高中数学第二章平面向量27向量应用举例271点到直线的距离公式备课素材北师大版4!
- 格式:doc
- 大小:243.00 KB
- 文档页数:5
2.7.1 点到直线的距离公式整体设计教学分析1.按教材的安排,本大节是想让学生熟悉向量在数学和物理学中的广泛应用,理解向量的工具性,明确向量处于知识网络的交汇点.从高考角度看,向量与三角函数、解析几何等知识综合起来的题目频频出现在全国各地市的高考试卷上.这种与向量交汇的题目新颖别致,活力四射,正逐渐成为高考的新宠.但教材的处理是:点到直线的距离公式的向量证明作为一节,几何应用与物理应用放在一节.这不利于学生的理解掌握,因此在本教案设计时稍作调整,把点到直线的距离的向量证明及几何中的应用统一到向量在数学中的应用上,另一节专门探究向量在物理中的应用.2.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.向量在数学中有着广泛的应用,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:则向量方法的流程图可以简单地表述为:这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.3.用向量方法解决解析几何中的问题,其方法与用向量方法解决几何问题是一致的.本质上是把解析几何中的几何问题转化成向量运算,并且这种向量运算简单明快,令人耳目一新.有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.三维目标1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.2.通过点到直线的距离的向量证明方法,了解向量在解析几何中的应用.3.通过本节学习,让学生深刻理解向量在处理有关平面几何、解析几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.重点难点教学重点:用向量方法解决平面几何问题、解析几何问题.教学难点:如何将几何等实际问题化归为向量问题.课时安排1课时教学过程导入新课思路 1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何、解析几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用. 推进新课 新知探究 提出问题图1①你能用向量的知识证明数学2中学习过的点到直线的距离公式吗?②平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?③你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?④你能总结一下利用平面向量解决平面几何问题的基本思路吗? 活动:①教师引导学生画出直线,点.如图2所示,M(x 0,y 0)是直线外一定点,P(x,y)是直线上任意一点,由直线l:ax+by+c=0,可以取它的方向向量v=(b,-a).一般地,称与直线的方向向量垂直的向量为该直线的法向量. 设n =(a,b),因为n ·v =(a,b)·(b,-a)=ab-ab=0,所以n ⊥v ,故称n 为直线l 的法向量,与n 同向的单位向量为 n 0=),(||2222ba b b a a n n ++=.于是,点M(x 0,y 0)到直线l:ax+by+c=0的距离等于向量PM 在n 0方向上射影的长度: d=|PM ·n 0|=|(x 0-x,y 0-y)·(|),2222ba b ba a ++.|)(||)()(|22002200ba by ax by ax ba y yb x x a ++-+=+-+-=又因为P(x,y)为l 上任意一点,所以c=-(ax+by).②教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.③教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法. 证明:方法一:如图3.图3作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.∴A D=BC,AF=BE由于AC2=AE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·BE+BC2.∴AC2+BD2=2(AB2+BC2).方法二:如图4.图4以AB所在直线为x轴,A为坐标原点建立直角坐标系.设B(a,0),D(b,c),则C(a+b,c).∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2,|BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.∴|AC|2+|BD|2=2a2+2(b2+c2)=2(|AB|2+|AD|2).用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对边平行且相等,考虑到向量关系=-,=+,教师可点拨学生设=a,=b,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算||2与||2.因此有了方法三.方法三:设AB=a,AD=b,则=a+b,DB=a-b,|AB|2=|a|2,|AD|2=|b|2.∴||2=·=(a+b)·(a+b)=a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2.①同理|DB|2=|a|2-2a·b+|b|2.②观察①②两式的特点,我们发现,①+②得|AC|2+||2=2(|a|2+|b|2)=2(||2+||2),即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.④至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时地引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即 (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 这个“三步曲”用流程图表示为:讨论结果:①能.②能想出至少三种证明方法. ③略. 应用示例例1 求点P(1,2)到直线l:2x+y+1=0的距离.活动:本例是直接应用点到直线的距离公式.由学生自己完成. 解:由点到直线的距离公式,得d=512|12112|22=++⨯+⨯,所以点P(1,2)到直线l 的距离为5.点评:通过此题让学生归纳用向量方法解决解析几何问题的思路. 变式训练(2007广东梅州)若将函数y=f(x)的图像按向量a 平移,使图像上点的坐标由(1,0)变为(2,2),则平移后的图像的解析式为( )A.y=f(x+1)-2B.y=f(x-1)-2C.y=f(x-1)+2D.y=f(x+1)+2解析:由已知,得⎩⎨⎧==⎩⎨⎧+=+=,2,1,02,12k h k h 即平移公式为⎩⎨⎧+=+=,2',1'y y x x即⎩⎨⎧-=-=,2',1'y y x x 代入y=f(x),得y′-2=f(x′-1),即y′=f(x′-1)+2.∴平移后的图像的解析式为y=f(x-1)+2. 答案:C例2 如图5,ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?图5活动:为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR 、RT 、TC 之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR 、RT 、TC 的长度,让学生发现AR=RT=TC,拖动平行四边形的顶点,动态观察,发现AR=RT=TC 这个规律不变,因此猜想AR=RT=TC.事实上,由于R 、T 是对角线AC 上的两点,要判断AR 、RT 、TC 之间的关系,只需分别判断AR 、RT 、TC 与AC 的关系即可.又因为AR 、RT 、TC 、AC 共线,所以只需判断AR ,AT 与AC 之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR=RT=TC.解:如图5,设AB =a ,AD =b ,AR =r ,则AC =a +b . 由于与共线,所以我们设r=n(a +b ),n∈R . 又因为=-=(a -21b ),与共线, 所以我们设=m =m(a -21b ). 因为AR =AE +ER ,所以r=21b +m(a -21b ), 因此n(a +b )=21b +m(a -21b ),即(n-m)a +(n+21-m )b =0. 