2)+(-2+5+17)i =-5+20i.(2)原式=(1-2+3-4+…+2 013-2 014+2 015)+(-2+3-4+5-…-2 014+2 015-2 016)i =1 008-1 009i.10.设z 1=x +2i ,z 2=3-y i(x ,y ∈R),且z 1+z 2=5-6i ,求z 1-z 2.解:∵z 1=x +2i ,z 2=3-y i ,∴z 1+z 2=x +3+(2-y )i =5-6i ,∴Error!解得Error!∴z 1=2+2i ,z 2=3-8i ,∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.层级二 应试能力达标1.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( )A .0 B .1C. D.2212解析:选C 由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离即为.222.复平面内两点Z 1和Z 2分别对应于复数3+4i 和5-2i ,那么向量对应的复数Z 1Z 2――→为( )A .3+4iB .5-2iC .-2+6iD .2-6i解析:选D =-,即终点的复数减去起点的复数,∴(5-2i)-(3+Z 1Z 2――→ OZ 2――→ OZ 1――→4i)=2-6i.3.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )A .外心B .内心C .重心D .垂心解析:选A 由复数模及复数减法运算的几何意义,结合条件可知复数z 的对应点P 到△ABC 的顶点A ,B ,C 距离相等,∴P 为△ABC 的外心.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量,对应OA ――→ OB ――→的复数分别是3+i ,-1+3i ,则对应的复数是( )CD ――→A .2+4iB .-2+4iC .-4+2iD .4-2i解析:选D 依题意有==-.而(3+i)-(-1+3i)=4-2i ,故CD ――→ BA ――→ OA ――→ OB ――→对应的复数为4-2i ,故选D.CD ――→5.设复数z 满足z +|z |=2+i ,则z =________.解析:设z =x +y i(x ,y ∈R),则|z |= .x 2+y 2∴x +y i +=2+i.x 2+y 2∴Error!解得Error!∴z =+i.34答案:+i 346.在复平面内,O 是原点,,,对应的复数分别为-2+i,3+2i,1+5i ,OA ――→ OC ――→ AB ――→那么对应的复数为________.BC ――→解析:=-=-(+)=3+2i -(-2+i +1+5i)=BC ――→ OC ――→ OB ――→ OC ――→ OA ――→ AB ――→(3+2-1)+(2-1-5)i =4-4i.答案:4-4i7.在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求向量,,对应的复数;AB ――→ AC ――→ BC ――→(2)判断△ABC 的形状.(3)求△ABC 的面积.解:(1)对应的复数为2+i -1=1+i ,AB ――→对应的复数为-1+2i -(2+i)=-3+i ,BC ――→对应的复数为-1+2i -1=-2+2i.AC ――→(2)∵||=,||=,||==2,AB ――→ 2BC ――→ 10AC ――→82∴||2+||2=||2,∴△ABC 为直角三角形.AB ――→ AC ――→ BC ――→(3)S △ABC =××2=2.12228.设z =a +b i(a ,b ∈R),且4(a +b i)+2(a -b i)=3+i ,又ω=sin θ-icos θ,求z 3的值和|z -ω|的取值范围.解:∵4(a +b i)+2(a -b i)=3+i ,∴6a +2b i =3+i ,33∴Error!∴Error!∴z =+i ,3212∴z -ω=-(sin θ-icos θ)(32+12i )=+i (32-sin θ)(12+cos θ)∴|z -ω|=(32-sin θ)2+(12+cos θ)2= 2-3sin θ+cos θ= = ,2-2(32sin θ-12cos θ)2-2sin (θ-π6)∵-1≤sin ≤1,(θ-π6)∴0≤2-2sin ≤4,∴0≤|z -ω|≤2,(θ-π6)故所求得z =+i ,|z -ω|的取值范围是[0,2].3212。
复数运算的几何意义解读复数是由实数和虚数构成的数学概念,具有实部和虚部两个部分。
在复平面中,复数可以表示为一个有序数对(a,b),其中a为实部,b为虚部。
