秘籍08统计与概率(原卷版)
- 格式:docx
- 大小:2.04 MB
- 文档页数:15
专题8统计与概率压轴小题一、单选题 1.(2021·全国·高三专题练习)已知数列{a n }满足a 1=0,且对任意n ∈N*,a n +1等概率地取a n +1或a n ﹣1,设a n 的值为随机变量ξn ,则( ) A .P (ξ3=2)=12B .E (ξ3)=1C .P (ξ5=0)<P (ξ5=2)D .P (ξ5=0)<P (ξ3=0)2.(2021·重庆市蜀都中学校高三月考)已知202123202101232021(1)x a a x a x a x a x +=+++++,则20202019201820171023420202021a a a a a a ++++++=( )A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯3.(2021·江苏省苏州中学园区校高三月考)已知*,,x y z N ∈,且10x y z ++=,记随机变量ξ为x ,y ,z 中的最大值,则()E ξ=( ) A .103B .143C .5D .1734.(2021·湖南省岳阳县第一中学高三开学考试)如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是( )A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为125.(2021·全国·高三专题练习(理))定义数列{}n a 如下:存在k *∈N ,满足1k k a a +<,且存在s N *∈,满足1s s a a +>,已知数列{}n a 共4项,若{}()1,2,3,,4,,i a t x y z i =∈且t x y z <<<,则数列{}n a 共有( )A .190个B .214个C .228个D .252个6.(2021·山东·模拟预测)为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为( ) A .34B .23C .56D .127.(2021·全国·高三专题练习)已知62a x x ⎛⎫+ ⎪⎝⎭展开式的常数项的取值范围为[]135,240,且()2ln 2x a x a x++≥恒成立.则a 的取值范围为( ) A .[][]4,33,4-- B .[][]4,13,4--C .[]1,4D .[]4,3--8.(2021·河南·高三月考(理))2020年疫情期间,某县中心医院分三批共派出6位年龄互不相同的医务人员支援武汉六个不同的方舱医院,每个方舱医院分配一人.第一批派出一名医务人员的年龄为1P ,第二批派出两名医务人员的年龄最大者为2P ,第三批派出三名医务人员的年龄最大者为3P ,则满足123P P P <<的分配方案的概率为( ) A .13B .23C .120 D .349.(2021·全国·高三专题练习(理))已知有5个不同的小球,现将这5个球全部放入到标有编号1、2、3、4、5的五个盒子中,若装有小球的盒子的编号之和恰为11,则不同的放球方法种数为( ) A .150B .240C .390D .144010.(2021·河北·衡水第一中学高三月考(理))甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n 次由甲掷的概率为n P ,则10P 的值为( )A .5111024B .12C .5131024D .25751211.(2021·全国·高三专题练习)某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同,当横向速度不为零时,反射光相对探测光会发生频移2sin p f νϕλ=,其中v 为测速仪测得被测物体的横向速度,λ为激光波长,ϕ为两束探测光线夹角的一半,如图,若激光测速仪安装在距离高铁1m 处,发出的激光波长为1500nm (91nm 10m -=),某次检验中可测频移范围为99.50010⨯(1/h )至910.00010⨯(1/h ),该高铁以运行速度(337.5km /h 至375km /h )经过时,可测量的概率为( )A .12B .13C .23D .5612.(2021·河南南阳·高三期末(理))众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形224x y +=.其中黑色阴影区域在y 轴右侧部分的边界为一个半圆,给出以下命题: ①在太极图中随机取一点,此点取自黑色阴影部分的概率是12; ②当32a =-时,直线2y ax a =+与白色部分有公共点;③黑色阴影部分(包括黑白交界处)中一点(),x y ,则x y +1;④若点()0,1P ,MN 为圆224x y +=过点P 的直径,线段AB 是圆224x y +=所有过点P 的弦中最短的弦,则()AM BN AB -⋅的值为12.其中所有正确结论的序号是( )A .①③B .③④C .①③④D .①②④二、多选题 13.(2021·湖南·永州市第四中学高三月考)某人投了100次篮,设投完前n 次的命中率为m r .其中1,2n =,….100.已知11000,0.85r r ==,则一定存在0100m <<使得( )A .0.5m r =B .0.6m r =C .0.7m r =D .0.8m r =14.(2021·辽宁实验中学二模)十七世纪至十八世纪的德国数学家莱布尼兹是世界上第一个提出二进制记数法的人,用二进制记数只需数字0和1,对于整数可理解为逢二进,例如:自然数1在二进制中就表示为1,2表示为10,3表示为11,7表示为111,即n +∈N ,11011222k k k k n a a a a --=⋅+⋅++⋅+,其中01a =,0i a =或()11,2,,i k =,记()I n 为上述表示中0的个数,如()21I =,()70I =.则下列说法中正确的是( ).A .()()1218I I <B .()()()22211,2k kI I k k +---=∈≥NC .()()()222I k I k k +=+∈ND .1到127这些自然数的二进制表示中()2I n =的自然数有35个15.(2021·全国·高三专题练习)甲、乙两人进行围棋比赛,共比赛()*2n n N ∈局,且每局甲获胜的概率和乙获胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为()P n ,则( ) A .1(2)8P =B .11(3)32P =C .221()122n nn C P n ⎛⎫=- ⎪⎝⎭D .()P n 的最大值为1416.(2021·江苏南通·一模)在庆祝教师节联欢活动中,部分教职员工参加了学校工会组织的趣味游戏比赛,其中定点投篮游戏的比赛规则如下:①每人可投篮七次,每成功一次记1分;②若连续两次投篮成功加0.5分,连续三次投篮成功加1分,连续四次投篮成功加1.5分,以此类推,连续七次投篮成功加3分,假设某教师每次投篮成功的概率为23,且各次投篮之间相互独立,则下列说法中正确的有( ) A .该教师恰好三次投篮成功且连续的概率为37523⨯B .该教师恰好三次投篮成功的概率为373523⨯C .该教师在比赛中恰好得4分的概率为37523⨯D .该教师在比赛中恰好得5分的概率为552317.(2021·江苏·南京师大附中模拟预测)将2n (n ∈N *)个有编号的球随机放入2个不同的盒子中,已知每个球放入这2个盒子的可能性相同,且每个盒子容纳球数不限记2个盒子中最少的球数为X (0≤X ≤n ,X ∈N *),则下列说法中正确的有( ) A .当n =1时,方差1()4D X = B .当n =2时,3(1)8P X ==C .3n ∀≥,*0,) [(,)n k n N k ∃∈∈,使得P (X =k )>P (X =k +1)成立D .当n 确定时,期望222(2)()2n nn nn C E X -=18.(2021·全国全国·模拟预测)以人工智能、量子信息等颠覆性技术为引领的前沿趋势,将重塑世界工程科技的发展模式,对人类生产力的创新提升意义重大.某公司抓住机遇,成立了甲、乙、丙三个科研小组针对某技术难题同时进行科研攻关,攻克该技术难题的小组都会受到奖励.已知甲、乙、丙三个小组攻克该技术难题的高绿分别为12,12,23,且三个小组各自独立进行科研攻关,则下列说法正确的是( )A .甲、乙、丙三个小组均受到奖励的概率为16B .只有甲小组受到奖励的概率为12C .受到奖励的小组数的期望值等于32D .该技术难题被攻克,且只有丙小组受到奖励的概率为21119.(2021·广东实验中学高三月考)随着高三毕业日期的逐渐临近,有n (2n ≥)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则( )A .当4n =时,每个人抽到的卡片都不是自己的概率为38B .当5n =时,恰有一人抽到自己的卡片的概率为340C .甲和乙恰好互换了卡片的概率为111n n-- D .记n 个同学都拿到其他同学的卡片的抽法数为n a ,则*21(1)(),n n n a n a a n N ++=++∈20.(2021·辽宁·模拟预测)某中学为提升学生劳动意识和社会实践能力,利用周末进社区义务劳动,高三一共6个班,其中只有1班有2个劳动模范,本次义务劳动一共20个名额,劳动模范必须参加并不占名额,每个班都必须有人参加,则下列说法正确的是( ) A .若1班不再分配名额,则共有420C 种分配方法B .若1班有除劳动模范之外学生参加,则共有519C 种分配方法 C .若每个班至少3人参加,则共有90种分配方法 D .若每个班至少3人参加,则共有126种分配方法21.(2021·江苏盐城·二模)已知*n N ∈,2,1,n p q ≥+=设()22k k n kn f k C p q-=,其中,2,k N k n ∈≤则( ) A .()201nk f k ==∑B .()202nk kf k npq ==∑C .若4np =,则()()8f k f ≤D .()()0112212nnk k f k f k ==<<-∑∑22.(2021·山东聊城·高三期末)已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出--球,然后再放回去,依次类推,第1k +次从与第k 次取出的球颜色相同的箱子内取出--球,然后:再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是( ) A .21732P =B .117232n n P P +=+ C .()2112212n n n n n n P P P P P P ++++-=-+ D .对任意的,i j N +∈且1i j n ≤<≤,()()11111141422180n n i j i j n P P --≤<≤⎛⎫⎛⎫--=-- ⎪⎪⎝⎭⎝⎭∑ 23.(2021·山东济南·高三期末)已知红箱内有5个红球、3个球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第1k +次从与第k 次取出的球颜色相同的箱箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是( ) A .21732P =B .117232n n P P +=+ C .()2112212n n n n n n P P P P P P ++++-=-+ D .对任意的i 、j N ∈,且1i j n ≤<≤,()()11111141422180n n i j i j n P P --≤<≤⎛⎫⎛⎫--=-- ⎪⎪⎝⎭⎝⎭∑24.(2021·福建·厦门外国语学校模拟预测)下列命题中,正确的命题是( ) A .已知随机变量服从(),B n p ,若()()30,20E X D X ==,则23p = B .已知()()0.34,0.71P BA P B ==,则()0.37P BA =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为()~10,0.8X X B ,,则当8X =时概率最大25.(2021·湖南·雅礼中学高三月考)如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是( )A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有9种C .甲、乙两人在2A 处相遇的概率为81400D .甲、乙两人相遇的概率为41100三、双空题26.(2021·浙江省杭州第二中学高三开学考试)已知()522100121032...x x a a x a x a x -+=++++,则1a =__________,1231023...10a a a a ++++=_____________.27.(2021·浙江·高三月考)设()()23403431212x x a a x a x a x a x -+=++++,则1a =______,234234a a a ++=______.28.(2021·浙江·模拟预测)某盒中有9个大小相同的球,分别标号为1,2,…,9,从盒中任取3个球,则取出的3个球的标号之和能被3整除的概率是______;记ξ为取出的3个球的标号之和被3除的余数,则随机变量ξ的数学期望()E ξ=______.29.(2021·浙江·高三期末)袋子里装有编号分别为“2,3,3,4,4,5”的6个大小、质量相同的小球,小明从袋子中一次任取2个球,若每个球被取到的机会均等,记取出的2个小球编号之和为X ,编号之差的绝对值为Y ,记X Y ξ=+,则()6P ξ==______;()E ξ=_____.四、填空题 30.(2021·上海·模拟预测)设整数数列1a ,2a ,…,10a 满足1013a a =,2852a a a +=,且{}11,2i i i a a a +∈++,1,2,,9i =⋅⋅⋅,则这样的数列的个数为___________.31.(2021·陕西渭南·高三月考(文))如图,将一个大等边三角形分成三个全等三角形与中间的一个小等边三角形,设2DF AF =.若在大等边三角形内任取一点P ,则该点取自小等边三角形内的概率为___________.32.(2021·上海·模拟预测)考察等式:0110r r r r m n m m n m m n m n C C C C C C C ----+++=(*),其中,,n m r *∈N ,r m n ≤<且r n m ≤-.某同学用概率论方法证明等式(*)如下:设一批产品共有n 件,其中m 件是次品,其余为正品.现从中随机取出r 件产品,记事件k A ={取到的r 件产品中恰有k 件次品},则()k r km n mk rnC C P A C --=,0k =,1,2,…,r .显然0A ,1A ,…,r A 为互斥事件,且01r A A A ⋃⋃⋃=Ω(必然事件),因此()()()()0110011r r r m n m m n m m n mr rnC C C C C C P P A P A P A C ----+++=Ω=+++=,所以0110r r r r m n m m n m m n m n C C C C C C C ----+++=,即等式(*)成立.对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:①等式(*)成立,②等式(*)不成立,③证明正确,④证明不正确,试写出所有正确判断的序号___________.33.(2021·浙江金华·三模)如图,用四种不同颜色给图中的A ,B ,C ,D ,E ,F ,G ,H 八个点涂色,要求每个点涂一种颜色,且图中每条线段上的点颜色不同,则不同的涂色方法有___________种.34.(2021·山东淄博·三模)如图,在33⨯的点阵中,依次随机地选出A 、B 、C 三个点,则选出的三点满足0AB AC ⋅<的概率是______.35.(2021·江苏·高三开学考试)格点是指平面直角坐标系中横纵坐标均为整数的点.一格点沿坐标线到原点的最短路程为该点到原点的“格点距离”(如:(2,1)P -,则点P 到原点的格点距离为213+=).格点距离为定值的点的轨迹称为“格点圆”,该定值称为格点圆的半径,而每一条最短路程称为一条半径.当格点半径为6时,格点圆的半径有______条(用数字作答).36.(2021·浙江温州·三模)已知关于x 的方程x a x b x c x d -+-=-+-有且仅有一个实数根,其中互不相同的实数a 、b 、c 、{}1,2,3,4,5,6d ∈,且a b c d -=-,则a 、b 、c 、d 的可能取值共有________种.(请用数字作答)37.(2021·全国·高三专题练习)在生物学研究过程中,常用高倍显微镜观察生物体细胞.已知某研究小组利用高倍显微镜观察某叶片的组织细胞,获得显微镜下局部的叶片细胞图片,如图所示,为了方便研究,现在利用甲、乙等四种不同的试剂对A 、B 、C 、D 、E 、F 这六个细胞进行染色,其中相邻的细胞不能用同种试剂染色,且甲试剂不能对C 细胞染色,则共有______种不同的染色方法(用数字作答).38.(2021·重庆·酉阳土家族苗族自治县第三中学校模拟预测)对一个物理量做n 次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差2~0,n N n ε⎛⎫⎪⎝⎭,为使误差n ε在(0.5,0.5)-的概率不小于0.9545,至少要测量_____次(若()2~,X N μσ,则(||2)0.9545)P X μσ-<=).。