由于向量a ,b 不共线,要使上式为0,必须⎪⎩⎪⎨⎧=-+=-.021,0m n m n . 解得n=m=31.所以AR =31AC .同理,=31AC . 于是=31.所以AR=RT=TC. 点评:教材中本例重在说明是如何利用向量的办法找出这个相等关系的,因此在书写时可简化一些程序.指导学生在今后的训练中,不必列出三个步骤. 变式训练如图6,AD 、BE 、CF 是△ABC 的三条高.求证:AD 、BE 、CF 相交于一点.图6证明:设BE 、CF 相交于点H,并设AB =b ,AC =c ,AH =h ,则=h -b ,=h -c ,BC =c -b . 因为BH ⊥AC ,CH ⊥AB , 所以(h -b )·c =0,(h -c )·b =0, 即(h -b )·c =(h -c )·b . 化简,得h ·(c -b )=0. 所以AH ⊥.所以AH 与AD 共线,即AD 、BE 、CF 相交于一点H.例3 如图7,已知在等腰△ABC 中,BB′、CC′是两腰上的中线,且BB′⊥CC′,求顶角A 的余弦值.图7活动:教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?教师引导学生建系、找点的坐标,然后让学生独立完成.解:建立如图7所示的平面直角坐标系,取A(0,a),C(c,0),则B(-c,0),OA =(0,a),BA =(c,a),OC =(c,0),BC =(2c,0).因为BB′、CC′都是中线,所以'BB =21(BC +BA )=21[(2c,0)+(c,a)]=(2,23a c ). 同理,'CC =(-2,23ac ). 因为BB′⊥CC′,所以-44922a c +=0,a 2=9c 2.所以5499||||22222222=+-=+-=c c c c ca c a AC AB . 点评:比较是最好的学习方法.本例利用的方法与例题1有所不同,但其本质是一致的,教学中引导学生仔细体会这一点,比较两例的异同,找出其内在的联系,以达到融会贯通、灵活运用之功效. 变式训练(2004湖北高考)如图8,在Rt△ABC 中,已知BC=a.若长为2a 的线段PQ 以点A 为中点,问:与的夹角θ取何值时,·CQ 的值最大?并求出这个最大值.图8解:方法一,如图8.∵⊥,∴·=0.∵AP =-AQ ,BP =AP -AB ,CQ =AQ -AC , ∴·CQ =(-)·(AQ -) =·-·-·+· =-a 2-·+·=-a 2+·(-)=-a 2+21·BC =-a 2+a 2cos θ. 故当cos θ=1,即θ=0,与的方向相同时,·最大,其最大值为0. 方法二:如图9.图9以直角顶点A 为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a. 设点P 的坐标为(x,y), 则Q(-x,-y).∴BP =(x-c,y),CQ =(-x,-y-b),BC =(-c,b),PQ =(-2x,-2y). ∴BP ·=(x-c)(-x)+y(-y-b)=-(x 2+y 2)+cx-by.∵cos θ2a bycx -=, ∴cx -by=a 2cos θ. ∴·CQ =-a 2+a 2cos θ.故当cos θ=1,即θ=0,PQ 与BC 的方向相同时,BP ·CQ 最大,其最大值为0. 知能训练1.如图10,已知AC 为⊙O 的一条直径,∠ABC 是圆周角. 求证:∠ABC=90°.图10证明:如图10. 设AO =a ,OB =b ,则AB =a +b ,=a ,BC =a -b ,|a |=|b |. 因为·=(a +b )·(a -b )=|a |2-|b |2=0, 所以AB ⊥.由此,得∠ABC=90°.点评:充分利用圆的特性,设出向量.2.D 、E 、F 分别是△ABC 的三条边AB 、BC 、CA 上的动点,且它们在初始时刻分别从A 、B 、C 出发,各以一定速度沿各边向B 、C 、A 移动.当t=1时,分别到达B 、C 、A.求证:在0≤t≤1的任一时刻t 1,△DEF 的重心不变.图11证明:如图11.建立如图所示的平面直角坐标系,设A 、B 、C 坐标分别为(0,0),(a,0),(m,n).在任一时刻t 1∈(0,1),因速度一定,其距离之比等于时间之比,有111||||||||||||t t FA CF EC BE DB AD -====λ,由定比分点的坐标公式可得D 、E 、F 的坐标分别为(at 1,0),(a+(m-a)t 1,nt 1),(m-mt 1,n-nt 1).由重心坐标公式可得△DEF 的重心坐标为(3,3nm a +). 当t=0或t=1时,△ABC 的重心也为(3,3nm a +), 故对任一t 1∈[0,1],△DEF 的重心不变.点评:主要考查定比分点公式及建立平面直角坐标系,只要证△ABC 的重心和时刻t 1的△DEF的重心相同即可.课堂小结1.由学生归纳总结本节学习的数学知识有哪些:平行四边形向量加、减法的几何模型,用向量方法解决解析几何及平面几何问题的步骤,即“三步曲”.特别是这“三步曲”,要提醒学生理解领悟它的实质,达到熟练掌握的程度.2.本节都学习了哪些数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.作业课本习题2—7 A组1,2.设计感想1.本节设计的指导思想是:充分使用多媒体这个现代化手段,引导学生展开观察、归纳、猜想、论证等一系列思维活动.本节知识方法容量较大,思维含量较高,教师要把握好火候,恰时恰点地激发学生的智慧火花.2.由于本节知识方法在高考大题中得以直接的体现,特别是与其他知识的综合更是高考的热点问题.因此在实际授课时,注意引导学生关注向量知识、向量方法与三角知识、解析几何知识等的交汇,提高学生综合解决问题的能力.3.平面向量的运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等,它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.备课资料一、利用向量解决几何问题的进一步探讨用平面向量的几何运算处理平面几何问题有其独到之处,特别是处理线段相等,线线平行,垂直,点共线,线共点等问题,往往简单明了,少走弯路,同时避免了复杂,烦琐的运算和推理,可以收到事半功倍的效果.现举几例以供教师、学生进一步探究使用.1.简化向量运算例1 如图12所示,O为△ABC的外心,H为垂心,求证:OH=OA+OB+OC.图12证明:如图12,作直径BD,连接DA,DC,有=-,且DA⊥AB,DC⊥BC,AH⊥BC,CH⊥AB,故CH∥DA,AH∥DC,得四边形AHCD是平行四边形.从而AH=DC.又DC=OC-OD=OC+OB,得=OA+AH=OA+DC,即OH =++.2.证明线线平行例 2 如图13,在梯形ABCD 中,E,F 分别为腰AB,CD 的中点.求证:EF∥BC,且||=21(||+|BC |).图13证明:连接ED,EC,∵AD∥BC,可设=λ(λ>0), 又E,F 是中点,∴EA +EB =0, 且EF =21(ED +). 而+EC =+++BC =+BC =(1+λ)BC ,∴=21λ+BC .EF 与BC 无公共点, ∴EF∥BC.又λ>0, ∴||=21(|BC |+|λBC |)=21(||+|BC |). 3.证明线线垂直例3 如图14,在△ABC 中,由A 与B 分别向对边BC 与CA 作垂线AD 与BE,且AD 与BE 交于H,连接CH,求证:CH⊥AB.图14证明:由已知AH⊥BC,BH⊥AC, 有·=0,·AC =0. 又AH =AC +CH ,BH =BC +CH ,故有(+)·BC =0,且(BC +CH )·=0,两式相减,得CH ·(CB -CA )=0,即CH ·AB =0,∴CH ⊥AB . 4.证明线共点或点共线例4 求证:三角形三中线共点,且该点到顶点的距离等于各该中线长的32.图15解:已知:△ABC 的三边中点分别为D,E,F(如图15).求证:AE,BF,CD 共点,且CD CG BF BG AE AG ===32. 证明:设AE,BF 相交于点G,AG =λ1, 由定比分点的向量式有=111111λλλ+=++BA +)1(211λλ+, 又F 是AC 的中点,BF =21(BA +), 设BG =λ2BF , 则111λ+BA +)1(211λλ+=22λBA +22λ,∴⎪⎪⎩⎪⎪⎨⎧=+=+.2)1(2,21121121λλλλλ ∴.32,32,2)1(21121111====⇒+=+BF BG AF AG 即λλλλλ 又=CE CA 32)(2132)2(31111=+∙=+=++λλ, ∴C,G,D 共线,且32===CD CG BF BG AE AG . 二、备用习题1.有一边长为1的正方形ABCD,设AB =a ,BC =b ,AC =c,则|a -b +c |=___________.2.