等比数列前n项和教案(公开课)
- 格式:doc
- 大小:212.50 KB
- 文档页数:5
等比数列及前n项和教案【篇一:《等比数列的前n项和》教学案例设计】《等比数列的前n项和》教学案例设计一、设计思想1、设计理念本课的教学设计基于“人人都能获得必要得数学”即平等性的考虑,坚持面向全体学生,努力设计“适合学生发展得数学教育”,体现“人人学数学”,“不同的人学不同的数学”的理念。
教学中强调“培养学生情感、态度与价值观”的重要性,注重引导学生主动地进行探索,从而帮助学生树立正确的数学观,但又与教师的设计问题与活动的引导密切结合,强调“活动”的内化,即在头脑中实现必要的重构或认知结构的重组,从而引起真正的数学思维,提高思维的效益。
通过联系学生的生活实际使其真正感到数学是有意义的,一方面培养学生的社会意识,明确肯定“日常数学”的合理性等,另一方面,再调动学生生活经验的同时,又应努力帮助他们清楚地去熟悉生活经验并上升到“学校数学”的必要性。
2、设计背景传统的数学作业单调枯燥,脱离生活和学生实际,不利于学生个性和能力的发展。
在新课程标准的理念下,重新认识作业的意义和价值,突破传统,改变现状,树立正确的作业观,创新作业方式,激发兴趣,发展学生数学素质,既注重基础知识的巩固,更要注重学生思维和能力的发展,既要创新又要保证其科学有效,使学生在做作业的过程中体验快乐、形成能力、学会合作、体验自主。
3、教材的地位与作用本节教材在学生学习过等比数列的概念与性质的基础上,学习等比数列n前项和公式,能用等比数列的前n项和公式解决相关求和问题。
探索公式的推导、体会错位相减法以及分类讨论的思想方法。
本节内容基础知识和基本技能非常重要,涉及的数学思想、方法较为丰富,因此是重点内容之一。
本设计是第一课时的教学内容。
二、学习目标⑴知识与技能掌握等比数列的前n项和公式,能用等比数列的前n项和公式解决相关问题。
⑵过程与方法通过等比数列的前n项和公式的推导过程,体会错位相减法以及分类讨论的思想方法。
⑶情感、态度与价值观通过对等比数列的学习,发展数学应用意识,逐步认识数学的科学价值、应用价值,发展数学的理性思维。
数学《等比数列前n项和》教案教学目标:1.理解等比数列的概念和通项公式;2.掌握等比数列前n项和的公式及推导方法;3.能够运用等比数列前n项和的公式解决相关问题。
教学重点:1.等比数列前n项和的推导方法;2.能够熟练运用等比数列前n项和的公式。
教学难点:1.能够理解等比数列的概念及推导等比数列前n项和的公式;2.能够应用等比数列前n项和的公式解决实际问题。
教学准备:1.教师准备好黑板、白板、粉笔、彩笔等教学工具;2.学生准备好笔、本、计算器等学习工具。
教学过程:一、引入知识点1.教师用一些有趣的图形或数字进行呈现,让学生猜测其规律并推导出通项公式;2.教师再利用上述内容引出等比数列的概念和通项公式。
二、等比数列前n项和1.利用图形、数字等举例,让学生理解等比数列前n项和的概念;2.讲解等比数列前n项和的公式及其推导方法,让学生理解其原理;3.用若干例题让学生掌握等比数列前n项和的计算方法。
三、课堂练习1.组织学生进行单项选择、填空、计算等形式的练习,锻炼学生的逻辑思维能力;2.组织学生进行思考题的讨论,引导他们从多个角度全面理解等比数列前n项和的应用。
四、总结归纳1.教师针对学生的表现进行归纳总结,指出学生易犯的错误及解决方法;2.教师引导学生总结本节课的重点内容及学习经验,促进学生的自我认知和思考能力。
五、作业布置1.针对学生的实际水平和课堂表现,布置适当的作业;2.作业内容包括课后习题、练习题、阅读文献或设计实际问题。
教学反思:1.教师应根据学生的实际情况和学习差异,制定差异化教学策略;2.教师应积极引导学生通过课外阅读、实践探究等方式学习知识点,提高学生的自学能力。
《等比数列的前n项和》教学设计(精选8篇)《等比数列的前n项和》教学设计(精选8篇)作为一名默默奉献的教育工作者,常常要写一份优秀的教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。
教学设计应该怎么写才好呢?下面是小编收集整理的《等比数列的前n项和》教学设计,欢迎阅读,希望大家能够喜欢。