专题11 统计与概率1.(2022·成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56B.60C.63D.722.(2022·自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差3D.众数是143.(2022·泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,344.(2022·德阳)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,55.(2022·广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6B.众数是7C.中位数是11D.方差是86.(2022·乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是()A.14B.13C.23D.347.(2022·乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88B.90C.91D.928.(2022·南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差9.(2022·眉山)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是()A.7.5,7B.7.5,8C.8,7D.8,810.(2022·凉山)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.1011.(2022·自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是____________鱼池(填甲或乙)12.(2022·德阳)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.13.(2022·广元)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.14.(2022·遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是__.15.(2022·南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是________.16.(2022·成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x 的值为_________;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.17.(2022·自贡)为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t ≤<,34t ≤<,45t ≤<,5t ≥分为四个等级,分别用A、B、C、D表示;下图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况,请用画树状图或列表法求这2人均属D等级的概率.18.(2022·泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:a________;(1)m=________,=t≤≤范围的学生有多少人?(2)若该校学生有640人,试估计劳动时间在23t≤≤范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感(3)劳动时间在2.53受,求抽取的2名学生恰好是一名男生和一名女生的概率.19.(2022·德阳)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.20.(2022·广元)为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.21.(2022·遂宁)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如下统计图(部分信息未给出).请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有______人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.22.(2022·乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.越味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;①整理数据并绘制统计图;①收集40名学生对四门课程的选择意向的相关数据:①结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图,假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.23.(2022·南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:a_______________,b=_______________.(1)=(2)扇形统计图中“B”项目所对应的扇形圆心角为_______________度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.24.(2022·眉山)北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:84 93 91 87 94 86 97 100 88 9492 91 82 89 87 92 98 92 93 88整理上面的数据,得到频数分布表和扇形统计图:请根据以上信息,解答下列问题:(1)C 等级的频数为________,B 所对应的扇形圆心角度数为________;(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;(3)已知A 等级中有2名男志愿者,现从A 等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.25.(2022·达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100x ),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:a__________,b=__________,m=__________;(1)上述图表中=(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);x)的学生人数(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95是多少?26.(2022·凉山)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:(1)该班的总人数为人,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.。
2021中考考点必杀500题专练10(统计与概率大题)(30道)1.在中考理化实验操作中,初三某班除两名同学因故外全部参加考试,考试结束后,把得到的成绩(均为整数分,满分10分)进行统计并制成如图1所示的条形统计图和如图2所示的扇形统计图(不完整).(1)m ;(2)若从这些同学中,随机抽取一名整理一下实验器材,求恰好抽到成绩不小于8分同学的概率;(3)若两名同学经过补测,把得到的成绩与原来成绩合并后,发现成绩的中位数发生改变,求这两名同学的成绩和.2.阳光中学为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人周的零花钱数额,并绘制了如下两幅不完整的统计图.请根据以上信息,解答下列问题:(1)随机调查的学生人数是__________,并补全条形统计图;(2)求被调查的学生每人一周零花钱数额的中位数及众数;(3)为捐助贫困山区儿童学习,全校800名学生每人自发地捐出一周的零花钱,请估计全校学生共捐款钱数.3.“垃圾分类,从我做起”,为改善群众生活环境,促进资源循环,提升全民文明素养,垃圾分类已经在全国各地开展.垃圾一般可分为可回收物、厨余垃圾、有害垃圾、其它垃圾四类,我们把以上对应类别的垃圾桶分别依次记为A,B,C,D.甲拿了一袋有害垃圾,乙拿了一袋厨余垃圾,随机扔进并排的4个垃圾桶A,B,C,D.(1)直接写出甲扔对垃圾的概率;(2)请用列表法或画树状图的方法,求出甲、乙两人同时扔对垃圾的概率.4.为了解某校九年级学生的理化实验操作情况,随机抽查40名同学实验操作的得分(满分为10分).根据获取的样本数据,制作了如图的条形统计图和扇形统计图,请根据相关信息解答下列问题.(1)①中的描述应为“6分”,其中m的值为________;扇形①的圆心角的大小是________;(2)这40个样本数据平均数是________,众数是________,中位数是________;(3)若该校九年级共有1280名学生,估计该校理化实验操作得满分的学生有多少人.5.为了解学生掌握垃圾分类知识的情况,我学校举行有关垃圾分类的知识测试活动,现从七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为;7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图所示:七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:请你根据以上提供信息,解答下列问题:(1)上表中a=______,b=______,c=_______;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)我校七、八年级共1100名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?6.九(1)班针对“你最向往的研学目标”的问题对全班学生进行了调查(共提供A、B、C、D四个研学目标,每名学生从中分别选一个目标),并根据调查结果列出统计表绘制扇形统计图.男、女生最向往的研学目标人数统计表根据以上信息解决下列问题:(1)m=;n=;(2)扇形统计图中A所对应扇形的圆心角度数为;(3)从最向往的研学目标为C的4名学生中随机选取2名学生参加竞标演说,求所选取的2名学生中恰好有一名男生、一名女生的概率.7.2020年疫情期间,某校为学生提供四种在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了解学生的需求,对学生进行了“你最喜欢哪种在线学习方式的调查,调查结果制成两幅不完整统计图如图,根据图中信息回答问题:(1)本次调查人数有人,在线答疑所在扇形的圆心角度数是;(2)补全条形统计图;(3)甲、乙两位同学都参加了在线学习,请用画树状图或列表的方法求出两名同学喜欢同一种在线学习方式的概率.8.劳动教育是新时代对教育的新要求,是中国特色社会主义教育制度的重要内容,是全面发展教育体系的重要内容,是大、中、小学必须开展的教育活动.某中学为落实劳动教育,组织八年级学生进行了劳动知识技能竞赛,现随机抽取了部分同学的成绩(百分制),制成如图所示的不完整的统计图表:表一表二根据以上信息回答下列问题.(1)若抽取的学生成绩处在8090x ≤<这一组的数据如下:88;87;81;80;82;88;84;86,根据以上数据填空:a =__________;b =________.(2)在扇形统计图中,表示问卷成绩在90100x ≤≤这一组的扇形圆心角度数为__________.(3)已知该校八年级共有学生500名,若将成绩不少于80分的学生称为“劳动达人”,请你估计该校八年级一共有多少名学生是“劳动达人”.9.某校在第五届全国学生“学宪法 讲宪法”活动中举办了宪法知识竞赛,并从中选取了部分学生的竞赛成绩进行统计(满分100分,成绩均不低于50分),绘制了如下尚不完整的统计图表. 调查结果频数分布表请根据以上信息,回答下列问题:(1)填空:m = ,n = ,本次抽取了 名学生; (2)请补全频数分布直方图;(3)若甲同学的竞赛成绩是所有竞赛成绩的中位数,据此推测他的成绩落在 分数段内;(4)竞赛成绩不低于90分的4名同学中正好有2名男生和2名女生,现准备从中随机选出2名同学参加市里面“学宪法 讲完法”演讲比赛,求正好抽到一男一女的概率.10.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)请你用频数分布直方图.......计算这50个家庭去年的月均用水量的平均数和中位数(各组的实际数据用该组的组中值表示);若该小区有2000个家庭,请你用频数分布直方图.......得到的数据估计该小区月均用水总量;(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量标准应该定为多少?为什么?11.某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育缀炼,每位同学从长跑.签球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为__________;(2)选择长跑训练的人数占全班人数的百分比是__________,该班共有同学___________人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.12.某校为了激发青少年锻炼身体的意识,举办了1分钟跳绳比赛.下列是七年级参赛学生的成绩,绘制成如下的频数分布表与频数分布直方图:请你根据图表提供的信息,解答下列问题(1)直接写出m,n,a,b的值,并补全频数分布直方图;(2)如果130分(含130分)以上为优秀等级,那么这次七年级参赛学生的优秀率是多少?(3)比赛成绩前四名是1名男生和3名女生,若从他们中任选2人参加联校跳绳比赛,试求恰好选中性别不同的概率.13.为了掌握我市中考模拟数学考试卷的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为150分)分为5组(从左到右的顺序).统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级______名学生,并将频数分布直方图补充完整;(2)该年级1500名考生中,考试成绩120分以上(含120分)学生有______名;(3)如果第一组(75~90)中只有一名是女生,第五组(135~150)中只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想.请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.14.为了了解学生掌握垃圾分类知识的情况,增强学生环保意识.某校举行了“垃圾分类,人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为及格)进行整理、描述和分析,下面给出了部分信息:七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:根据以上信息,解答下列问题:(1)在上述表格中:a=,b=,c=;(2)根据上述数据,你认为该校七、八年级中哪个年级的学生掌握垃圾分类知识的情况较好?请说明理由(写出一条理由即可);(3)该校德育处从八年级测试成绩前四名甲、乙、丙、丁学生中,随机抽取2名学生参加全市现场垃圾分类知识竞赛,请用列表法或画树状图法求出必有甲同学参加比赛的概率.15.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A,B,C,D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=_______,n=______;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.16.2020年3月,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称中央《意见》),就加强大中小学劳动教育进行了系统设计和全面部署.2020年11月,中共云南省委、云南省人民政府全面对照落实中央《意见》精神,结合云南实际,印发了《关于全面加强新时代大中小学劳动教育的实施意见》(以下简称《实施意见》),《实施意见》要求各地各校组织学生广泛开展劳动教育实践活动.昆明甲、乙两校想从下面四个劳动实践基地中任选一个,地点如下:A:澄江抚仙湖仙湖农场劳动实践教育基地;B:富民半山耕云劳动实践教育基地;C:石林杏林大观园中医药文化研学实践教育基地;D:石林锦苑花卉鲜花种植劳动实践教育基地.(1)求甲校选择到澄江抚仙湖仙湖农场劳动实践教育基地的概率;(2)甲、乙两校决定通过抽签的方式确定本次开展劳动教育实践活动的目的地,请你用树状图或列表的方法求出两所学校到同一地点开展劳动教育实践活动的概率.17.《生物多样性公约》第十五次缔约方大会(COP15)重新确定于2021年5月17日至30日在云南省昆明市举办.“生物多样性”的目标、方法和全球通力合作,将成为国际范围的热点关注内容.为广泛宣传云南生物多样性,某校组织七、八年级各200名学生对《云南的生物多样性》白皮书相关知识进行学习并组织定时测试.现分别在七、八两个年级中各随机抽取了10名学生,统计这部分学生的竞赛成绩,相关数据统计、整理如下:(收集数据)七年级10名同学测试成绩统计如下:72,84,72,91,79,69,78,85,75,95八年级10名同学测试成绩统计如下:85,72,92,84,80,74,75,80,76,82(整理数据)两组数据各分数段,如下表所示:(分析数据)两组数据的平均数、中位数、众数、方差如下表:(问题解决)根据以上信息,解答下列问题:(1)填空:a =________,b =________,c =________; (2)计算八年级同学测试成绩的方差是:()()()()()()()()(2222222221=80858072809280848080807480758080810S ⎡⨯-+-+-+-+-+-+-+-+⎣八年级请你求出七年级同学成绩的方差,试估计哪个年级的竞赛成绩更整齐?(3)按照比赛规定90分及其以上算优秀,请估计这两个年级竞赛成绩达到优秀学生的人数共有多少人? (4)根据以上数据,你认为该校七、八年级中哪个年级学生知识竞赛成绩更好?请说明理由(写出一条理由即可).18.从2020年安徽省体育中考方案了解到男生1500米是必测项目,为了解某校九年级男生1500米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a = ,b = ;(2)扇形统计图中表示C 等次的扇形所对的圆心角的度数为 度;(3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1500米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.19.某校设有体育选修课,每位同学必须从羽毛球、篮球、乒乓球、排球、足球五项球类运动中选择一项且只能选择一项球类运动,在该校学生中随机抽取10%的学生进行调查,根据调查结果绘制成如图所示的尚不完整的频数分布表和扇形统计图.请根据以上图、表信息解答下列问题:(1)频数分布表中的a=,b=;(2)补全扇形统计图;(3)排球所在的扇形的圆心角为度;(4)全校有多少名学生选择参加乒乓球运动?20.某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与“2020年新冠病毒防护知识”在线问答.社区管理员随机从甲、乙两个小区各抽取20名居民的答卷成绩,并对他们的成绩(单位:分)进行统计、分析如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90整理数据:分析数据:应用数据:(1)填空:a = ,b = ,c = ,d = ; (2)求扇形统计图中圆心角α的度数;(3)若甲小区共有1200人参与答卷,请估计甲小区成绩在90分以上的人数.21.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为1A 级、2A 级、3A 级,其中1A 级最好,3A 级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级. 两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱. (1)三箱油桃出现的先后顺序共有哪几种不同的可能? (2)孙明与王军,谁买到1A 级的可能性大?为什么?22.某校为了解学生安全意识强弱,在全校范围内随机抽取了部分学生进行问卷调查.将调查结果汇总分析,并绘制成如下两幅尚不完整的统计图. 