已知|a |=2,|b|=2,a 与b 的夹角为45°,则使λb -a 与a 垂直的λ=____________.3.在等边△ABC 中,AB =a ,BC =b ,CA =c ,且|a |=1,则a ·b +b ·c +c ·a =__________.4.已知三个向量=(k,12),OB =(4,5),OC =(10,k),且A,B,C 三点共线,则k=__________.5.如图16所示,已知矩形ABCD,AC 是对角线,E 是AC 的中点,过点E 作MN 交AD 于点M,交BC 于点N,试运用向量知识证明AM=CN.图166.已知四边形ABCD 满足|AB |2+|BC |2=|AD |2+|DC |2,M 为对角线AC 的中点.求证:||=||.7.求证:如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补. 参考答案: 1.2 2.2 3.-23 4.-2或11 5.证明:建立如图17所示的平面直角坐标系,设BC=a,BA=b,则C(a,0),A(0,b),E(2,2b a ).图17又设M(x 2,b),N(x 1,0),则=(x 2,0),=(x 1-a,0). ∵∥,=(2a -x 2,-2b ),=(x 1-2a ,-2b ), ∴(2a -x 2)×(-2b )-(x 1-2a )×(-2b )=0. ∴x 2=a-x 1. ∴||=22x =|x 2|=|a-x 1|=|x 1-a|. 而||=21)(a x =|x 1-a|, ∴|AM |=|CN |,即AM=CN.6.证明:设AB =a ,=b ,=c ,DA =d ,∵a +b +c +d =0,∴a +b =-(c +d ).∴a 2+b 2+2a ·b =c 2+d 2+2c ·d .① ∵||2+|BC |2=||2+||2,∴a 2+b 2=(-d )2+(-c )2=c 2+d 2.②由①②,得a ·b =c ·d .图18∵M 是AC 的中点,如图18所示, 则=21(d -c ),=21(b -a ). ∴||2=2=41(b 2+a 2-2a ·b ), |MD |2=DM 2=41(d 2+c 2-2c ·d ). ∴|MB |2=|MD |2. ∴||=||.7.解:已知OA∥O′A′,OB∥O′B′.求证:∠AOB=∠A′O′B′或∠AOB+∠A′O′B′=π.证明:∵OA∥O′A′,OB∥O′B′, ∴=λ'O (λ∈R ,λ≠0),OB =μ''B O (μ∈R ,μ≠0). , ±===λμμλ 当与''A O ,OB 与''B O 均同向或反向时,取正号,即cos∠AOB=cos∠A′O′B′.∵∠AOB,∠A′O′B′∈(0,π),∴∠AOB=∠A′O′B′. 当与''A O ,OB 与''B O 只有一个反向时,取负号,即cos∠AOB=-cos∠A′O′B′=cos(π-∠A′O′B′). ∵∠AOB,π-∠A′O′B′∈(0,π),∴∠AOB=π-∠A′O′B′.∴∠AOB+∠A′O′B′=π.∴命题成立.。
第二章平面向量及其应用1从位移、速度、力到向量........................................................................................ - 1 - 2从位移的合成到向量的加减法................................................................................ - 8 - 3从速度的倍数到向量的数乘.................................................................................. - 23 - 4平面向量基本定理及坐标表示.............................................................................. - 35 - 5从力的做功到向量的数量积.................................................................................. - 52 - 6平面向量的应用...................................................................................................... - 67 -1从位移、速度、力到向量学习任务核心素养1.理解向量的有关概念及向量的几何表示.(重点) 2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)通过向量的有关概念的学习,培养数学抽象素养.(1)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.(2)民航每天都有从北京飞往上海、广州、重庆、哈尔滨等地的航班.民航客机飞行一次,位移变化一次,由于飞行的距离和方向各不相同,因此,它们是不同的位移.阅读教材,结合上述情境回答下列问题:问题1:上述情境涉及哪些物理量?其特点是什么? 问题2:在物理中,位移与路程是同一个概念吗?为什么? 问题3:平行向量一定是相等向量吗? 知识点1 向量的概念数学中,我们把既有大小又有方向的量统称为向量,而把那些只有大小没有方向的量称为数量(如年龄、身高、体积等).两个数量可以比较大小,那么两个向量能比较大小吗? [提示] 数量之间可以比较大小,而两个向量不能比较大小. 知识点2 向量的表示方法(1)具有方向和长度的线段,叫作有向线段.以A 为起点,B 为终点的有向线段,记作AB →,线段AB 的长度也叫作有向线段AB →的长度,记作⎪⎪⎪⎪AB →.(2)向量可以用有向线段来表示.有向线段的长度表示向量的大小,即长度(也称模),记作|a |.箭头所指的方向表示向量的方向.知识点3 零向量与单位向量(1)长度为0的向量称为零向量,记作0或0→; (2)模等于1个单位长度的向量,叫作单位向量.1.把平行于某一条直线的所有向量归结到共同的起点,则终点构成的图形是________;若这些向量是单位向量,则终点构成的图形是________.[答案] 一条直线 两个点 知识点4 向量的基本关系(1)相等向量:长度相等且方向相同的向量,叫作相等向量,记作a =b . (2)平行向量:方向相同或相反的非零向量,也叫共线向量;a 平行于b ,记作a ∥b ;规定零向量与任一向量共线.(3)相反向量:长度相等且方向相反的向量,叫作相反向量,a 的相反向量记作-a ;规定零向量的相反向量是零向量.2.下列说法错误的是( ) A .若a =0,则||a =0 B .零向量是没有方向的C .零向量与任意向量平行D .零向量与任意向量垂直B [零向量的长度为0,方向是任意的,它与任何向量都平行、垂直,所以B 是错误的.]知识点5 向量的夹角(1)定义:已知两个非零向量a 和b ,在平面内选一点O ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角;(2)夹角的大小与向量共线、垂直的关系:θ=0°⇔a 与b 同向;θ=180°⇔a 与b 反向;θ=90°⇔a ⊥b ,规定:零向量与任一向量垂直.3.等边△ABC 中,AB→与AC →的夹角是________,AB →与BC →的夹角是________.[答案] 60° 120°类型1 向量的有关概念【例1】 判断下列命题是否正确,并说明理由. (1)a =b 的充要条件是|a |=|b |且a ∥b ;(2)若AB→=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; (3)在平行四边形ABCD 中,一定有AB →=DC →;(4)若向量a 与任一向量b 平行,则a =0.[解] (1)当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件,故(1)不正确.(2)AB→=DC →,A 、B 、C 、D 四点可能在同一条直线上,故(2)不正确. (3)在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,(3)正确.(4)零向量的方向是任意的,与任一向量平行,(4)正确.1.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.[跟进训练]1.已知O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .平行向量 C .模相等的向量 D .起点相同的向量C [⎪⎪⎪⎪AO →=⎪⎪⎪⎪BO →=⎪⎪⎪⎪CO →=r .] 