《等比数列的前n项和》教学设计篇1一、教材分析1、从在教材中的地位与作用来看《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和是第一章“数列”第六节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系。
就知识的应用价值上来看,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
2、从学生认知角度来看从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导、不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
3、学情分析教学对象是刚进入高二的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但对问题的分析缺乏深刻性和严谨性。
4、重点、难点教学重点:公式的推导、公式的特点和公式的运用、教学难点:公式的推导方法和公式的灵活运用、公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。
《等比数列的前 n 项和》学历案一、学习目标1、理解等比数列前 n 项和公式的推导过程,掌握等比数列前 n 项和公式。
2、能够运用等比数列前 n 项和公式解决简单的实际问题。
3、体会从特殊到一般、分类讨论、转化与化归等数学思想方法。
二、学习重难点1、重点(1)等比数列前 n 项和公式的推导及应用。
(2)等比数列前 n 项和公式的特点及应用条件。
2、难点(1)错位相减法推导等比数列前 n 项和公式。
(2)对 q = 1 和q ≠ 1 两种情况的讨论及综合应用。
三、知识回顾1、等比数列的定义:如果一个数列从第 2 项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q ≠ 0)。
2、等比数列的通项公式:\(a_n = a_1 q^{n 1}\)(\(n ∈N^\)),其中\(a_1\)为首项,\(q\)为公比。
四、新课导入我们已经知道了等比数列的定义和通项公式,那么如何求等比数列的前 n 项和呢?这就是我们今天要学习的内容。
例如,一个等比数列\(\{ a_n\}\),首项\(a_1 = 1\),公比\(q = 2\),求它的前\(n\)项和\(S_n\)。
五、公式推导1、当\(q = 1\)时,等比数列\(\{ a_n\}\)为常数列,\(a_n = a_1\),则前\(n\)项和\(S_n = na_1\)。
2、当\(q ≠ 1\)时,我们来推导等比数列的前\(n\)项和公式。
设等比数列\(\{ a_n\}\)的首项为\(a_1\),公比为\(q\),前\(n\)项和为\(S_n\)。
\(S_n = a_1 + a_2 + a_3 +… + a_n\)\(S_n = a_1 + a_1q + a_1q^2 +… + a_1q^{n 1}\)①\(qS_n = a_1q + a_1q^2 + a_1q^3 +… + a_1q^n\)②①②得:\\begin{align}S_n qS_n&=a_1 a_1q^n\\(1 q)S_n&=a_1(1 q^n)\\S_n&=\frac{a_1(1 q^n)}{1 q}\end{align}\综上,等比数列的前\(n\)项和公式为:\(S_n =\begin{cases}na_1, & q = 1\\\frac{a_1(1 q^n)}{1 q},&q ≠ 1\end{cases}\)六、公式理解1、当\(q = 1\)时,\(S_n = na_1\),这是一个关于\(n\)的一次函数。
等比数列前n项和教案等比数列是指一个数列中,从第二项开始,每一项与它前面的项的比值都相等的数列。
设等比数列的首项为a1,公比为r,第n项为an,则等比数列可以表示为:a1,a1 * r,a1 *r^2,…,a1 * r^(n-1)。
求等比数列前n项和的公式为:Sn = a1 * (1 - r^n) / (1 - r)。
教案:一、教学目标:通过本课,学生应掌握等比数列前n项和的求法。
二、教学重难点:等比数列前n项和的公式的推导和运用。
三、教学内容:1. 回顾等比数列的概念和公差的定义。
2. 讲解等比数列前n项和的公式的推导过程。