根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)求扇形统计图中,“较强”层次所占扇形的圆心角度数;(3)若该校有1900名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要接受强化安全教育的学生人数.23.目前微信、支付宝、共享单车、和网购给我们的生活带来很多便利,初二数学小组在校内对你最认可的四大新生事物进行调查,随机调查了m人,(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图(1)根据图中信息求出m=__________;n=_______________;(2)请把图中的条形统计图补充完整;(3)根据抽样调查结果,请估算全1800名学生中,大约有多少人最认可微信和支付宝这两样新生事物?24.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题: (1)m = ,n= ; (2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是 ;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有 名.25.病毒虽无情,人间有大爱.2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(不完整)和扇形统计图如下:(数据分成6组:100500x ≤<,500900x ≤<,9001300x ≤<,13001700x ≤<,17002100x ≤<,21002500x ≤<.)根据以上信息回答问题: (1)补全频数分布直方图.(2)求扇形统计图中派出人数大于等于100小于500所占圆心角度数.据新华网报道在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C 市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.(3)请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,结果精确到0.1万人)26.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;(2)本次调查学生选修课程的“众数”是__________;(3)若该校有1200名学生,请估计选修绘画的学生大约有多少名?27.重庆,别称“山城”、“雾都”,旅游资源丰富,自然人文旅游景点独具特点.近年来,重庆以其独特“3D魔幻”般的城市魅力吸引了众多海内外游客,成为名副其实的旅游打卡网红城市.某中学想了解该校九年级1200名学生对重庆自然人文旅游景点的了解情况,从九(1)、九(2)班分别抽取了30名同学进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:a.测试成绩分成5组,其中A组:50<x≤60,B组:60<x≤70,C组:70<x≤80,D组:80<x≤90,E 组:90<x≤100.测试成绩统计图如下:b.九(2)班D组的测试成绩分别是:81、82、82、83、84、85、86、87、88、89、89、90、90、90.c.九(1)(2)班测试成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)根据题意,直接写出m,n的值:m=,n=;九(2)班测试成绩扇形统计图中A 组的圆心角α=°;(2)在此次测试中,你认为班的学生对重庆自然人文景点更了解(填“九(1)”或“九(2)”),请说明理由(一条理由即可):;(3)假设该校九年级学生都参加此次测试,测试成绩大于90分为优秀,请估计该校九年级对重庆自然人文景点的了解达到优秀的人数.28.为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_________名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的大小为__________(2)将条形统计图补充完整(3)该校共有1500名学生,估计该校表示“喜欢”的B类的学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图29.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.30.为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.。
热点03 统计与概率中考数学中《统计与概率》部分主要考向分为三类:一、数据的收集与处理(每年1~2道,8~12分)二、数据分析(每年1~2道,3~6分)三、概率(每年1题,3~4分)统计与概率是中考数学中的必考考点,内容包含数据的收集与处理、数据分析、概率三个考点,对应知识点都比较好理解识记,整体难度不大。
但是这部分的分值在中考占比较大。
题型方面则是选择、填空题、解答题都有。
并且,由于其特有的计算类型,易错点也比较的统一,所以需要考生在审题和计算上要特别留心。
整体来说,这个考点的考题属于中考中的中档考题,但要做到越是容易拿分的考点越要细心。
考向一:数据的收集与整理【题型1 调查与样本等概念及其作用】满分技巧1、全面调查和抽样调查的适用范围:调查总数很少的可以全面调查,如一个班的身高情况;调查总数多的选择抽样调查,如一个学校的作业完成情况;比较重要或影响比较大的事情必须全面调查,如疫情期间,某市感染人数、第7次全国人口普查等。
2、理解样本、样本总量、个体、总体间的关系在统计中,要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中抽取一部分个体的集体叫做这个总体的一个样本,样本中个体的数目叫做样本容量。
1.(2023•浙江)在下面的调查中,最适合用全面调查的是()A.了解一批节能灯管的使用寿命B.了解某校803班学生的视力情况C.了解某省初中生每周上网时长情况D.了解京杭大运河中鱼的种类2.(2023•聊城)4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生3.(2023•金昌)据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90﹣912592﹣93■94﹣95■96﹣971198﹣9910100﹣101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92﹣93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96﹣97岁的人数估计有110人【题型2 频数分布直方图和折线图】满分技巧1、频数分布直方图和频数分布折线图可以更直观、更方便的表示出各数据的多少和变化2、各组数量之和=样本容量;各组频率之和=1;数据总数×相应的频率=相应的频数;1.(2023•北京)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x<10001000≤x<16001600≤x<22002200≤x<2800x≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.2.(2023•温州)某校学生“亚运知识”竞赛成绩的频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有人.3.(2023•赤峰)2023年5月30日,神舟十六号载人飞船成功发射,成为我国航天事业的里程碑.某校对全校1500名学生进行了“航空航天知识”了解情况的调查,调查结果分为A,B,C,D四个等级(A:非常了解;B:比较了解;C:了解;D:不了解).随机抽取了部分学生的调查结果,绘制成两幅不完整的统计图.根据统计图信息,下列结论不正确的是()A.样本容量是200B.样本中C等级所占百分比是10%C.D等级所在扇形的圆心角为15°D.估计全校学生A等级大约有900人【题型3 三大统计图的应用】如图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量比公车的车流量稳定B.小车的车流量的平均数较大C.小车与公车车流量在同一时间段达到最小值D.小车与公车车流量的变化趋势相同2.(2023•大连)2023年5月18日,《大连日报》公布《下一站,去博物馆!》问卷调查结果.本次调查共收回3666份有效问卷,其中将“您去博物馆最喜欢看什么?”这一问题的调查数据制成扇形统计图,如图所示.下列说法错误的是()A.最喜欢看“文物展品”的人数最多B.最喜欢看“文创产品”的人数占被调查人数的14.3%C.最喜欢看“布展设计”的人数超过500人D.统计图中“特效体验及其他”对应的圆心角是23.76°3.(2023•鞍山)在第六十个学雷锋纪念日到来之际,习近平总书记指出:实践证明,无论时代如何变迁,雷锋精神永不过时,某校为弘扬雷锋精神,组织全校学生开展了手抄报评比活动.评比结果共分为四项:A.非凡创意;B.魅力色彩;C,最美设计:D.无限潜力.参赛的每名学生都恰好获得其中一个奖项,活动结束后,学校数学兴趣小组随机调查了部分学生的获奖情况,将调查结果绘制成如下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生.(2)请补全条形统计图.(3)本次评比活动中,全校有800名学生参加,根据调查结果,请你估计在评比中获得“A.非凡创意”奖的学生人数.考向二:数据分析【题型4 四大统计量及其选择】满分技巧四大统计量:平均数、中位数、众数、方差;其中:平均数反应一组数据的平均水平,容易受极端值的影响;中位数反应一组数学的中等水平;众数反应数据的集中水平;方差反应一组数据的波动性,方差越大,数据的波动性越大。
2008年高考数学试题分类汇编(概率与统计)1.(全国一20).(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.2.(全国二18).(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为410-.10.999(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).3.(北京卷17).(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.4.(四川卷18).(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望。
压轴题07统计与概率压轴题题型/考向一:计数原理与概率题型/考向二:随机变量及其分布列题型/考向三:统计与成对数据的统计分析一、计数原理与概率热点一排列与组合解决排列、组合问题的一般步骤(1)认真审题弄清楚要做什么事情;(2)要做的事情是分步还是分类,还是分步分类同时进行,确定分多少步及多少类;(3)确定每一步或每一类是排列(有序)问题还是组合(无序)问题,元素总数是多少及取出多少元素.热点二二项式定理1.求(a+b)n的展开式中的特定项一般要应用通项公式T k+1=C k n a n-k b k(k=0,1,2,…,n).2.求两个因式积的特定项,一般对某个因式用通项公式,再结合因式相乘,分类讨论求解.3.求三项展开式的特定项,一般转化为二项式求解或用定义法.4.求解系数和问题应用赋值法.热点三概率1.古典概型的概率公式P (A )=事件A 中包含的样本点数试验的样本点总数.2.条件概率公式设A ,B 为随机事件,且P (A )>0,则P (B |A )=P (AB )P (A ).3.全概率公式设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )=∑ni =1P (A i )P (B |A i ).○热○点○题○型一计数原理与概率一、单选题1.现将甲乙丙丁四个人全部安排到A 市、B 市、C 市三个地区工作,要求每个地区都有人去,则甲乙两个人至少有一人到A 市工作的安排种数为()A .12B .14C .18D .222.世界数学三大猜想:“费马猜想”、“四色猜想”、“哥德巴赫猜想”,其中“四色猜想”和“费马猜想”已经分别在1976年和1994年荣升为“四色定理”和“费马大定理”.281年过去了,哥德巴赫猜想仍未解决,目前最好的成果“1+2”由我国数学家陈景润在1966年取得.哥德巴赫猜想描述为:任何不小于4的偶数,都可以写成两个质数之和.在不超过17的质数中,随机选取两个不同的数,其和为奇数的概率为()A .14B .27C .13D .253.在()62x x y -+的展开式中,项7x y 的系数为()A .60B .30C .20D .60-4.在)7311⎛⋅ ⎝的展开式中,含1x 的项的系数为()A .21B .35C .48D .565.甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有,,A B C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A .193243B .100243C .23D .596.一袋中有大小相同的3个白球和4个红球,现从中任意取出3个球,记事件:A “3个球中至少有一个白球”,事件:B “3个球中至少有一个红球”,事件:C “3个球中有红球也有白球”,下列结论不正确的是()A .事件A 与事件B 不为互斥事件B .事件A 与事件C 不是相互独立事件C .()3031P C A =D .()()P AC P AB >7.某学校为了搞好课后服务工作,教务科组建了一批社团,学生们都能积极选择自己喜欢的社团.目前话剧社团、书法社团、摄影社团、街舞社团分别还可以再接收1名学生,恰好含甲、乙的4名同学前来教务科申请加入,按学校规定每人只能加入一个社团,则甲进街舞社团,乙进书法社团或摄影社团的概率为()A .14B .15C .16D .188.第十四届“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”分别于2023年3月5日和3月4日胜利召开,为实现新时代新征程的目标任务汇聚智慧和力量.某市计划开展“学两会,争当新时代先锋”知识竞赛活动.某单位初步推选出3名党员和5名民主党派人士,并从中随机选取4人组成代表队参赛.在代表队中既有党员又有民主党派人士的条件下,则党员甲被选中的概率为()A .12B .1115C .713D .27二、多选题9.在9x⎛+ ⎝的展开式中,下列结论正确的是()A .第6项和第7项的二项式系数相等B .奇数项的二项式系数和为256C .常数项为84D .有理项有2项10.已知()()()()()923901239252222x a a x a x a x a x -=+-+-+-++- ,则下列结论成立的是()A .20911a a a a ++++=LB .3672a =C .9012393a a a a a -+-+-= D .123912398=++++ a a a a 11.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以1A ,2A ,3A 表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是()A .()25P B =B .()1511P B A =C .事件B 与事件1A 相互独立D .1A 、2A 、3A 两两互斥12.爆竹声声辞旧岁,银花朵朵贺新春.除夕夜里小光用3D 投影为家人进行虚拟现实表演,表演分为“燃爆竹、放烟花、辞旧岁、迎新春”4个环节.小光按照以上4个环节的先后顺序进行表演,每个环节表演一次.假设各环节是否表演成功互不影响,若每个环节表演成功的概率均为34,则()A .事件“成功表演燃爆竹环节”与事件“成功表演辞旧岁环节”互斥B .“放烟花”、“迎新春”环节均表演成功的概率为916C .表演成功的环节个数的期望为3D .在表演成功的环节恰为3个的条件下“迎新春”环节表演成功的概率为34二、随机变量及其分布列热点一分布列的性质及应用离散型随机变量X 的分布列为X x 1x 2…x i …x n Pp 1p 2…p i…p n则(1)p i ≥0,i =1,2,…,n .(2)p 1+p 2+…+p n =1.(3)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n .(4)D (X )=∑ni =1[x i -E (X )]2p i .(5)若Y =aX +b ,则E (Y )=aE (X )+b ,D (Y )=a 2D (X ).热点二随机变量的分布列1.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .E (X )=np ,D (X )=np (1-p ).2.超几何分布一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -k N -M C n N,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M },E (X )=n ·M N .热点三正态分布解决正态分布问题的三个关键点(1)对称轴x =μ.(2)样本标准差σ.(3)分布区间:利用3σ原则求概率时,要注意利用μ,σ分布区间的特征把所求的范围转化为3σ的特殊区间.○热○点○题○型二随机变量及其分布列一、单选题1.某班级有50名学生,期末考试数学成绩服从正态分布()2120,N σ,已(140)0.2P X >=,则[100,140]X ∈的学生人数为()A .5B .10C .20D .302.在某个独立重复实验中,事件A ,B 相互独立,且在一次实验中,事件A 发生的概率为p ,事件B 发生的概率为1p -,其中()0,1p ∈.若进行n 次实验,记事件A 发生的次数为X ,事件B 发生的次数为Y ,事件AB 发生的次数为Z ,则下列说法正确的是()A .()()()1pE X p E Y =-B .()()()1p D X pD Y -=C .()()E Z D Y =D .()()()2D Z D X D Y=⋅⎡⎤⎣⎦3.新能源汽车具有零排放、噪声小、能源利用率高等特点,近年来备受青睐.某新能源汽车制造企业为调查其旗下A 型号新能源汽车的耗电量(单位:kW·h/100km )情况,随机调查得到了1200个样本,据统计该型号新能源汽车的耗电量2(13,)N ξσ ,若()12140.7P ξ<<=,则样本中耗电量不小于14kW h /100km ⋅的汽车大约有()A .180辆B .360辆C .600辆D .840辆4.设()()221122~,~X N Y N μσμσ,这两个正态分布密度曲线如图所示.下列结论中正确的是()A .对任意实数t ,()()P X t P Y t ≥≥≥B .对任意实数t ,()()P X t P Y t ≤≥≤C .()()21P Y P Y μμ≥≥≥D .()()21P X P X σσ≤≤≤5.下列命题错误..的是()A .两个随机变量的线性相关性越强,相关系数的绝对值越接近于1B .设()21N ξσ~,,且(0)0.2P ξ<=,则(12)0.2P ξ<<=C .线性回归直线ˆˆˆybx a =+一定经过样本点的中心(),x y D .随机变量()B n p ξ~,,若()()3020E D ξξ==,,则90n =6.