类型2 向量的表示【例2】 (教材北师版P 75例1改编)一辆消防车从A 地去B 地执行任务,先从A 地向北偏东30°方向行驶2千米到D 地,然后从D 地沿北偏东60°方向行驶6千米到达C 地,从C 地又向南偏西30°方向行驶了2千米才到达B 地.(1)在如图所示的坐标系中画出AD →,DC →,CB →,AB →; (2)求B 地相对于A 地的位置向量.[解] (1)向量AD →,DC →,CB →,AB →,如图所示. (2)由题意知AD →=BC →, ∴AD 与BC 平行且相等, ∴四边形ABCD 为平行四边形, ∴AB →=DC →,∴B 地相对于A 地的位置向量为“北偏东60°,6千米”.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是向量的几何表示,必须确定起点、长度和终点,三者缺一不可.[跟进训练]2.在如图的方格纸中,画出下列向量.(每个小正方形的边长为1).(1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? [解] (1)(2)(3)的图象如图所示.(3)c 的终点轨迹是以C 为圆心,半径为2的圆. 类型3 共线向量与夹角【例3】 (教材北师版P 76例2改编)如图,设O 是正六边形ABCDEF 的中心,(1)分别写出图中所示与OA →,OB →,OC →相等的向量; (2)分别求出AB →与OB →,AB →与FE →的夹角的大小.[解] (1)OA →=CB →=DO →;OB →=DC →=EO →;OC →=AB →=ED →=FO →. (2)AB →与OB →的夹角的大小为60°,AB →与FE →的夹角的大小为60°.1.例3中与OA →模相等的向量有多少? [解] 由图知与OA →的模相等的向量有23个. 2.例3中向量OA →的相反向量有哪些?[解] 与向量OA →长度相等方向相反的向量有OD →,BC →,FE →,AO →. 3.例3中与向量OA →共线的向量有哪些?[解] 与向量OA →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 4.求出例3中AB →与OA →的夹角的大小 [解] AB →与OA →的夹角的大小为120°.判断一组向量是否相等,关键是看这组向量是否方向相同,长度相等,与起点和终点的位置无关.对于共线向量,则只要判断它们是否同向或反向即可.[跟进训练]3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中. (1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量; (3)求AE →与CD →夹角的度数. [解] (1)AF →=BE →=CD →,AE →=BD →. (2)DA →,CF →,FC →.(3)因为CD →=AF →,所以AE →与CD →夹角为∠EAF =45°.当堂达标1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量; ②向量a 与b 不共线,则a 与b 都是非零向量; ③若|a |>|b |,则a >b .A .0B .1C .2D .3B [①温度没有方向,所以不是向量,故①错;③向量不可以比较大小,故③错;②若a ,b 中有一个为零向量,则a 与b 必共线,故a 与b 不共线,则应均为非零向量,故②对.]2.(多选题)下列说法错误的是( ) A .若|a |=|b |,则a =±bB .零向量的长度是0C .长度相等的向量称为相等向量D .共线向量是在同一条直线上的向量ACD [对A ,当|a |=|b |时,由于a ,b 方向不一定相同,a =±b 未必成立,所以A 错误;对B ,零向量的长度是0,正确;对C ,长度相等的向量方向不一定相同,故C 错误;对D ,共线向量不一定在同一条直线上,故D 错误.故选ACD.]3.在四边形ABCD 中,AB →=DC →,且|AD →|=|AB →|,则这个四边形是( ) A .正方形 B .矩形 C .等腰梯形 D .菱形 D [由AB →=DC →可知AB ∥DC ,且|AB →|=|DC →|, 所以四边形ABCD 为平行四边形. 又|AD →|=|AB →|,所以平行四边形ABCD 为菱形.故选D.]4.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.[答案] OA →与BO →,AC →与BD →5.如图所示的菱形ABCD 中,对角线AC ,BD 相交于点O ,∠DAB =60°,则DA →与CA →的夹角为________;DA →与BC →的夹角为________.30° 180° [由图知,DA →与CA →的夹角与∠DAO 是对顶角,又因∠DAB =60°,根据菱形的几何性质,知∠DAO =30°,故DA →与CA →的夹角为30°,DA →与BC →为相反向量,故DA →与BC →的夹角为180°.]回顾本节内容,自我完成以下问题:1.向量与有向线段有怎样的联系与区别?[提示]用有向线段来表示向量,显示了图形的直观性,应该注意的是有向线段还是向量的表示,并不是说向量就是有向线段.有向线段的起点、终点是确定的,而向量仅由大小和方向确定,与起点位置无关.2.向量的“平行”与平面几何中的“平行”含义是否相同?[提示]共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“平行”的含义不同于平面几何中“平行”的含义.2从位移的合成到向量的加减法2.1向量的加法学习任务核心素养1.掌握向量加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量.(重点) 2.掌握向量加法的交换律和结合律,并会用它们进行向量计算.(难点)1.通过向量加法的概念及向量加法法则的学习,培养数学抽象素养.2.通过向量加法法则的应用,培养数学运算素养.有两条拖轮牵引一艘轮船,它们的牵引力F1,F2的大小分别是|F1|=3 000 N,|F2|=2 000 N,牵引绳之间的夹角为θ=60°(如图),如果只用一条牵引力为F3的拖轮来牵引,也能产生跟原来相同的效果.阅读教材,结合上述情境回答下列问题: 问题1:上述体现了向量的什么运算? 问题2:向量加法运算常用什么法则? 问题3:向量的加法运算结果还是向量吗? 知识点 向量求和法则及运算律 类别 图示几何意义向量求和的法则三角形法则已知不共线向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC →,则向量AC →叫作a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →平行四边形法则已知不共线向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加法的运算律 交换律 a +b =b +a结合律(a +b )+c =a +(b +c )1.根据图中的平行四边形ABCD ,验证向量加法是否满足交换律.(注:AB →=a ,AD →=b )[提示] ∵AC →=AB →+BC →,∴AC →=a +b . ∵AC →=AD →+DC →,∴AC →=b +a .∴a +b =b +a .2.根据图中的四边形ABCD ,验证向量加法是否满足结合律.(注:AB →=a ,BC →=b ,CD →=c )[提示] ∵AD →=AC →+CD →=(AB →+BC →)+CD →,∴AD →=(a +b )+c , 又∵AD →=AB →+BD →=AB →+(BC →+CD →), ∴AD →=a +(b +c ), ∴(a +b )+c =a +(b +c ).思考辨析(正确的画“√”,错误的画“×”) (1)0+a =a +0=a ;( ) (2)AB →+BC →=AC →;( ) (3)AB →+BA →=0;( )(4)在平行四边形ABCD 中,BA →+BC →=BD →;( ) (5)|AB →|+|BC →|=|AC →|.( )[答案] (1)√ (2)√ (3)√ (4)√ (5)×类型1 向量加法法则的应用【例1】 (教材北师版P 81例1改编)(1)如图①,用向量加法的三角形法则作出a +b ;(2)如图②,用向量加法的平行四边形法则作出a +b .[解] (1)在平面内任取一点O ,作OA →=a ,AB →=b ,再作向量OB →,则OB →=a +b .(2)在平面内任取一点O ,作OA →=a ,OB →=b ,再作平行OB →的AC →=b ,连接BC ,则四边形OACB 为平行四边形,OC →=a +b .用三角形法则求和向量,关键是抓住“首尾相连”,和向量是第一个向量的起点指向第二个向量的终点,平行四边形法则注意“共起点”.