3. 通过例题和练习,巩固学生对等比数列前n项和的计算方法的理解和掌握。
四、教学步骤:1. 导入:复习等比数列的概念和公差的定义。
2. 讲解:介绍等比数列前n项和的公式的推导过程,引导学生理解公式的含义和计算方法。
3. 示例:通过一个具体的例子,演示等比数列前n项和的计算步骤。
4. 练习:提供一些练习题,让学生运用等比数列前n项和的公式进行计算。
5. 总结:归纳等比数列前n项和的公式和计算方法。
6. 拓展:引导学生思考等比数列前n项和的应用场景,如财务计算、增长预测等。
五、板书设计:等比数列前n项和的公式:Sn = a1 * (1 - r^n) / (1 - r)六、教学反思:通过本课的教学,学生能够掌握等比数列前n项和的计算方法。
通过示例和练习,学生能够灵活运用公式解题。
在教学中,可以结合实际生活中的问题,引导学生思考并应用等比数列前n项和的概念和公式,提高学生的问题解决能力。
《等比数列的前n项和》(第一课时)教学设计第一课时:等比数列的前n项和一、教学目标1. 知识与技能:掌握等比数列的概念和性质,了解等比数列的通项公式以及前n项和的计算方法。
2. 过程与方法:通过案例分析和实例演练,引导学生建立等比数列的基本概念和计算方法。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生的解决问题的能力和思维逻辑能力。
三、教学准备1. 教学内容:等比数列的前n项和。
2. 教学资源:教材、教学课件、实例题材。
3. 教学环境:教室、黑板、投影仪。
4. 学生准备:学生需提前预习并准备好相关课文和课后习题。
四、教学过程1.导入(5分钟)教师可通过引入等比数列的概念及应用案例,引起学生的兴趣,激发学生的求知欲。
2.呈现(15分钟)教师通过教学课件或实例题材,讲解等比数列的概念,并引出等比数列的通项公式和前n项和的计算方法。
重点讲解等比数列前n项和的计算公式,并通过实例进行讲解和演练。
4.练习与讨论(15分钟)教师布置相关练习题,要求学生在课后完成,并组织学生进行解题讨论。
通过练习和讨论,巩固学生所学知识,加深对等比数列前n项和的理解。
5. 拓展与应用(10分钟)教师通过拓展性问题或应用案例,引导学生将所学知识应用于实际问题中,培养学生的数学建模能力。
五、课堂小结(5分钟)教师对本节课的重点知识进行归纳和总结,澄清学生的疑问,为下节课的学习做好铺垫。
六、作业布置布置相关练习题,要求学生完成课后练习,巩固所学知识。
七、教学反思通过本节课的教学设计和实施,学生可以系统地学习到等比数列的前n项和的计算方法,培养了学生的数学思维能力和解决问题的能力。
通过实例演练和讨论,学生的学习兴趣得到了激发,课堂氛围良好。
需要改进的地方是在教学过程中,对于学生的个别问题能够给予更多的帮助和引导,以确保每个学生都能够理解和掌握所学知识。
等比数列前n项和公式教案一、教学目标1. 知识与技能:(1)理解等比数列的概念;(2)掌握等比数列前n项和的公式;(3)能够运用等比数列前n项和公式解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等比数列前n项和的特征;(2)引导学生运用类比、推理等方法探索等比数列前n项和的公式;(3)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学知识的兴趣;(2)培养学生勇于探索、积极思考的科学精神;(3)让学生感受数学在生活中的应用,提高学生运用数学解决实际问题的能力。
二、教学内容1. 等比数列的概念:等比数列是一种特殊的数列,从第二项起,每一项都是前一项与一个常数(称为公比)的乘积。
2. 等比数列前n项和的公式:设等比数列的首项为a1,公比为q,则该等比数列前n项和为:Sn = a1 (1 q^n) / (1 q)三、教学重点与难点1. 教学重点:(1)等比数列的概念;(2)等比数列前n项和的公式。
2. 教学难点:(1)等比数列前n项和的公式的推导;(2)公比q不等于1和等于1时的特殊情况处理。
四、教学方法1. 采用问题驱动法,引导学生观察、分析等比数列前n项和的特征;2. 运用类比、推理等方法,让学生探索等比数列前n项和的公式;3. 通过例题讲解、练习,使学生掌握等比数列前n项和的公式的应用。