某地区有20000名考生参加了高三第二次调研考试.经过数据分析,数学成绩X 近似服从正态分布()272,8N ,则数学成绩位于[80,88]的人数约为()参考数据:()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈,()330.9973P X μσμσ-≤≤+≈.A .455B .2718C .6346D .95457.某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A .0.9B .0.7C .0.3D .0.18.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.假设面包师的说法是真实的,记随机购买一个面包的质量为X ,若()2~,X N μσ,则买一个面包的质量大于900g 的概率为()(附:①随机变量η服从正态分布()2,N μσ,则()0.6827μσημσ-≤≤+=,(22)0.9545P μσημσ-≤≤+=,(33)0.9973P μσημσ-≤≤+=;)A .0.84135B .0.97225C .0.97725D .0.99865二、多选题9.已知随机变量X 服从二项分布29,3B ⎛⎫ ⎪⎝⎭,随机变量21Y X =+,则下列说法正确的是()A .随机变量X 的数学期望()6E X =B .512(2)93P X ⎛⎫==⨯ ⎪⎝⎭C .随机变量X 的方差()2D X =D .随机变量Y 的方差()4D Y =10.随机变量()2,X N μσ 且()20.5P X ≤=,随机变量()3,Y B p ,若()()E Y E X =,则()A .2μ=B .()22D x σ=C .23p =D .()36D Y =11.李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则()A .P (X >32)>P (Y >32)B .P (X ≤36)=P (Y ≤36)C .李明计划7:34前到校,应选择坐公交车D .李明计划7:40前到校,应选择骑自行车12.假设某厂有两条包装食盐的生产线甲、乙,生产线甲正常情况下生产出来的包装食盐质量服从正态分布()2500,5N (单位:g ),生产线乙正常情况下生产出来包装食盐质量为x g ,随机变量x 服从正态密度函数()2200(1000)x x ϕ--=,其中x ∈R ,则()附:随机变量2(,)N ξμσ-,则()0.683P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=.A .正常情况下,从生产线甲任意抽取一包食盐,质量小于485g 的概率为0.15%B .生产线乙的食盐质量()2~1000,100x N C .生产线乙产出的包装食盐一定比生产线甲产出的包装食盐质量重D .生产线甲上的检测员某天随机抽取两包食盐,称得其质量均大于515g ,于是判断出该生产线出现异常是合理的三、解答题13.学校要从12名候选人中选4名同学组成学生会,已知有4名候选人来自甲班,假设每名候选人都有相同的机会被选到.(1)求恰有1名甲班的候选人被选中的概率;(2)用X 表示选中的候选人中来自甲班的人数,求()3P X ≥;(3)求(2)中X 的分布列及数学期望.14.网购生鲜蔬菜成为很多家庭日常消费的新选择.某小区物业对本小区三月份参与网购生鲜蔬菜的家庭的网购次数进行调查,从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取10户,分别记为A 组和B 组,这20户家庭三月份网购生鲜蔬菜的次数如下图:假设用频率估计概率,且各户网购生鲜蔬菜的情况互不影响·(1)从一单元参与网购生鲜蔬菜的家庭中随机抽取1户,估计该户三月份网购生鲜蔬菜次数大于20的概率;(2)从一单元和二单元参与网购生鲜蔬菜的家庭中各随机抽取1户,记这两户中三月份网购生鲜蔬菜次数大于20的户数为X ,估计X 的数学期望()E X ;(3)从A 组和B 组中分别随机抽取2户家庭,记1ξ为A 组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,2ξ为B 组中抽取的两户家庭三月份网购生鲜蔬菜次数大于20的户数,比较方差()1D ξ与()2D ξ的大小.(结论不要求证明)15.2022世界机器人大会在北京召开,来自各个领域的参展机器人给参观者带来了不同的高科技体验.现有A ,B 两种型号的小型家庭生活废品处理机器人,其工作程序依次分为三个步骤:分捡,归类,处理,每个步骤完成后进入下一步骤.若分捡步骤完成并且效能达到95%及以上,则该步骤得分为20分,若归类步骤完成并且效能达到95%及以上,则该步骤得分为30分,若处理步骤完成并且效能达到95%及以上,则该步骤得分为50分.若各步骤完成但效能没有达到95%,则该步骤得分为0分,在第三个步骤完成后,机器人停止工作.现已知A 款机器人完成各步骤且效能达到95%及以上的概率依次为45,35,13,B 款机器人完成各步骤且效能达到95%及以上的概率均为12,每款机器人完成每个步骤且效能是否达到95%及以上都相互独立.(1)求B 款机器人只有一个步骤的效能达到95%及以上的概率;(2)若准备在A ,B 两种型号的小型家庭生活废品处理机器人中选择一款机器人,从最后总得分的期望角度来分析,你会选择哪一种型号?三、统计与成对数据的统计分析热点一用样本估计总体1.频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.在频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即众数.(2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.热点二回归分析求经验回归方程的步骤(1)依据成对样本数据画出散点图,确定两个变量具有线性相关关系(有时可省略).(2)计算出x -,y -,∑n i =1x 2i ,∑n i =1x i y i 的值.(3)计算a ^,b ^.(4)写出经验回归方程.热点三独立性检验独立性检验的一般步骤(1)根据样本数据列2×2列联表;(2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.χ2越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.○热○点○题○型三统计与成对数据的统计分析一、单选题1.已知一组数据1231,31,,31n x x x --- 的方差为1,则数据12,,,n x x x 的方差为()A .3B .1C .13D .192.某企业为了解员工身体健康情况,采用分层抽样的方法从该企业的营销部门和研发部门抽取部分员工体检,已知该企业营销部门和研发部门的员工人数之比是4:1且被抽到参加体检的员工中,营销部门的人数比研发部门的人数多72,则参加体检的人数是()A .90B .96C .102D .1203.某校1000名学生参加环保知识竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是()A .频率分布直方图中a 的值为0.004B .估计这20名学生考试成绩的第60百分位数为75C .估计这20名学生数学考试成绩的众数为80D .估计总体中成绩落在[)60,70内的学生人数为1504.如图,一组数据123910,,,,,x x x x x ⋅⋅⋅,的平均数为5,方差为21s ,去除9x ,10x 这两个数据后,平均数为x ,方差为22s ,则()A .5x >,2212s s >B .5x <,2212s s <C .5x =,2212s s <D .5x =,2212s s >5.某市质量检测部门从辖区内甲、乙两个地区的食品生产企业中分别随机抽取9家企业,根据食品安全管理考核指标对抽到的企业进行考核,并将各企业考核得分整理成如下的茎叶图.由茎叶图所给信息,可判断以下结论中正确是()A .若2a =,则甲地区考核得分的极差大于乙地区考核得分的极差B .若4a =,则甲地区考核得分的平均数小于乙地区考核得分的平均数C .若5a =,则甲地区考核得分的方差小于乙地区考核得分的方差D .若6a =,则甲地区考核得分的中位数小于乙地区考核得分的中位数6.下列关于统计概率知识的判断,正确的是()A .将总体划分为2层,通过分层随机抽样,得到两层的样本平均数和样本方差分别为12,x x 和2212,s s ,且已知12x x =,则总体方差()2221212s s s =+B .在研究成对数据的相关关系时,相关关系越强,相关系数r 越接近于1C .已知随机变量X 服从正态分布()2,N μσ,若()()151P X P X -+= ,则2μ=D .按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n ,若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=7.若数据1x ,2x ,…,10x 的平均数为2,方差为3,则下列说法错误的是()A .数据141x +,241x +,…,1041x +的平均数为9B .10120i i x ==∑C .数据13x ,23x ,…,103x 的方差为D .102170i i x ==∑8.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d vβ=D .1d =,22d v β=二、多选题9.下列说法正确的是()A .数据5,7,8,11,10,15,20的中位数为11B .一组数据7,8,8,9,11,13,15,17,20,22的第80百分位数为18.5C .从1,2,3,4,5中任取3个不同的数,则这3个数能构成直角三角形三边长的概率为0.1D .设随机事件A 和B ,已知0.8)PA =(,0.6|PB A =(),(|)0.1P B A =,则()0.5P B =10.为了加强学生对党的二十大精神的学习,某大学开展了形式灵活的学习活动.随后组织该校大一学生参加二十大知识测试(满分:100分),随机抽取200名学生的测试成绩,这200名学生的成绩都在区间[]60,100内,将其分成5组:[)60,68,[)68,76,[)76,84,[)84,92,[]92,100,得到如下频率分布直方图.根据此频率分布直方图,视频率为概率,同一组中的数据用该组区间的中点值为代表,则()A.该校学生测试成绩不低于76分的学生比例估计为76%B.该校学生测试成绩的中位数估计值为80C.该校学生测试成绩的平均数大于学生测试成绩的众数D.从该校学生中随机抽取2人,则这2人的成绩不低于84分的概率估计值为0.1611.随着生活水平的不断提高,旅游已经成为人们生活的一部分.某地旅游部门从2022年到该地旅游的游客中随机抽取10000位游客进行调查,得到各年龄段游客的人数和旅游方式,如图所示,则()A.估计2022年到该地旅游的游客中中年人和青年人占游客总人数的80%B.估计2022年到该地旅游的游客中选择自助游的游客占游客总人数的26.25%C.估计2022年到该地旅游且选择自助游的游客中青年人超过一半D.估计2022年到该地旅游的游客中选择自助游的青年人比到该地旅游的老年人还要多12.如图为国家统计局于2022年12月27日发布的有关数据,则()A.营业收入增速的中位数为9.1%B.营业收入增速极差为13.6%C.利润总额增速越来越小D.利润总额增速的平均数大于6%三、解答题13.为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)[)[)[)[]0,20,20,40,40,60,60,80,80,100分组,绘制频率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立.抗体指标值合计小于60不小于60有抗体没有抗体合计(1)填写下面的2×2列联表,并根据列联表及0.05a =的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p ;(ii )以(i )中确定的概率p 作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n 个人注射2次疫苗后产生抗体的数量为随机变量X .试验后统计数据显示,当X =99时,P (X )取最大值,求参加人体接种试验的人数n .参考公式:22()()()()()n ad bc x a b c d a c b d -=++++(其中n a b c d =+++为样本容量)20()P x k ≥0.500.400.250.150.1000.0500.0250k 0.4550.7081.3232.0722.7063.8415.02414.某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910平均值根部横截面积ix 0.040.060.040.080.080.05a bc 0.070.06材积量iy 0.250.410.220.540.530.340.350.390.430.440.39其中a ,b ,c 为等差数列,并计算得:610.146i i i x y ==∑0.044≈,0.303≈.(1)求b 的值;(2)若选取前6个样本号对应数据,判断这种树木的根部横截面积与材积量是否具有很强的线性相关性,并求该林区这种树木的根部横截面积与材积量的回归直线方程(若0.250.75r ≤≤,则认为两个变量的线性相关性一般;若0.75r>,则认为两个变量的线性相关性很强);附:相关系数niix ynx yr -=∑回归直线y bx a =+$$$中,1221niii nii x ynx y b xnx==-=-∑∑ ,a y bx =-$$.(3)根据回归直线方程估计a ,c 的值(精确到0.01).。
原创精品资源学科网独家享有版权,侵权必究!
1
1.投掷两枚质地均匀的正方体散子,将两枚散子向上点数之和记作S .在一次投掷中,已知S 是奇数,则
S =9的概率是
A .16
B .29
C .19
D .15
【答案】B
【解析】投掷两枚质地均匀的正方体散子,将两枚散子向上点数之和记作S .在一次投掷中,S 是奇数,基本事件有18个,分别为:(1,2),(2,1),(1,4),(4,1),(1,6),(6,1),(2,
3),(3,2),(2,5),(5,2),(3,4),(4,3),(3,6),(6,3),(4,5),(5,
4),(5,6),(6,5);S =9包含的基本事件有4个,分别为:(4,5),(5,4),(3,6),(6,
3).∴S =9的概率是P =42189
.故选B .
1.古典概型的概率求解步骤:
2.古典概型基本事件个数的确定方法
(1)列举法:此法适合于基本事件个数较少的古典概型.
(2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成坐标法.
(3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题中基本事件数的探求.。
第18题概率与统计高考考点命题分析三年高考探源考查频率概率、随机变量分布列及正态分布高考全国卷每年必有一道概率与统计解答题,该题通常以实际问题为背景,考查考生的数学建模及数据分析等核心素养,可以是较容易的题,也可以是难度较大的题,考查热点是概率的计算、随机变量的分布列、期望与方差的应用、正态分布、用样本估计总体、统计案例.2020课标全国Ⅰ19 2020课标全国Ⅲ18 2019课标全国Ⅱ18 2019课标全国I 21★★★统计与统计案例2021课标全国Ⅰ17 2021课标全国Ⅱ17 2020课标全国Ⅱ18 2020课标全国Ⅲ18 2019课标全国Ⅲ17★★★例题(2021高考全国I )某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备 9.8 10.3 10.0 10.2 9.99.8 10.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5y 21S 和22S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210S S y x +-≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x y S S ====;(2)新设备生产产品的该项指标的均值较旧设备有 解:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,(2分)10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,(4分)22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,(8分) 222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==.(8分)(2)依题意,20.320.1520.1520.025y x -==⨯==,0.0360.040.007610+=(10分)2212210s s y x +-≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高. (12分)1.(2022届江苏省泰州市兴化市高三4月模拟)设(),X Y 是一个二维离散型随机变量,它们的一切可能取的值为(),i j a b ,其中,i j N *∈,令(,)ij i j p P X a Y b ===,称(,)ij p i j N *∈是二维离散型随机变量(),X Y 的联合分布列.与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式:(),X Y1b 2b 3b ... 1a 1,1p 1,2p 1,3p (2)a 2,1p 2,2p 2,3p (3)a3,1p3,2p3,3p ·…… … … … …现有()n n N ∈个相同的球等可能的放入编号为1,2,3的三个盒子中,记落下第1号盒子中的球的个数为X ,落入第2号盒子中的球的个数为Y . (1)当n =2时,求(),X Y 的联合分布列;(2)设0(,),nk m p P X k Y m k N ====∈∑且k n ≤计算0nk k kp =∑.2.(陕西省西安市高三下学期二模)某中学对学生进行体质测试(简称体测),随机抽取了100名学生的体测结果等级(“良好以下”或“良好及以上”)进行统计,并制成列联表如下: 良好以下 良好及以上 合计 男 25 女 10 合计70100(2)事先在本次体测等级为“良好及以上”的学生中按照性别采用分层抽样的方式随机抽取了9人.若从这9人中随机抽取3人对其体测指标进行进一步研究,求抽到的3人全是男生的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥0.10 0.05 0.025 0.010 0.001 0k2.7063.8415.0246.63510.828会上参与全民健身活动的人越来越多,小明也有大量好友参与了“健步团”,他随机选取了其中的40人,记录了他们某一天的走路步数,并将数据整理如下:步量性别5001~60006001~70007001~80008001~9000>9000男 1 2 3 6 8 女21062(2)如果每人一天的走路步数超过8000步就会被系统评定为“健步型”,否则为“良好型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关健步型良好型总计男女总计附:参考公式()()()()() 2n ad bcKa b c d a c b d-=++++.