且两种方法中,第一个向量的起点可任意选取,可在某一个向量上,也可在其它位置.两向量共线时,三角形法则仍适用,平行四边形法则不适用.[跟进训练]1.已知向量a ,b ,c ,如图,求作a +b +c .[解] 在平面内任取一点O ,作OA →=a ,AB →=b ,BC →=c ,如图,则由向量加法的三角形法则,得OB →=a +b ,OC →=a +b +c .类型2 向量加法及其运算律 【例2】 化简下列各式: (1)BC →+AB →; (2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →.所给各式均为向量和的形式,因此可利用三角形法则和向量加法的运算律求解.[解] (1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=(DB →+BC →)+CD →=DC →+CD →=0或DB →+CD →+BC →=(DB →+CD →)+BC →=(CD →+DB →)+BC →=CB →+BC →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0.向量运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据“三角形法则”或“平行四边形法则”化简.[跟进训练]2.如图,在平行四边形ABCD 中(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________.(1)AC → (2)AO → (3)AD → (4)0 [(1)由平行四边形法则知,AB →+AD →=AC →.(2)AC →+CD →+DO →=AD →+DO →=AO →. (3)AB →+AD →+CD →=AC →+CD →=AD →.(4)∵BA →=CD →,∴AC →+BA →+DA →=AC →+CD →+DA →=AD →+DA →=0.] 类型3 向量加法的实际应用【例3】 (教材北师版P 81例2改编)在静水中船的速度为20 m/min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向.速度是向量,因此需要作出船的速度与水流速度的示意图,把实际问题转化为三角形中求角度问题.[解] 作出图形,如图.船速v 船与岸的方向成α角,由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=v 水=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船与水流方向成120°的角. 故船行进的方向是与水流的方向成120°的角的方向.1.若例3条件不变,则经过3小时,该船的实际航程是多少? [解] 由题意可知|AC →|=32|AD →|=32×20=103(m/min)=335(km/h), 则经过3小时,该船的实际航程是3×335=935(km).2.若例3的条件不变,改为若船沿垂直于水流的方向航行,求船实际行进的方向的正切值(相当于河岸的夹角).[解] 如图所示,|AD →|=|BC →|=|v 船|=20 m/min , |AB →|=|v 水|=10 m/min ,则tan ∠BAC =2,即为所求.应用向量解决平面几何问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.[跟进训练]3.作用在同一物体上的两个力F 1=60 N ,F 2=60 N ,当它们的夹角为120°时,这两个力的合力大小为( )A .30 NB .60 NC .90 ND .120 N [答案] B当堂达标1.已知四边形ABCD 是菱形,则下列等式中成立的是( ) A .AB →+BC →=CA →B .AB →+AC →=BC → C .AC →+BA →=AD →D .AC →+AD →=DC →C [由加法的平行四边形法则可知AB →+AD →=AC →,即(-BA →)+AD →=AC →,所以AC →+BA →=AD →.]2.(多选题)如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则下列等式中正确的是( )A .FD →+DA →+DE →=0B .AD →+BE →+CF →=0C .FD →+DE →+AD →=AB →D .AD →+EC →+FD →=BD →ABC [FD →+DA →+DE →=F A →+DE →=0, AD →+BE →+CF →=AD →+DF →+F A →=0, FD →+DE →+AD →=FE →+AD →=AD →+DB →=AB →, AD →+EC →+FD →=AD →+0=AD →=DB →≠BD →.故选ABC.]3.已知在矩形ABCD 中,AB =2,BC =3,则AB →+BC →+AC →的模等于________. 213 [|AB →+BC →+AC →|=|2AC →|=2|AC →|=213.] 4.根据图填空,其中a =DC →,b =CO →,c =OB →,d =BA →.(1)a +b +c =________; (2)b +d +c =________.(1)DB → (2)CA → [(1)a +b +c =DC →+CO →+OB →=DB →. (2)b +d +c =CO →+BA →+OB →=CA →.]5.若a 表示“向东走8 km ”,b 表示“向北走8 km ”,则: (1)|a +b |=________;(2)向量a +b 的方向是________.(1)82 (2)北偏东45°(或东北方向) [(1)如图所示,作OA →=a ,AB →=b ,则a +b =OA →+AB →=OB →,所以|a +b |=|OB →|=82+82=8 2. (2)因为∠AOB =45°, 所以a +b 的方向是东北方向.]回顾本节内容,自我完成以下问题:1.如何灵活选择三角形法则或平行四边形法则求向量的和?[提示](1)三角形法则和平行四边形法则都是求向量和的基本方法,两个法则是统一的,当两个向量首尾相连时常选用三角形法则,当两个向量共起点时,常选用平行四边形法则.(2)向量的加法满足交换律,因此在进行多个向量的加法运算时,可以按照任意的次序和任意的组合去进行.2.利用三角形法则求向量的加法时应注意什么问题?[提示]在使用向量加法的三角形法则时要特别注意“首尾相接”.和向量的特征是从第一个向量的起点指向第二个向量的终点.向量相加的结果是向量,如果结果是零向量,一定要写成0,而不应写成0.2.2向量的减法学习任务核心素养1.掌握向量减法的定义,理解相反向量的意义.(重点)2.掌握向量减法的运算及几何意义,能作出两个向量的差向量.(难点)1.通过向量减法的概念及减法法则的学习,培养数学抽象素养.2.通过向量减法法则的应用,培养数学运算素养.小明的父亲在台北工作,他经常乘飞机从台北到香港开会,再从香港到上海洽谈业务.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.阅读教材,综合上述情境回答下列问题: 问题1:上述问题中,b 能用a ,c 表示吗?问题2:方向相同且模相等的两个向量称为什么向量?方向相反且模相等的两个向量称为什么向量?问题3:零向量的相反向量是什么? 问题4:向量减法是向量加法的逆运算吗? 知识点1 相反向量定义把与向量a 长度相等、方向相反的向量,叫作向量a 的相反向量,记作-a规定:零向量的相反向量仍是零向量. 性质(1)-(-0)=0;(2)a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a .知识点2 向量减法 (1)定义向量a 减向量b 等于向量a 加上向量b 的相反向量,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法.(2)几何意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量.向量的减法可以转化为向量的加法来运算吗?[提示] 因为向量的减法是向量的加法的逆运算,所以向量的减法可以转化为向量的加法来运算.1.思考辨析(正确的画“√”,错误的画“×”) (1)BA →=OA →-OB →; ( ) (2)相反向量是共线向量; ( ) (3)a -b 的相反向量是b -a ; ( ) (4)|a -b |≤|a +b |≤|a |+|b |.( )[答案] (1)√ (2)√ (3)√ (4)√2.OP →-QP →+PS →+SP →=( ) A .QP → B .OQ → C .SP → D .SQ → [答案] B类型1 向量减法的几何作图【例1】 (教材北师版P 84例4改编)如图,已知向量a ,b ,c 不共线,求作向量a +b -c .