复数运算的几何意义可以通过复平面的几何解释来理解。
首先,复数可以用来表示平面上的点。
复平面以实轴为x轴,以虚轴为y轴,每个复数可以对应平面上的一个点。
实部表示该点在x轴上的位置,虚部表示该点在y轴上的位置。
例如,复数z=3+4i表示平面上的一个点,该点在x轴上的位置是3,在y轴上的位置是4加法运算是复数运算中的一种基本操作。
两个复数相加得到的结果是一个新的复数,其实部等于两个复数的实部之和,虚部等于两个复数的虚部之和。
在几何上,两个复数的加法可以理解为将两个平面上的点进行向量相加,得到一个新的点。
减法运算也是复数运算中的一种基本操作。
两个复数相减得到的结果是一个新的复数,其实部等于第一个复数的实部减去第二个复数的实部,虚部等于第一个复数的虚部减去第二个复数的虚部。
在几何上,两个复数的减法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
乘法运算是复数运算中的另一种基本操作。
两个复数相乘得到的结果是一个新的复数,其实部等于两个复数的实部的乘积减去两个复数的虚部的乘积,虚部等于第一个复数的实部与第二个复数的虚部之积加上第一个复数的虚部与第二个复数的实部之积。
在几何上,两个复数的乘法可以理解为将两个平面上的点进行相乘得到一个新的点。
除法运算是复数运算中的一种特殊操作。
两个复数相除得到的结果是一个新的复数,其实部等于两个复数相乘的实部之和除以两个复数相乘的模的平方,虚部等于两个复数相乘的虚部之差除以两个复数相乘的模的平方。
在几何上,两个复数的除法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
复数的模是复数到原点的距离,可以用勾股定理计算。
复数的模平方等于复数实部的平方加上虚部的平方。
复数运算的常用规律和几何意义复数是由实数和虚数构成的数。
每个复数可以表示为 a + bi 的形式,其中 a 是实数部分,b 是虚数部分,i 是虚数单位,满足i² = -1常用规律:1.实部与虚部的加法和减法:- (a + bi) + (c + di) = (a + c) + (b + d)i- (a + bi) - (c + di) = (a - c) + (b - d)i2.实数与复数的乘法和除法:- (a + bi) * c = ac + bci- (a + bi) / c = (a/c) + (b/c)i (当c ≠ 0)3.复数的共轭:复数 a + bi 的共轭是 a - bi,即将虚数部分取相反数。
4.复数的乘法和除法:- (a + bi) * (c + di) = (ac - bd) + (ad + bc)i- (a + bi) / (c + di) = [(a + bi) * (c - di)] / (c² + d²) = [(ac + bd) + (bc - ad)i] / (c² + d²) (当c² + d² ≠ 0)几何意义:复数可以用来表示平面上的点。
实部代表点在x轴上的位置,虚部代表点在y轴上的位置。
1.加法和减法:复数的加法和减法可以看作是平面上的点的运算。
例如,(a + bi) + (c + di) 可以看作是将第二个点 (c, d) 平移后放置在第一个点 (a, b) 的位置上。
2.乘法:复数的乘法可以用来进行旋转和缩放。
例如,复数 (a + bi) * (c + di) 可以看作是将向量 (a,b) 绕原点旋转角度 angle,并将长度乘以,c + di。
3.共轭:复数的共轭可以用来表示点关于 x 轴的对称点。
例如,复数 a + bi 的共轭 a - bi 可以看作是将点 (a, b) 关于 x 轴翻转。
复数的加减法及其几何意义一、复数的加减法1. 复数的定义- 设z = a+bi,其中a,b∈ R,a称为复数z的实部,记作Re(z)=a;b称为复数z的虚部,记作Im(z) = b。
- 例如,z = 3 + 2i,实部a = 3,虚部b=2。
2. 复数的加法法则- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,则z_{1}+z_{2}=(a_{1}+a_{2})+(b_{1}+b_{2})i。
- 例如,若z_{1}=2 + 3i,z_{2}=1 - 2i,则z_{1}+z_{2}=(2 + 1)+(3-2)i=3 + i。
3. 复数的减法法则- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,则z_{1}-z_{2}=(a_{1}-a_{2})+(b_{1}-b_{2})i。
- 例如,若z_{1}=4+5i,z_{2}=2 + 3i,则z_{1}-z_{2}=(4 - 2)+(5 -3)i=2+2i。