临界值表:()2P K k≥0.10 0.05 0.025 0.010 0k 2.706 3.841 5.024 6.635专业队,与两名高山滑雪爱好者乙、丙组成的业余队进行友谊比赛.约定赛制如下:业余队中的两名队员轮流与甲进行比赛............,若甲连续豪两场.....则专业队获胜;若甲连续输两场.....则业余队获胜:若比赛三场还没有决出胜负,则视为平局,比赛结束.已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,乙赢概率为13;甲与丙比赛,丙赢的橱率为p,其中1132p<<.(1)若第一场比赛,业余队可以安接乙与甲进行比赛,也可以安排丙与甲进行比赛.请分别计算两种安排下业余队获胜的概率;若以获胜概率大为最优决策,问:业余队第一场应该安排乙还是丙与甲进行比赛?(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金3万元,负队获奖金1.5万元;若平局,两队各获奖金1.8万元.在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X万元,求X的数学期望()E X的取值范围.5.(2022届广东省广州市高三二模)某校为全面加强和改进学校体育工作,推进学校体育评价改革,建立了日常参与,体质监测和专项运动技能测试相结合的考查机制,在一次专项运动技能测试中,该校班机抽取60名学生作为样本进行耐力跑测试,这60名学生的测试成绩等级及频数如下表成绩等级优良合格不合格频数7 11 41 1(1)从这60名学生中随机抽取2名学生,这2名学生中耐力跑测试成绩等级为优或良的人数记为X ,求()1P X =;(2)将样本频率视为概率,从该校的学生中随机抽取3名学生参加野外拉练活动,耐力跑测试成绩等级为优或良的学生能完成该活动,合格或不合格的学生不能完成该活动,能完成活动的每名学生得100分,不能完成活动的每名学生得0分.这3名学生所得总分记为Y ,求Y 的数学期望.6.(2022届重庆市高三质量检测)冰壶被喻为冰上的“国际象棋”,是以团队为单位在冰上进行的投掷性竞赛项目,每场比赛共10局,在每局比赛中,每个团队由多名运动员组成,轮流掷壶、刷冰、指挥.两边队员交替掷壶,可击打本方和对手冰壶,以最终离得分区圆心最近的一方冰壶数量多少计算得分,另外一方计零分,以十局总得分最高的一方获胜.冰壶运动考验参与者的体能与脑力,展现动静之美,取舍之智慧.同时由于冰壶的击打规则,后投掷一方有优势,因此前一局的得分方将作为后一局的先手掷壶.已知甲、乙两队参加冰壶比赛,在某局中若甲方先手掷壶,则该局甲方得分概率为25;若甲方后手掷壶,则该局甲方得分概率为23,每局比赛不考虑平局.在该场比赛中,前面已经比赛了六局,双方各有三局得分,其中第六局乙方得分.(1)求第七局、第八局均为甲方得分的概率; (2)求当十局比完,甲方的得分局多于乙方的概率.7.(2022届内蒙古赤峰市高三模拟)为评估设备M 生产某种零件的性能,从设备M 生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到下表: 直径/mm 58596061626364 65 66 67686970717273合计个数2 1 13 5 6 1931164 4 2 1 2 2 1 10065μ=σ(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率),()0.6826P X μσμσ-<≤+≥;()220.9545P X μσμσ-<≤+≥;()330.9973P X μσμσ-<≤+≥.评判规则为:若同时满足上述三个不等式,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁,试判断设备M 的性能等级.(2)将直径小于等于2μσ-或直径大于2μσ+的零件认为是次品.(i )从设备M 的生产流水线上随机抽取3件零件,计算其中次品件数Y 的数学期望()E Y ; (ii )从样本中随机抽取2件零件,计算其中次品件数Z 的概率分布列和数学期望()E Z . 8.(2022届四川省绵阳市高三第三次诊断性考试)随着科技进步,近来年,我国新能源汽车产业迅速发展.以下是中国汽车工业协会2022年2月公布的近六年我国新能源乘用车的年销售量数据:年份 2016 2017 2018 2019 2020 2021 年份代码x1 2 3 4 5 6 新能源乘用车年销售y (万辆)5078126121137352(2)若用e nx y m =模型拟合y 与x 的关系,可得回归方程为0.3337.71e x y =,经计算该模型和第(1)问中模型的2R (2R 为相关指数)分别为0.87和0.71,请分别利用这两个模型,求2022年我国新能源乘用车的年销售量的预测值;(3)你认为(2)中用哪个模型得到的预测值更可靠?请说明理由. 参考数据:设ln u y =,其中ln i i u y =. yu()()61iii x x y y =--∑()()61i ii x x u u =--∑3.63e 5.94e 6.27e144 4.78 841 5.70 37.71 380 528参考公式:对于一组具有线性相关关系的数据()()123i i x y i n =⋅⋅⋅,,,,,,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为()()()121ˆnii i nii xx y ybxx==--=-∑∑,ˆˆay bx =-. 9.(2022届四川省攀枝花市高三第三次统一考试)2022年2月4日,北京冬奥会盛大开幕,这是让全国人民普遍关注的体育盛事,因此每天有很多民众通过手机、电视等方式观看相关比赛.某机构将每天收看相关比赛的时间在2小时以上的人称为“冰雪运动爱好者”,否则称为“非冰雪运动爱好者”,该机构通过调查,并从参与调查的人群中随机抽取了100人进行分析,得到下表(单位:人):冰雪运动爱好者非冰雪运动爱好者合计 女性 20 50 男性15合计 100的前提下认为性别与是否为“冰雪运动爱好者”有关?(2)将频率视为概率,现从参与调查的女性人群中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“冰雪运动爱好者”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列、数学期望()E X 和方差()D X . 附:()()()()()22n ad bc K a b c d a c b c -=++++,其中n a b c d =+++. ()20P K k ≥0.05 0.025 0.010 0.005 0.001 0k3.8415.0246.6357.87910.828北京冬奥会男子冰球主要比赛场馆是位于北京奥林匹克公园的“冰之帆”国家体育馆.本届冬奥会男子冰球有12支队伍进入正赛,中国首次组队参赛,比赛规则12支男子冰球参赛队先按照往届冬奥会赛制分成三个小组(每组4个队).正赛分小组赛阶段与决赛阶段;小组赛阶段各组采用单循环赛制(小组内任两队需且仅需比赛一次);决赛阶段均采用淘汰制(每场比赛胜者才晋级),先将12支球队按照小组赛成绩进行种子排名,排名前四的球队晋级四分之一决赛(且不在四分之一决赛中遭遇),其余8支球队按规则进行附加赛(每队比赛一次,胜者晋级),争夺另外4个四分之一决赛席位,随后依次是四分之一决赛、半决赛、铜牌赛、金牌赛(1)本届冬奥会男子冰球项目从正赛开始到产生金牌,组委会共要安排多少场比赛? (2)某机构根据赛前技术统计,率先晋级四分之一决赛的四支球队(甲乙丙丁队)实力相当,假设他们在接下来四分之一决赛、半决赛、铜牌赛、金牌赛中取胜率都依次为34、12、12、12,且每支球队晋级后每场比赛相互独立,试求甲、乙、丙、丁队都没获得冠军的概率.11.(2022届山东省枣庄市高三下学期一模)已知有一道有四个选项的单项选择题和一道有四个选项的多项选择题,小明知道每道多项选择题均有两个或三个正确选项.但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分.这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项.(1)如果小明不知道单项选择题的正确答案,就作随机猜测.已知小明知道单项选择题的正确答案和随机猜测的概率都是12,在他做完单项选择题后,从卷面上看,在题答对的情况下,求他知道单项选择题正确答案的概率.(2)假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为12,选择两个选项的概率为13,选择三个选项的概率为16.已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择.记X 表示小明做完该道多项选择题后所得的分数.求: (i )()0P X =;(ii )X 的分布列及数学期望.12.(2022届湖北省高三下学期4月二模)某企业使用新技术对某款芯片进行试生产,在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为123111,,1098P P P ===. (1)求该款芯片生产在进人第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽查检验.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.13.(2022届广西四市高三4月教学质量检测)近期新冠病毒奥密克戎毒株全球蔓延,传染性更强、潜伏期更短、防控难度更大.为落实动态清零政策下的常态化防疫,某高中学校开展了每周的核酸抽检工作:周一至周五,每天中午13:00开始,当天安排450位师生核酸检测,五天时间全员覆盖.(1)该校教职工有410人,高二学生有620人,高三学生有610人, ①用分层抽样的方法,求高一学生每天抽检人数;②高一年级共15个班,该年级每天抽检的学生有两种安排方案,方案一:集中来自部分班级;方案二:分散来自所有班级.你认为哪种方案更合理,并给出理由. (2)学校开展核酸抽检的第一周,周一至周五核酸抽检用时记录如下: 第x 天12 3 4 5 用时y (小时) 1.21.21.11.01.0x y ②根据①中的计算结果,判定变量x 和y 是正相关,还是负相关,并给出可能的原因.10 3.16,相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑14.(2022届北京市通州区高三一模)某单位有A ,B 两个餐厅为员工提供午餐与晚餐服务,甲、乙两位员工每个工作日午餐和晚餐都在单位就餐,近100个工作日选择餐厅就餐情况统计如下:,A A(),A B(),B A(),B B 选择餐厅情况(午餐,晚餐)()甲员工30天20天40天10天乙员工20天25天15天40天(1)分别估计一天中甲员工午餐和晚餐都选择A餐厅就餐的概率,乙员工午餐和晚餐都选择B餐厅就餐的概率;E X;(2)记X为甲、乙两员工在一天中就餐餐厅的个数,求X的分布列和数学期望()(3)试判断甲、乙员工在晚餐选择B餐厅就餐的条件下,哪位员工更有可能午餐选择A餐厅就餐,并说明理由.。
2024年高考数学分类汇编八计数原理与概率统计一、单选题1.(2024·全国)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在[)900,1200之间,单位:kg)并部分整理下表据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间2.(2024·全国)甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.233.(2024·北京)(4x的二项展开式中3x的系数为()A.15B.6C.4−D.13−4.(2024·天津)下列图中,相关性系数最大的是()A.B.C.D.二、多选题5.(2024·全国)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><三、填空题6.(2024·全国)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .7.(2024·全国)在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .8.(2024·全国)1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是 .9.(2024·全国)有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是 .10.(2024·天津),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为 ;已知乙选了A 活动,他再选择B 活动的概率为 .11.(2024·上海)在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为 . 12.(2024·上海)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 13.(2024·上海)设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 . 四、解答题14.(2024·全国)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j −可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j −可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13−可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j −可分数列的概率为m P ,证明:18m P >.15.(2024·全国)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立. (1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛? (ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛? 16.(2024·全国)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d−=++++17.(2024·北京)已知某险种的保费为0.4万元,前3次出险每次赔付0.8万元,第4次赔付0.6万元在总体中抽样100单,以频率估计概率:(1)求随机抽取一单,赔偿不少于2次的概率;(2)(i)毛利润是保费与赔偿金额之差.设毛利润为X,估计X的数学期望;(ⅱ)若未赔偿过的保单下一保险期的保费下降4%,已赔偿过的增加20%.估计保单下一保险期毛利润的数学期望.18.(2024·上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少? (2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d −=++++χ其中n a b c d =+++,()2 3.8410.05P χ≥≈.)答案详解1.C【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D. 【解析】对于 A, 根据频数分布表可知, 612183650++=<, 所以亩产量的中位数不小于 1050kg , 故 A 错误; 对于B ,亩产量不低于1100kg 的频数为341024=+, 所以低于1100kg 的稻田占比为1003466%100−=,故B 错误; 对于C ,稻田亩产量的极差最大为1200900300−=,最小为1150950200−=,故C 正确; 对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30−++++=, 所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误. 故选;C. 2.B【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【解析】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B 3.B【分析】写出二项展开式,令432r−=,解出r 然后回代入二项展开式系数即可得解.【解析】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr r r r T x xr −−+==−=,令432r−=,解得2r =, 故所求即为()224C 16−=. 故选:B.4.A【分析】由点的分布特征可直接判断【解析】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1. 故选:A 5.BC【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出. 【解析】依题可知,22.1,0.01x s ==,所以()2.1,0.1YN ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>−=<+≈>,C 正确,D 错误; 因为()1.8,0.1XN ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈−=<, 而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误, 故选:BC . 6.12/0.5【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可. 【解析】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==. 从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==; 如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==. 而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=. 所以甲的总得分不小于2的概率为2312p p +=. 故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举. 7. 24 112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【解析】由题意知,选4个方格,每行和每列均恰有一个方格被选中, 则第一列有4个方格可选,第二列有3个方格可选, 第三列有2个方格可选,第四列有1个方格可选, 所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字, 则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=. 