[解] 如图所示,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .若本例条件不变,则a -b -c 如何作?[解] 如图,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .再作CA →=c ,则BC →=a -b -c .利用向量减法进行几何作图的方法(1)已知向量a ,b ,如图①所示,作OA →=a ,OB →=b ,则BA →=a -b .,(2)利用相反向量作图,通过向量求和的平行四边形法则作出a -b .如图②所示,作OA →=a ,OB →=b ,AC →=-b ,则OC →=a +(-b ),即BA →=a -b .[跟进训练]1.如图所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c ,求作:(1)向量b +c -a ; (2)向量a -b -c .[解] (1)以OB →,OC →为邻边作▱OBDC ,如图,连接OD ,AD ,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .(2)由a -b -c =a -(b +c ),如图,作▱OBEC ,连接OE ,则OE →=OB →+OC →=b +c ,连接AE ,则EA →=a -(b +c )=a -b -c .类型2 向量减法的运算 【例2】 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).[解] (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0.(2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-DB →)=CB →+BC →=0.化简向量的和差的方法(1)如果式子中含有括号,括号里面能运算的直接运算,不能运算的去掉括号. (2)可以利用相反向量把差统一成和,再利用三角形法则进行化简.(3)化简向量的差时注意共起点,由减数向量的终点指向被减数向量的终点. 提醒:利用图形中的相等向量代入、转化是向量化简的重要技巧.[跟进训练]2.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →).[解] (1)(BA →-BC →)-(ED →-EC →)=CA →-CD →=DA →. (2)(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-DC →+(DO →+OB →)=AC →+BA →-DC →+DB → =BC →-DC →+DB →=BC →+CD →+DB →=BC →+CB →=0. 类型3 向量加减法的综合应用【例3】 (1)已知|a |=1,|b |=2,|a +b |=5,则|a -b |=________. (2)(教材北师版P 85例6改编)已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OD →.(1)5 [(1)设AB →=a ,AD →=b ,AC →=a +b ,则四边形ABCD 是平行四边形. 又∵(5)2=12+22,∴平行四边形ABCD 为矩形, ∴|a -b |=⎪⎪⎪⎪DB →=|AC →|= 5.] (2)[解]如图所示:OD →=OA →+AD →=a +BC →=a +(OC →-OB →)=a +c -b .用已知向量表示未知向量的方法用图形中的已知向量表示所求向量,应结合已知和所求,联想相关的法则和几何图形的有关定理,将所求向量反复分解,直到全部可以用已知向量表示即可.[跟进训练]3.设平面内四边形ABCD 及任一点O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d 且|a -b |=|a -d |.试判断四边形ABCD 的形状.[解] 由a +c =b +d 得a -b =d -c ,即OA →-OB →=OD →-OC →, ∴BA →=CD →,于是AB 与CD 平行且相等, ∴四边形ABCD 为平行四边形.又|a -b |=|a -d |,从而|OA →-OB →|=|OA →-OD →|, ∴|BA →|=|DA →|,∴四边形ABCD 为菱形.当堂达标1.在△ABC 中,AB →=a ,AC →=b ,则BC →=( ) A .a +b B .a -b C .b -aD .-a -bC [BC →=AC →-AB →=b -a .]2.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c [答案] A3.(多选题)下列四个式子中可以化简为AB →的是( ) A .AC →+CD →-BD → B .AC →-CB → C .OA →+OB →D .OB →-OA →.AD [因为AC →+CD →-BD →=AD →-BD →=AD →+DB →=AB →,所以A 正确;因为OB →-OA →=AB →,所以D 正确,故选AD.]4.设正方形ABCD 的边长为2,则|AB →-CB →+AD →-CD →|=________. 42 [如图,原式=|(AB →+AD →)-(CB →+CD →)|=|AC →-CA →|=|AC →+AC →|=2|AC →|, ∵正方形边长为2, ∴2|AC →|=4 2.]5.已知非零向量a ,b 满足|a +b |=|a -b |,则a 与b 的位置关系为________.(填“平行”或“垂直”)垂直 [如图所示,设OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形, 则|a +b |=|OC →|, |a -b |=|BA →|, 又|a +b |=|a -b |, 则|OC →|=|BA →|,即平行四边形OACB 的对角线相等, ∴平行四边形OACB 是矩形, ∴a ⊥b .]回顾本节内容,自我完成以下问题: 1.向量减法的实质是什么?[提示]向量减法是向量加法的逆运算.即减去一个向量等于加上这个向量的相反向量.2.在用三角形法则作向量减法时,应注意什么问题?[提示]在用三角形法则作向量减法时,要注意“差向量连接两向量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,区分a-b与b-a.3从速度的倍数到向量的数乘3.1向量的数乘运算学习任务核心素养1.掌握向量数乘的运算及其运算律.(重点)2.理解数乘向量的几何意义.(重点)1.通过向量数乘概念的学习,培养数学抽象素养;2.通过向量数乘的运算及其运算律的应用,培养数学运算素养.夏季的雷雨天,我们往往先看到闪电,后听到雷声,这说明声速与光速的大小不同,光速是声速的88万倍.阅读教材,结合上述情境回答下列问题:问题1:若设光速为v1,声速为v2,将向量类比于数,则v1与v2有何关系?问题2:实数与向量相乘结果是实数还是向量?(1)实数λ与向量a的乘积是一个向量,记作λa.(2)|λa|=|λ||a|.(3)方向:λa 的方向⎩⎨⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反;当λ=0时,0a =0.(4)几何意义:当λ>0时,表示向量a 的有向线段在原方向伸长或缩短为原来的|λ|倍;当λ<0时,表示向量a 的有向线段在反方向伸长或缩短为原来的|λ|倍.若a ∥b ,b ∥c ,那么一定有a ∥c 吗?[提示] 不一定,若b =0,此时必有a ∥b ,b ∥c 成立,但a 与c 不一定共线.1.已知|a |=2,|b |=3,若两向量方向相同,则向量a 与向量b 的关系为b=________a .32 [由于|a |=2,|b |=3,则|b |=32|a |,又两向量同向,故b =32a .] 知识点2 数乘运算的运算律 设λ,μ为实数,a ,b 为向量,则 (1)(λ+μ)a =λ a +μ a ; (2)λ(μa )=(λμ)a ; (3)λ(a +b )=λa +λb .向量的线性运算:向量的加法、减法和数乘的综合运算,通常称为向量的线性运算(或线性组合).2.思考辨析(正确的画“√”,错误的画“×”) (1)若λa =0则λ=0.( ) (2)对于非零向量a ,向量-2a 与向量a 方向相反. ( ) (3)当a 是非零向量,-1||a a 是与向量a 反向的单位向量.( )[答案] (1)× (2)√ (3)√类型1 向量数乘运算的定义【例1】 已知a 、b 为非零向量,试判断下列各命题的真假,并说明理由. (1)2a 的方向与a 的方向相同; (2)|-2a |=32|3a |;(3)1||a a 是单位向量; (4)a +b 与-a -b 是一对相反向量. [解] (1)真命题.