五、教学过程1. 导入:(1)回顾等差数列的前n项和公式;(2)引导学生思考等比数列的前n项和是否有类似的公式。
2. 新课讲解:(1)介绍等比数列的概念;(2)引导学生观察等比数列前n项和的特征;(3)引导学生探索等比数列前n项和的公式;(4)讲解公比q不等于1和等于1时的特殊情况。
3. 例题讲解:(1)运用等比数列前n项和公式解决简单问题;(2)引导学生分析、解答典型例题。
4. 课堂练习:(1)布置练习题,让学生巩固等比数列前n项和公式的应用;(2)引导学生互相讨论、交流,解答练习题。
等比数列的前n项和教学设计等比数列的前n项和教学设计篇1一、教材分析:等比数列的前n项和是高中数学必修五其次章第3.3节的内容。
它是“等差数列的前n项和”与“等比数列”内容的连续。
这局部内容授课时间2课时,本节课作为第一课时,重在讨论等比数列的前n项和公式的推导及简洁应用,教学中注意公式的形成推导过程并充分提醒公式的构造特征和内在联系。
意在培育学生类比分析、分类争论、归纳推理、演绎推理等数学思想。
在高考中占有重要地位。
二、教学目标依据上述教学内容的地位和作用,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:1.学问与技能:理解等比数列的前n项和公式的推导方法;把握等比数列的前n项和公式并能运用公式解决一些简洁问题。
2.过程与方法:通过公式的推导过程,提高学生的建模意识及探究问题、类比分析与解决问题的力量,培育学生从特别到一般的思维方法,渗透方程思想、分类争论思想及转化思想,优化思维品质。
3.情感与态度:通过自主探究,合作沟通,激发学生的求知欲,体验探究的艰辛,体会胜利的喜悦,感受思维的奇异美、构造的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点重点:等比数列的前项和公式的推导及其简洁应用。
难点:等比数列的前项和公式的推导。
重难点确定的依据:从教材体系来看,它为后继学习供应了学问根底,具有承上启下的作用;从学问本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进展,它需要对等比数列的概念和性质能充分理解并融会贯穿;从学生认知水平来看,学生的探究力量和用数学语言沟通的力量还有待提高。
四、教法学法分析通过创设问题情境,组织学生争论,让学生在尝摸索索中不断地发觉问题,以激发学生的求知欲,并在过程中获得自信念和胜利感。
强调学问的严谨性的同时重学问的形成过程,五、教学过程(一)创设情境,引入新知从故事入手:传奇,波斯国王下令要奖赏国际象棋的创造者,创造者对国王说,在棋盘的第一格内放上一粒麦子,在其次格内放两粒麦子,第三格内放4粒,第四格内放8米,……按这样的规律放满64格棋盘格。
等比数列的前n项和教案等比数列的前n项和教案1教学准备教学目标熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练1、某种细菌在培养过程中,每20分钟__一次一个__为两个,经过3小时,这种细菌由1个可繁殖成A、511B、512C、1023D、10242、若一工厂的生产总值的月平均增长率为p,则年平均增长率为A、B、C、D、二、典型例题例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的`利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?评析:此例来自一种常见的存款叫做零存整取。
存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。
计算本利和就是本例所用的有穷等差数列求和的方法。
用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]例2:某人从1999到20__年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20__年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20__年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。