故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果. 8.5【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r −−+−−−⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【解析】由题展开式通项公式为101101C 3rr r r T x −+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r −−+−−−⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, 294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5. 9.715【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +−≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【解析】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++−≤, 故2()3c a b −+≤,故32()3c a b −≤−+≤, 故323a b c a b +−≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种, 若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=. 故答案为:71510.3512【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率. 【解析】解法一:列举法 从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE , 则甲选到A 得概率为:63105P ==; 乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE , 其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N , 则甲选到A 的概率为()2435C 3C 5P M ==; 乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M === 故答案为:35;1211.10【分析】令1x =,解出5n =,再利用二项式的展开式的通项合理赋值即可. 【解析】令1x =,(11)32n ∴+=,即232n =,解得5n =,所以5(1)x +的展开式通项公式为515C r rr T x−+=⋅,令52r -=,则3r =,32245C 10T x x ==∴.故答案为:10. 12.0.85【分析】求出各题库所占比,根据全概率公式即可得到答案. 【解析】由题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=. 故答案为:0.85. 13.329【分析】三位数中的偶数分个位是0和个位不是0讨论即可. 【解析】由题意知集合中且至多只有一个奇数,其余均是偶数. 首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有29P 72=个;②当个位不为0时,则个位有14C 个数字可选,百位有18C 256=个数字可选,十位有18C 个数字可选,根据分步乘法这样的偶数共有111488C C C 256=,最后再加上单独的奇数,所以集合中元素个数的最大值为722561329++=个. 故答案为:329. 14.(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【分析】(1)直接根据(),i j −可分数列的定义即可; (2)根据(),i j −可分数列的定义即可验证结论;(3)证明使得原数列是(),i j −可分数列的(),i j 至少有()21m m +−个,再使用概率的定义.【解析】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d−=+=+', 得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可. 换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行. 回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6. 所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m −++,共3m −组. (如果30m −=,则忽略②)故数列1,2,...,42m +是()2,13−可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立, 则数列1,2,...,42m +一定是(),i j −可分数列: 命题1:,i A j B ∈∈或,i B j A ∈∈; 命题2:3j i −≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i −≠. 此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k −>−,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后, 剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列: ①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k −−−,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++−−+,共21k k −组; ③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++−++,共2m k −组.(如果某一部分的组数为0,则忽略之) 故此时数列1,2,...,42m +是(),i j −可分数列. 第二种情况:如果,i B j A ∈∈,且3j i −≠. 此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈. 则由i j <可知124241k k +<+,即2114k k −>,故21k k >. 由于3j i −≠,故()()2141423k k +−+≠,从而211k k −≠,这就意味着212k k −≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k −−−,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =−,共212k k −−组; ④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++−++,共2m k −组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k −−个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j −可分数列. 至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j −可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i −=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +−+=. 但这导致2112k k −=,矛盾,所以,i B j A ∈∈. 设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +−+=,即211k k −=. 所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m −,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m −+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +−.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j −可分数列的(),i j 至少有()21m m +−个. 所以数列1242,,...,m a a a +是(),i j −可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+−++⎝⎭≥=>==++++++++. 这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论. 15.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q ⎡⎤=−−⎣⎦甲,331(1)P q p ⎡⎤=−−⋅⎣⎦乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【解析】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =−−=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=−−⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=−−⋅⎣⎦乙,0p q <<,3333()()P P q q pq p p pq ∴−=−−−+−甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=−+++−⋅−+−+−−⎣⎦()2222()333p q p q p q pq =−−−3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =−−−=−−−−>,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==−+−−⋅−⎣⎦,()()()3213511C 1P X p q q ⎡⎤==−−⋅−⎣⎦, 3223(10)1(1)C (1)P X p q q ⎡⎤==−−⋅−⎣⎦, 33(15)1(1)P X p q ⎡⎤==−−⋅⎣⎦,()332()151(1)1533E X p q p p p q ⎡⎤∴=−−=−+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p =−+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴−=+−−− 15()(3)p q pq p q =−+−,因为0p q <<,则0p q −<,31130p q +−<+−<, 则()(3)0p q pq p q −+−>, ∴应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论. 16.(1)答案见详解 (2)答案见详解【分析】(1)根据题中数据完善列联表,计算2K ,并与临界值对比分析;(2)用频率估计概率可得0.64p =,根据题意计算p +. 【解析】(1)根据题意可得列联表:可得()2215026302470754.687550100965416K ⨯−⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=, 用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=++⨯≈,可知p p >+ 所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 17.(1)110(2)(i)0.122万元 (ii)0.1252万元【分析】(1)根据题设中的数据可求赔偿次数不少2的概率;(2)(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,0.1.6,2.4,3,用频率估计概率后可求ξ的分布列及数学期望,从而可求()E X .(ⅱ)先算出下一期保费的变化情况,结合(1)的结果可求()E Y . 【解析】(1)设A 为“随机抽取一单,赔偿不少于2次”, 由题设中的统计数据可得()603010180010060301010P A ++==++++.(2)(ⅰ)设ξ为赔付金额,则ξ可取0,0.8,1.6,2.4,3, 由题设中的统计数据可得()()800410010,0.810005100010P P ξξ======, 603( 1.6)100050P ξ===,303( 2.4)1000100P ξ===, 101(3)1000100P ξ===, 故()4133100.8 1.6 2.430.27851050100100E ξ=⨯+⨯+⨯+⨯+⨯= 故()0.40.2780.122E X =−=(万元).(ⅱ)由题设保费的变化为410.496%0.4 1.20.403255⨯⨯+⨯⨯=,故()0.1220.40320.40.1252E Y =+−=(万元) 18.(1)12500 (2)0.9h (3)有【分析】(1)求出相关占比,乘以总人数即可; (2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论. 【解析】(1)由表可知锻炼时长不少于1小时的人数为占比17943282558058++=,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为25290001250058⨯=. (2)估计该地区初中生的日均体育锻炼时长约为10.50.511 1.5 1.522 2.5139191179432858022222++++⎡⎤⨯+⨯+⨯+⨯+⨯⎢⎥⎣⎦0.9≈. 则估计该地区初中学生日均体育锻炼的时长为0.9小时. (3)由题列联表如下:提出零假设0H :该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关. 其中0.05α=.22580(4530817750) 3.976 3.84195485222358χ⨯⨯−⨯=≈>⨯⨯⨯.则零假设不成立,即有95%的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.。
第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=−=∪∪=∪)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +−−=−=−=−=)(C B A P ∪∪-)(B A P ∪= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. , }{合格品二件产品中有一件是不=A }{二件都是不合格品=B 511)()()()()|(2102621024=−===c c c c A P B P A P AB P A B P 注意: = }{合格品二件产品中有一件是不}{不合格品二件产品中恰有一件是 + }{二件都是不合格品所以; B AB B A =⊃,}{二件都是合格品=A 3. 随机地向半圆a x ax y (202−<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______.解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则 121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=×=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ∪B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+−+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.1 3.01.04.0)()()(=−=−=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P −=−==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c = 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096= 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅−⋅−⋅−++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ∪B)P(AB)≥P(A)P(B) (B) P(A ∪B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥−−A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则 (A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案.6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i −=, 31239)|(c c B A P i i −=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=−−=146.0484007056)201843533656398411()220(12==××+××+××+××=ii. 215484007056)220(20184)()()|()|(2333=××==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M 假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=−=≥−==X P X P 94)1(2=−p , 31=p 2719321)0(1)1(3=⎟⎠⎞⎜⎝⎛−==−=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________. P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X >a)=1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则有实根的概率为_____.02442=+++k kx x 解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f其它50≤≤k P{有实根} = P{} 02442=+++k kx x 03216162≥−−k k = P{k ≤-1或k ≥ 2} =535152=∫dk 5. 