∵2>0, ∴2a 的方向与a 的方向相同. (2)假命题.|-2a |=||-2|a |=2|a |=23|3a |. (3)真命题.⎪⎪⎪⎪⎪⎪1||a a =⎪⎪⎪⎪⎪⎪1||a ||a =1||a ||a =1.(4)真命题.∵a +b 与-a -b 是一对相反向量,且-(a +b )=-a -b , ∴a +b 与-a -b 是一对相反向量.对数乘向量的三点说明(1)向量数乘运算的几何意义是把a 沿着a 的方向或a 的反方向扩大或缩小. (2)当λ=0或a =0时,λa =0.反之,也成立, (3)数乘向量的运算不满足消去律.[跟进训练]1.已知λ∈R ,a ≠0,则在下列各命题中,正确的命题有( ) ①当λ>0时,λa 与a 的方向一定相同; ②当λ<0时,λa 与a 的方向一定相反; ③当λa 与a 的方向相同时,λ>0; ④当λa 与a 的方向相反时,λ<0.A .1个B .2个C .3个D .4个D [由λ与向量a 的乘积λa 的方向规定,易知①②③④正确.] 类型2 向量的线性运算【例2】 (教材北师版P 88例1改编)计算下列各式: (1)2(a +b )-3(a -b ); (2)3(a -2b +c )-(2a +b -3c ); (3)12⎣⎢⎡⎦⎥⎤(3a +2b )-⎝ ⎛⎭⎪⎫a +12b -2⎝ ⎛⎭⎪⎫12a +38b .[解] (1)原式=2a -3a +2b +3b =-a +5b ; (2)原式=3a -6b +3c -2a -b +3c =a -7b +6c ; (3)原式=12⎝ ⎛⎭⎪⎫2a +32b -a -34b =a +34b -a -34b =0.1.向量的数乘运算类似于代数多项式的运算,主要是“合并同类项”,但这里的“同类项”指向量,实数看作是向量的系数.2.对于线性运算,把握运算顺序为:正用分配律去括号→逆用分配律合并.[跟进训练]2.(1)化简23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b );(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). [解] (1)原式=23⎣⎢⎡⎦⎥⎤4a -3b +13b -32a +74b=23⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4-32a +⎝ ⎛⎭⎪⎫-3+13+74b =23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b ;(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b=-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .类型3 向量线性运算的应用【例3】 已知任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点.求证:EF →=12(AB →+DC →).1.若D 是△ABC 的边BC 的中点,如何用AB →,AC →表示AD →? [提示] 由三角形法则知, AD →=AB →+BD →, AD →=AC →+CD →,两式相加得2AD →=⎝⎛⎭⎫AB →+BD →+⎝⎛⎭⎫AC →+CD →=⎝⎛⎭⎫AB →+AC →+⎝⎛⎭⎫BD →+CD →=AB →+AC →,所以AD →=12⎝⎛⎭⎫AB →+AC →.2.在△ABC 中,若AD →=12⎝⎛⎭⎫AB →+AC →,则D 是否是△ABC 的边BC 的中点? [提示] 设D ′是边BC 的中点,则AD ′→=12⎝⎛⎭⎫AB →+AC →,又AD →=12⎝⎛⎭⎫AB →+AC →, 则AD ′→=AD →, 所以D 与D ′重合, 所以D 是边BC 的中点.[证明] 取以点A 为起点的向量,应用三角形法则求证,如图. ∵E 为AD 的中点, ∴AE →=12AD →.∵F 是BC 的中点,∴AF →=12(AB →+AC →). 又∵AC →=AD →+DC →,∴AF →=12(AB →+AD →+DC →)=12(AB →+DC →)+12AD →. ∴EF →=AF →-AE →=12(AB →+DC →)+12AD →-12AD →=12(AB →+DC →).用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.[跟进训练]3.在△ABC 中,D 、E 分别是AB 、AC 的中点.求证:DE →=12BC →. [证明] ∵D 为AB 的中点, ∴AD →=12AB →.∵E 是AC 的中点,∴AE →=12AC →.∴DE →=AE →-AD →=12AC →-12AB →=12⎝⎛⎭⎫AC →-AB →=12BC →.当堂达标1.(多选题)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n .AB [A 和B 属于数乘运算对向量与实数的分配律,正确;C 中,若m =0,则不能推出a =b ,错误;D 中,若a =0,则m ,n 没有关系,错误.]2. 在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( )A .23a +43bB .23a -23bC .23a -43bD .-23a +43bA [由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .]3.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A .BC → B .12AD → C .AD →D .12BC →C [EB →+FC →=EC →+CB →+FB →+BC →=EC →+FB →=12(AC →+AB →)=12·2AD →=AD →.] 4.若2⎝ ⎛⎭⎪⎫x -13a -12(c +b -3x )+b =0,其中a 、b 、c 为已知向量,则未知向量x =________.421a -17b +17c [据向量的加法、减法整理、运算可得x =421a -17b +17c .] 5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.则OP →=________.-13OA →+43OB → [OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.]回顾本节内容,自我完成以下问题: 1.数乘向量的运算中应注意什么问题?[提示] 实数λ与向量a 可作数乘,但实数λ不能与向量a 进行加、减运算,如λ+a ,λ-a 都是无意义的.还必须明确λa 是一个向量,λ的符号与λa 的方向相关,|λ|的大小与λa 的模有关.2.利用数乘运算的几何意义时应注意什么问题?[提示] 利用数乘运算的几何意义可以得到两个向量共线的判定定理及性质定理,一定要注意,向量的共线(平行)与直线共线(或平行)的区别;常用向量共线解决平面几何中的“平行”或“点共线”问题.。
2.7平面向量应用举例(2课时)一.教学背景:经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些过程,体会向量是一种处理几何问题、物理问题等工具,使学生的运算能力和解决实际问题的能力得到进一步发展。
二.教材分析:本节内容包括两部分,第一部分是向量在平面几何问题方面的应用,第二部分是向量在物理方面的应用。
向量在几何中的典型应用,前面有所提及,这里选择两个重要内容,一是距离公式的求法,二是三线共点的常见问题,通过这两个例子,突显出计算长度、夹角度数时的向量优势。
教材列举了两个向量在物理中应用的例子:运动学问题和力学问题。
其中力学问题是一个原汁原味的物理表述和物理解法表述,从而可以清楚地看出向量的直接作用。
教学目标:三.1.知识与技能(1)用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具.(2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力.2.过程与方法通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化.3.情感态度价值观四、通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生知识迁移的能力、运算能力和解决实际问题的能力.教学重、难点用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用.学法与教学用具五、学法:(1)自主性学习法、探究式学习法(2)教学用具:电脑、投影仪.四.教学设想【探究新知】[展示投影]同学们阅读教材P99---102的相关内容思考:1.直线的向量方程是怎么来的?2.什么是直线的法向量?【巩固深化,发展思维】教材P100练习1、2、3题一、向量方法在平面几何中的运用[展示投影]例题讲评(教师引导学生去做)例1.如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点。