二、复数加减法的几何意义1. 复数的几何表示- 在复平面内,复数z = a+bi可以用点Z(a,b)来表示,也可以用向量→OZ来表示,其中O为坐标原点。
- 例如,复数z = 3+2i对应的点为(3,2),对应的向量→OZ,起点为O(0,0),终点为Z(3,2)。
2. 复数加法的几何意义- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,它们对应的向量分别为→OZ_{1}和→OZ_{2}。
- 那么z_{1}+z_{2}对应的向量为→OZ_{1}+→OZ_{2},即平行四边形法则:以→OZ_{1}和→OZ_{2}为邻边作平行四边形,则对角线→OZ对应的复数就是z_{1}+z_{2}。
- 例如,z_{1}=2 + i,z_{2}=1+2i,→OZ_{1}=(2,1),→OZ_{2}=(1,2),以→OZ_{1}和→OZ_{2}为邻边的平行四边形的对角线向量→OZ=→OZ_{1}+→OZ_{2}=(3,3),对应的复数z_{1}+z_{2}=3 + 3i。
复数加减运算的几何意义“同学们,今天咱们来好好探讨一下复数加减运算的几何意义。
”我站在讲台上对学生们说道。
复数加减运算的几何意义可是非常有趣且重要的。
大家都知道复数可以用平面上的点来表示,对吧?比如一个复数 a+bi,就可以对应平面直角坐标系中的一个点(a,b)。
那复数的加减运算在几何上是怎么体现的呢?我们来看个例子。
比如说有两个复数 z1=3+2i 和 z2=1-i,它们在平面上就分别对应点(3,2)和(1,-1)。
当我们做 z1+z2 的时候,就是把它们对应的点的坐标相加,得到(3+1,2+(-1)),也就是(4,1),这就是 z1+z2 对应的点。
从几何意义上看,就相当于把 z1 对应的向量平移到 z2 对应的点上,得到的终点就是 z1+z2 对应的点。
再比如,我们来看复数的减法。
有两个复数 z3=5+3i 和 z4=2+i,它们分别对应点(5,3)和(2,1)。
那么 z3-z4 就等于(5-2,3-1),也就是(3,2)。
从几何上看,这就相当于从 z3 对应的点向 z4 对应的点引一个向量,这个向量的终点坐标就是 z3-z4 对应的点。
给大家讲个实际应用的例子吧。
在通信领域中,信号常常可以用复数来表示。
当我们对这些信号进行处理时,复数的加减运算就有着重要的作用。
比如在信号的传输和接收过程中,需要对不同的信号进行合成或分离,这时候就涉及到复数的加减运算。
通过理解复数加减运算的几何意义,我们可以更好地分析和处理这些信号,以保证通信的质量和准确性。
同学们,复数加减运算的几何意义不仅仅是理论上的知识,它在很多实际问题中都有着广泛的应用。
大家一定要好好理解和掌握,这样才能在以后的学习和工作中更好地运用它。
大家都听明白了吗?如果还有疑问,随时提出来,我们一起探讨。
复数的基本运算及几何意义复数是由实部和虚部构成的数,可以用公式表示为 z = a + bi,其中a 是实部,b 是虚部,i 是虚数单位。
一、复数的四则运算1. 复数的加法:将实部和虚部分别相加即可。
例如:(2 + 3i) + (4 + 5i) = 6 + 8i2. 复数的减法:将实部和虚部分别相减即可。
例如:(2 + 3i) - (4 + 5i) = -2 - 2i3. 复数的乘法:根据分配律展开运算,注意 i 的平方为 -1。
例如:(2 + 3i) * (4 + 5i) = 8 + 22i - 15 = -7 + 22i4. 复数的除法:将分子乘以分母共轭复数,并进行合并化简。
例如:(2 + 3i) / (4 + 5i) = (2 + 3i) * (4 - 5i) / (4^2 + 5^2) = (8 + 7i) / 41二、复数在平面几何中的意义在平面直角坐标系中,复数可以看作是复平面上的点,实部对应横轴,虚部对应纵轴。
1. 复数的模:复数 z 的模表示为 |z|,是复平面上由原点到对应点的距离。
例如:z = 3 + 4i,则|z| = √(3^2 + 4^2) = 52. 复数的辐角:复数 z 的辐角表示为 arg(z),是复平面上由正实轴到对应位置向量的角度。
例如:z = 2 + 2i,则arg(z) = π/43. 欧拉公式:欧拉公式表示为e^(iθ) = cos(θ) + isin(θ),其中 e 是自然对数的底,i 是虚数单位,θ 是角度。
该公式将三角函数与指数函数联系了起来,是复数运算中的重要工具。
4. 复数的乘法及除法的几何意义:复数的乘法相当于平移、旋转和伸缩,在复平面上实现了几何变换。
复数的除法相当于平移、旋转和收缩,在复平面上实现了逆向几何变换。
综上所述,复数的基本运算包括加法、减法、乘法和除法,可以使用公式进行计算。
在平面几何中,复数可以表示为复平面上的点,模表示距离,辐角表示角度。