已知2}{,}{kbk Y P k a k X P =−===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为Z = X + Y -2 -1 0 1 2 P24α 66α 251α 126α 72αab = 216α, 5391=α α249)3()1()3,1()2(==−===−===−=abY P X P Y X P Z P α66)2,1()3,2()1(=−==+−===−=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=−==+−==+−====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=−==+−====Y X P Y X P Z P α723)1()3()1,3()2(==−===−====abY P X P Y X P Z P6. 已知(X, Y)联合密度为 ⎩⎨⎧+=0)sin(),(y x c y x ϕ其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+∫∫c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +−+=++==∫∫∞+∞−πϕϕπ所以⎪⎩⎪⎨⎧+−+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=∫e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时0)(=x X ϕ当1 ≤ x ≤ e 2时∫∫===∞+∞−x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++="服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎟⎠⎞⎜⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎟⎠⎞⎜⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X解.213161)1(,181)3(,91)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______. iii. U= X 2 + Y -2的分布律_______. 解.X + Y -3 -2 -1 -3/2 -1/2 1 3 P1/12 1/12 3/12 2/12 1/12 2/12 2/12X -Y-1 0 1 3/2 5/2 3 5P 3/12 1/12 1/12 1/12 2/12 2/12 2/12X 2 + Y -2 -15/4 -3 -11/4 -2 -1 5 7P2/12 1/12 1/12 1/12 3/12 2/12 2/12二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F , (B) 0022≥<≤−−<x x x ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) , (D) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. 是随机变量X 的概率分布, 则λ, c 一定满足),4,2,0(!/)("===−k k ec k X P k λλ(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.),4,2,0(!/)("===−k k ec k X P k λλ3. X ~N(1, 1), 概率密度为ϕ(x), 则(A) (B)5.0)0()0(=≥=≤X P X p ),(),()(+∞−∞∈−=x x x ϕϕ (C) (D) 5.0)1()1(=≥=≤X P X p ),(),(1)(+∞−∞∈−−=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是 (A) (X, Y) (B) X + Y (C) X 2 (D) X -Y解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~ ⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以 (X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 则1100>≤<≤x x x (A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为, 则Z = max(X, Y)的分布函数是)(),(y F x F Y X (A) = max{} (B) = max{} )(z F Z )(),(z F z F Y X )(z F Z |)(||,)(|z F z F Y X (C) = (D) 都不是)(z F Z )()(z F z F Y X解. }{}),{max()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为, 则Z = min(X, Y)的分布函数是)(),(y F x F Y X (A) = (B) =)(z F Z )(z F X )(z F Z )(z F Y (C) = min{} (D) = 1-[1-][1-] )(z F Z )(),(z F z F Y X )(z F Z )(z F X )(z F Y 解. }{1}),{min(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>−=>−=>−=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X −−−=≤−≤−−因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是(A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D) y arctan 1π解. 2()2(}2{)()(yF y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎟⎠⎞⎜⎝⎛+⋅=⋅=⎟⎠⎞⎜⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+−0),()(y x e y x ϕ其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+−021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+−0)(2y x Z e z ϕ 其它0,0>>y x(C) (D) ⎩⎨⎧=−04)(2z Z ze Z ϕ00≤>z z ⎪⎩⎪⎨⎧=−021)(zZ eZ ϕ 00≤>z z 解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B).21210=∫∞+−dz e z , 所以(D)不是答案. (C)是答案. 注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度:当z < 0时0)(=z F Z当z ≥ 0时∫∫≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ=12222020+−−=⎥⎦⎤⎢⎣⎡−−−−−∫∫z z z xz y x e ze dx dy e e , (C)是答案.==)()('z F z ZZ ϕ⎩⎨⎧−042z ze 00≤>z z 10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(min(1))2,(min()()(y X P y X P y Y P y F Y >−=≤=≤= 当y ≥ 2时101))2,(min(1)(=−=>−=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(min(1)(y y X y X P y F Y >>−=>−=ye y X P y X P λ−−=≤=>−=1)()(1当y < 0时)2,(1))2,(min(1)(y y X y X P y F Y >>−=>−= 0)()(1=≤=>−=y X P y X P于是 只有y = 2一个间断点, (D)是答案.⎪⎩⎪⎨⎧−=−011)(y Y e y F λ0202<<≤≥y y y三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = , i = 1, 2, 3, 4.9.0)1.0(1⋅−i 当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = . 于是分布律为 4)1.0(X1 2 3 4 5p 0.9 0.09 0.009 0.0009 0.00012. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.13)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P XPii. 每次抽取后将原产品放回1310133)()()()()(11111−−−⎟⎠⎞⎜⎝⎛====k k k k k A P A P A P A A A p k X P "", (k = 1, 2, …)iii. 每次抽取后总以一个正品放回X 1 2 3 4p1310 1311133⋅ 1312132133⋅⋅ 1331321311⋅⋅⋅ 1310)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧−=01)(2x cx ϕ其它1||<x , 求: i. 常数c; ii. X 落在21,21(−内的概率. 解. πππϕ1,22|arcsin 21)(110112====−==∫∫−∞+∞−c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==−=−∈∫−ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x −⎪⎩⎪⎨⎧=πϕ , ii. 其它1||<x ⎪⎩⎪⎨⎧−=02)(x x x ϕ其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时∫∫∞−∞−===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ∫∫∞−−++−=−==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ∫∫∞−−=−==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++−=121arcsin 110)(2x x xx F ππ 1111≥<<−−≤x x xii. 当x < 0时∫∫∞−∞−===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ∫∫∞−===x xx tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110−+−=−+==∫∫∫∞−x x dt t tdt dt t x F x xϕ当2 ≤ x 时1)2()()(211∫∫∫∞−=−+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧−+−=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎟⎟⎠⎞⎜⎜⎝⎛−−=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎟⎟⎠⎞⎜⎜⎝⎛−−=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<−<−=<<−=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(−Φ−Φ=1)25.1()25.0()25.1(1()25.0(−Φ+Φ=Φ−−Φ= = 0.4931.18944.05987.0−+=(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) = 88.012.01)4931.0(13=−=−6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ100100≤<x x 问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ100100≤<x x . 所以 31100)150(1501002==<∫dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=−piii. P(150小时内三只元件只有一只损坏) =943231213=⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛c7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤−=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤−=≤=≤=πππx D xP x D P x X P x F 44)()()(2=54145−=∫ππxdt x当 x > 9π时1)()(65===∫∫∞−dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧−=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x 8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为X 0 1 p 0.4 0.6(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为Y1 2 3 p0.4 0.3 0.35.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以X|Y ≠ 1 0 1 p0.5 0.59. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y 因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时当 0 < z < 1时0)(=z F Z z z dxdy Xz Y P z X Y P z Z P z F D Z 219928181)()()()(1=⋅⋅==≤=≤=≤=∫∫当z ≥ 1时∫∫=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811−=⋅−⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧−−=0)1(24),(y x y y x ϕ其它1,0,0<+>>y x y x 求: i.21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解.i.∫∞+∞−=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==∫∞+∞−dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X −=−−==∫∫−∞+∞−ϕϕ所以 ⎩⎨⎧−=0)1(4)(3x x X ϕ其它10<<x所以 ⎪⎩⎪⎨⎧−−−==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧−==0)21(24)21|(y y x y ϕ 其它210<<yii.∫∞+∞−=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==∫∞+∞−dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y −=−−==∫∫−∞+∞−ϕϕ所以 ⎩⎨⎧−=0)1(12)(2y y y Y ϕ其它10<<y所以 ⎪⎩⎪⎨⎧−−−==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x 所以 ⎩⎨⎧−==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅" (i= 1, 2, …, n) 又设, 则∑==ni iXX 127)()()(11nX E X E X E ni in i i===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 ),2(~p B X D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量 , 则方差D(Y) = _______.⎪⎩⎪⎨⎧−=101Y 000<=>X X X 解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤−xY 的分布律为Y 1 0 -1 p2/3 0 1/3因为 3231)0()1(20==>==∫dx X P Y P0)0()0(====X P Y P 3131)0()1(01==<=−=∫−dx X P Y P 于是 313132)(=−=Y E , 13132)(2=+=Y E , 98)]([)()(22=−=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布, 则服从⎟⎟⎠⎞⎜⎜⎝⎛2.08.010∑==31i i X X_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则= _______.),cov(Y X 解. 因为X 和Y 是两个相互独立的随机变量, 所以= 0.),cov(Y X 8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ其它10≤≤x ,, 则E(XY) = ________.⎩⎨⎧=−−0)()5(y e y ϕ其它5>y 解. 322)()(10=⋅==∫∫∞+∞−xdx x dx x x X E ϕ 6)()(5)5(=⋅==∫∫∞+−−∞+∞−dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+−==4639441262=×+×+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. .0)()()(22=−=Y E X E UV E 所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2,x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=−−=−−++=++=p p p p p p p x p x p x X E7.0221=+p p 9.5)1(94)(21213232221212=−−++=++=p p p p p x p x p x X E1.35821=+p p 解得 p 1= 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案. 4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望 (A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为X 6 9 12 p7/15 7/15 1/15157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y ≥μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2(C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ−=−Φ=⎭⎬⎫⎩⎨⎧−≤−μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ−=⎭⎬⎫⎩⎨⎧≤−−=⎭⎬⎫⎩⎨⎧≥−μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) = )()()])([(22Y E X E Y X Y X E −=−+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E −所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎟⎠⎞⎜⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k −=⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛===∑∑∑∞=∞=−∞=+ 2222)11()1(1(a aa a a a a f =+−+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+−+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E ∑∑∑∞=∞=+∞=+−+++=+−++=11111)1()1(11)1()1()1(k k kk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k−=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎠⎞⎜⎝⎛=+=+=∑∑∑∞=+∞=−∞= 23)1(2)11(121(a a a a a aa a f +=+−+=+,所以2222)1(211)(a a a a a a X E +=−+⋅+=.222222)]([)()(a a a a a X E X E X D +=−+=−=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2x x πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===∫∫−∞+∞−πππϕxdx xdx x x X E∫−=−=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 1222202−=+=∫πππdx x x 3. 设随机变量X 和Y 的联合概率分布为(X, Y)(0, 0)(0, 1)(1, 0)(1, 1)(2, 0)(2, 1)P(X=x, Y=y) 0.10 0.15 0.25 0.20 0.15 0.15求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 sin π(X + Y)/20 1 -1 p0.45 0.40 0.1525.015.0)1(40.0145.002)(sin =×−+×+×=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎟⎠⎞⎜⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数X 0 1 2 3 p1/2 1/22 1/23 1/23P(X = 0) = P{第一个路口为红灯} =21P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎟⎠⎞⎜⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+−04),()(22y xxye y x ϕ其它,0>>y x求)(22Y X E +.解. ∫∫∫∫>>+−∞+∞−∞+∞−+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=∫∫∞+−rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ, Y ~其它l x ≤≤0⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0 (X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ其它l y x ≤≤,0. 又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l } ∫∫∫∫∫∫−+−=−=∞+∞−∞+∞−21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ ∫∫∫∫−+−=l ylxdy dx x y l dx dy y x l 02002])([1])([13212122022ldy y ldx x ll l =+=∫∫6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =−=−=∫∫∫∫∞+∞−∞+∞−≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =−=−=7. 设随机变量X 的分布密度为)(,21)(||+∞<<−∞=−−x e x x μϕ, 求E(X), D(X). 解. ∫∫∫∞+∞−−∞+∞−−−∞+∞−+−===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=∫∞+∞−−dt te t ||21+μμμ==∫∫∞+−∞+∞−−0||21dt e dt e t t∫∫∫∞+∞−−∞+∞−−−∞+∞−+−===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=∫+∞+−02dt e t t 2022μμμ+==∫∫∞+−∞+−dt e dt e t t 所以22)]([)()(2222=−+=−=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x , 求E(X), D(Y), ρ(X, Y).其它122≤+y x 解. 01),()(122===∫∫∫∫+∞∞−+∞∞−≤+y x xdxdy dxdy y x x X E πϕ01),()(122===∫∫∫∫+∞∞−+∞∞−≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====∫∫∫∫∫∫∞+∞−∞+∞−≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====∫∫∫∫∫∫∞+∞−∞+∞−≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===∫∫∫∫∞+∞−∞+∞−≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=−=X E X E X D , 41)]([)()(22=−=Y E Y E Y D0)()()()()(=−=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8),33.0)8.0()0(5===X P 41.0)8.0(2.05)1(4=××==X P , 20.0)8.0(2.0)2(3225=××==c X P 06.020.041.033.01)3(=−−−=≥X P又设Y 为该企业的利润, Y 的分布律为Y 10 5 0 -2p 0.33 0.41 0.20 0.06E(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度、数学期望和方差.)(t f 解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=−05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度:⎩⎨⎧≥≥=+−,00,0,25),()(5y x e y x f y x 关于T 的分布函数:∫∫≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)( 当 时0<t∫∫∫∫≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)( 当 时0≥t∫∫∫∫≥≥≤++−≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x xt y tx te e dx e e dy e dx e 550055050551|)(525−−−−−−−−−−=−==∫∫∫所以 ⎩⎨⎧<≥−−=−−0,00,51)(55t t te e t F t t T 所以T 的概率密度: ⎩⎨⎧<≥==−0,00,25)]'([)(5t t e t t F t f t T T 所以 ∫∫∞+∞−∞+−===5225)()(052dt e t dt t f t T E t T 所以∫∫∞+∞−∞+−=−=−=−=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT。
秘籍08 统计与概率
统计与概率是全国中考的必考内容!但总有一部分学生,因为粗心,因为混淆概念等的小错误就丢了分数。
1.从考点频率看,统计与概率是高频考点,通常考查条形统计图、扇形统计图和树状图。
2.从题型角度看,选择题、填空题较多,同时考查多个考点的综合性题目以解答题为主,分值9分左右!
中考数学关于统计与概率的知识点考察分析
1.
平均数
2.中位数:几个数据按从小到大的顺序排列时,
处于最中间的一个数据(或是中间两个数据的
平均数)是这组数据的中位数.
3.众数:一组数据中出现次数最多的那个数据.
4.方差
典例1.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康,某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭进行一次简单随机抽样调查.
(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;
②在全市医务工作者中以家庭为单位随机抽取;
③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调查发现,接受调查的家庭都有过期药品.现将有关数据呈现如图:
①m=,n=;
②补全条形统计图;
③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期
参加四个社团活动人数扇形统计图
请根据以上信息,回答下列问题:
(1)抽取的学生共有人,其中参加围棋社的有人;
(2)若该校有3200人,估计全校参加篮球社的学生有多少人?
(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表
法说明恰好抽到一男一女的概率.
中考统计与概率是基础题。
条形统计图和扇形统计图的结合经常考查求总量、画条形统计图、求扇形度数和估计等。
数据整理和分析常考的知识点有众数、中位数、平均数和方差。
有时也会考查频率和频数。
典例4.教育部在《大中小学劳动教育指导纲要(试行)》中明确要求:初中生每周课外生活和家庭生活中,劳动时间不少于3小时.某走读制初级中学为了解学生劳动时间的情况,对学生进行了随机抽样调查,并
请根据所给信息解答下列问题:
a____________,②b=____________,③θ=____________度;
(1)填空:①=
(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;
(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?
1.(2023·甘肃张掖·校联考一模)中国古典长篇小说四大名著是指《水浒传》、《三国演义》、《西游记》、《红楼梦》这四部巨著,它们承载着无数文化精华,代表了中国古典小说的巅峰,是悠悠中国文学史上灿烂辉
煌的一笔.甲、乙两人从四大名著中随机选择一本进行研读,假设选择时不受四本名著封面厚度等影响,且每一本被选到的可能性相同.
(1)求甲选择研读《三国演义》的概率;
(2)若甲先从四本名著中随机选择一本(不放回),乙从剩余三本中随机选择一本,求甲、乙两人选到的是《三国演义》和《红楼梦》的概率. 2.(2023·广东广州·统考一模)为锻炼学生的社会实践能力,某校开展五项社会实践活动,要求每名学生在规定时间内必须且只能参加其中一项活动,该校从全体学生中调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图(五个综合实践活动分别用A B C D E ,,,,表示):
(1)扇形统计图中的%n =________%,B 项活动所在扇形的圆心角的大小是________︒.
(2)甲同学想参加A 、B 、C 三个活动中的一个,乙同学想参加B 、C 、E 这三个活动中的一个,若他们随机抽选其中一个活动的概率相同,请用列表法或画树状图法,求他们同时选中同一个活动的概率. 3.(2023·安徽宿州·统考二模)自2023年3月1日起,《安徽省电动自行车管理条例》正式实施.某校为了解本校学生对该条例的知晓情况,对本校所有的学生进行了知识测试,并随机抽取了m 名学生的成绩,将测试成绩进行整理,分成以下六组(得分用x 表示):
A .7075x ≤<,
B .7580x ≤<,
C .8085x ≤<,
D .8590x ≤<,
E .9095x ≤<;
F .95100x ≤<. 根据统计的结果将成绩制成如下统计图,部分信息如图:
已知测试成绩F 组的全部数据为96,95,97,96,99,98.
请根据图表中的信息,解答下列问题:
(1)填空:b = ,抽取的学生竞赛成绩的中位数落在 组;
(2)补全频数分布直方图,并求此次抽取的学生竞赛成绩的平均数;
(3)若学校规定此次竞赛成绩在90分(含90分)以上为“优秀”,请你估计全校1800名学生中,此次竞赛成绩为“优秀”的学生人数.
5.(2023·江苏徐州·统考一模)校园安全问题受到全社会的广泛关注,教育局要求各学校加强对学生的安全教育,某中学为了了解学生对校园安全知识的了解程度(程度分为:A.十分熟悉、B.了解较多、C.了解较少、D.不了解),随机抽取了该校部分学生进行调查,统计整理并绘制成如下两幅不完整的统计图.
根据以上信息解答下列问题:
(1)本次接受调查的学生共有人,扇形统计图中A部分所对应的扇形圆心角是;
(2)请补全条形统计图;
(3)若该中学共有学生1800人,估计该校学生中对校园安全知识的了解程度达到A和B的总人数.6.(2023·江苏苏州·统考二模)2023年春节假期,苏州文旅全面复苏,接待人次、旅游收入双创新高:重点景区人气爆棚,持续高位运行.据统计,2023年1月21日到1月27日期间,苏州共接待游客约221万人次.其中著名打卡景区有,A:穹窿山景区,B:虎丘景区,C:灵岩山景区,D:西山景区,E:东山景区,F:其他.小志为了解哪个景区最受欢迎,随机调查了自己学校的部分同学,并根据调查结果绘制了两幅不完整的统计图.
请你根据统计图中的信息,解决下列问题:
(1)这次调查一共抽取了___名同学:扇形统计图中,旅游地点D所对应的扇形圆心角的度数____,并补全条形统计图.
(2)若小志所在学校共有3000名学生,请你根据调查结果估计该校最喜爱“穹窿山景区”与“灵岩山景区”的学
根据以上信息,回答下列问题:
(1)表中m=______,n=______;
(2)下列推断合理的是______;
①样本中两个年级数据的平均数相同,八年级数据的方差较小,由此可以推断该校八年级学生成绩的波动程度较小;
②若八年级小明同学的成绩是84分,可以推断他的成绩超过了该校八年级一半以上学生的成绩.
(3)竞赛成绩80分及以上记为优秀,该校七年级有600名学生,估计七年级成绩优秀的学生人数.13.(2023·四川成都·统考二模)2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”.我区某校在今年的“数学π节”活动中开展了如下四项活动:A.趣味魔方;B.折纸活动;C.数独比赛;D.唱响数学.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有_______人;
(2)请补全条形统计图;
(3)在数独比赛项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中随机选取两名参加数独决赛,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.
14.(2023·四川成都·统考一模)某学校在推进新课改的过程中,开设的体育社团活动课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了如图所示的两幅不完整的统计图.
(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是______度;
(2)补全条形统计图;
(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这4人中选2人了解他们对体育社团活动课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
15.(2023·浙江金华·统考一模)某校为提高九年级学生的体育成绩,针对跳绳项目进行了专门训练.为了解训练效果,在训练前后各组织了一次测试,并从中抽取了50名学生的数据制成了如下条形统计图,请回答下列问题:
某校九年级50名学生训练前后跳绳成绩条形统计图
(1)训练前成绩的中位数是分,训练后成绩的众数是分.
(2)训练后比训练前平均分增加了多少分?
(3)如果该校九年级有400名学生,那么估计训练后成绩为满分的人数有多少人?。