7 向量应用举例[核心必知]1.点到直线的距离公式若M (x 0,y 0)是一平面上一定点,它到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.2.直线的法向量(1)定义:称与直线的方向向量垂直的向量为该直线的法向量.(2)公式:设直线l :Ax +By +C =0,取其方向向量v =(B ,-A ),则直线l 的法向量n =(A ,B ).3.向量的应用向量的应用主要有两方面:一是在几何中的应用;二是在物理中的应用.[问题思考]1.教材中在证明点到直线的距离公式时,为什么有d =|·n 0|?提示:如图所示,过M 作MN ⊥l 于N ,则d =||.在Rt △MPN 中,||是在方向上的射影的绝对值,则||=|||cos ∠PMN |=|||×1×cos∠PMN | =||×|n 0|×|cos∠PMN |=|·n 0|∴d =|·n 0|.2.你认为利用向量方法解决几何问题的关键是什么?提示:关键是如何将几何问题转化为向量问题,对具体问题是选用向量几何法还是坐标法解决.3.利用向量可以解决哪些物理问题?提示:利用向量可以解决物理中有关力、速度、位移等矢量的合成问题以及力对物体做功的问题等.讲一讲1.已知Rt △ABC ,∠C =90°,设AC =m ,BC =n ,若D 为斜边AB 的中点, (1)求证:CD =12AB ;(2)若E 为CD 的中点,连接AE 并延长交BC 于F ,求AF 的长度(用m ,n 表示).[尝试解答] 以C 为坐标原点,以边CB 、CA 所在的直线分别为x 轴、y 轴建立平面直角坐标系,如图所示,A (0,m ),B (n,0),AB =(n ,-m ).(1)证明:∵D 为AB 的中点, ∴D (n 2,m2),∴|=12 n 2+m 2,|AB |=m 2+n 2,∴|CD |=12|AB |,即CD =12AB .(2)∵E 为CD 的中点,所以E (n 4,m4),设F (x,0),则AE =(n4,-34m ),AF =(x ,-m ),∵A 、E 、F 共线,∴AF =λAE ,解得(x ,-m )=λ(n 4,-34m ),∴⎩⎪⎨⎪⎧x =n4λ,-m =-34mλ,即x =n3,即F (n3,0).AF =(n3,-m ). ∴|AF |=13 n 2+9m 2.即AF =13n 2+9m 2.利用向量解决几何中常见问题的基本策略:(1)证明线段相等,转化为证明向量的长度相等;求线段的长,转化为求向量的模; (2)证明线段、直线平行,转化为证明向量平行; (3)证明线段、直线垂直,转化为证明向量垂直; (4)几何中与角相关的问题,转化为向量的夹角问题;(5)对于有关长方形、正方形、直角三角形等平面几何问题,通常以相互垂直的两边所在直线分别为x 轴和y 轴建立平面直角坐标系,通过向量的坐标运算解决平面几何问题.练一练1.已知▱ABCD 中,AD =1,AB =2,对角线BD =2,试求对角线AC 的长.讲一讲2.已知过点A (0,2),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M ,N 两点,若O 为坐标原点,且=12,求k 及直线l 的方程.[尝试解答] 设M (x 1,y 1),N (x 2,y 2). 由题意知,l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x -22+y -32=1得,(1+k 2)x 2-(4+2k )x +4=0. 由根与系数的关系得,x 1+x 2=4+2k 1+k 2,x 1x 2=41+k2 ∵=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=12.y 1=kx 1+2,y 2=kx 2+2∴x 1x 2+(kx 1+2)(kx 2+2)=0, 即(1+k 2)x 1x 2+2k (x 1+x 2)-8=0, ∴(1+k 2)×41+k 2+2k ×4+2k 1+k 2-8=0,解得k =12,∴直线l 的方程为y =12x +2,即x -2y +4=0.向量在解析几何中的应用主要表现在两个方面:一是作为题设条件;二是作为解决问题的工具使用,充分体现了几何问题代数化的思想,是高考考查的热点之一.解决此类问题的思路是转化为代数运算,其转化途经主要有两种:一是向量平行或垂直的坐标表示;二是向量数量积的公式和性质.练一练2. 过点M (12,1)的直线l 与圆C :(x -1)2+y 2=4交于A 、B 两点,C 为圆心,当最大时,求直线l 的方程.解:可知圆C 的圆心C (1,0),半径r =2 ∴=cos ∠ACB=2×2cos ∠ACB =4cos ∠ACB 当最大时,∠ACB 最小.连接CM ,当AB ⊥CM 时,∠ACB 最小 这时直线l 的法向量为:=(12,1)-(1,0)=(-12,1). ∴l 的方向向量为(1,12),∴l 的斜率为k =12故直线l 的方程为y -1=12(x -12),即2x -4y +3=0.讲一讲3. 一架飞机从A 地向北偏西60°方向飞行1 000 km 到达B 地,因大雾无法降落,故转向C 地飞行,若C 地在A 地的南偏西60°方向,并且A 、C 两地相距2 000 km ,求飞机从B 地到C 地的位移.=2 0002+1 0002-2×1 000×2 000×12=3×106有∠ABD =60°, 于是∠DBC =30°.所以飞机从B 地到C 地的位移的大小为1 000 3 km ,方向为南偏西30°.法二:建立如图所示的坐标系,并取a =500,则AB =(2a cos 150°,2a sin 150°) =(-3a ,a ),AC =(4a cos 210°,4a sin 210°)=(-23a ,-2a ),∴BC =(-3a ,-3a ),|BC |=23a , 即|BC |=1 000 3 (km).又cos C ==6a 2+6a24a ×23a =32,C =30°, 结合图形可知BC 的方向为南偏西30°,所以飞机从B 地到C 地的位移的大小为1 000 3 km ,方向为南偏西30°.1.由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,所以可以用向量的知识来解决;2.物理中的功是一个标量,它是力F与位移s的数量积,即W=F·s=|F|·|s|cos θ.练一练3.已知一物体在共点力F1=(lg 2,lg 2),F2=(lg 5,lg 2)的作用下产生的位移s=(2lg 5,1),求这两个共点力对物体做的功W的值.解:W=(F1+F2)·s,又F1+F2=(1, 2lg 2),s=(2lg 5,1),所以W=2lg 5+2lg 2=2.如图,在细绳O处用水平力F2缓慢拉起所受重力G的物体,绳子与铅垂方向的夹角为θ,绳子所受到的拉力为F1,求:(1)|F1|、|F2|随角θ的变化而变化的情况;(2)当|F1|≤2|G|时,θ角的取值范围.[巧思] 力的合成与分解满足平行四边形法则,合理使用平行四边形法则及三角形法则对各量间进行分析和运算,从三角函数的角度分析力的变化,从不等关系研究角的范围.[妙解](1)如图所示,由力的平衡及向量加法的平行四边形法则,知-G=F1+F2.解直角三角形,得|F1|=|G|cos θ,|F2|=|G|·tan θ.当θ从0°趋向于90°时,|F1|、|F2|皆逐渐增大.(2)令|F1|=|G|cos θ≤2|G|,得cos θ≥12.又0°≤θ<90°,∴0°≤θ≤60°.1.过点A(2,3),且法向量为n=(2,1)的直线方程为( )A.2x+y-7=0 B.2x+y+7=0C.x-2y+4=0 D.x-2y-4=0解析:选A 由题意知,可取直线的方向向量为v=(1,-2),∴直线的方程为y-3=-2(x-2),即2x+y-7=0.2.点P在平面上做匀速直线运动,速度向量v=(4,-3)(即点P的运动方向与v相同,且每秒移动的距离为|v|个单位).设开始时点P的坐标为(-10,10),则5秒后点P的坐标为( ) A.(-2,4) B.(-30,25)C.(10,-5) D.(5,-10)解析:选C 设5秒后点P运动到点A,则=5v=(20,-15),∴OA=(20,-15)+(-10,10)=(10,-5).3.已知△ABC,=b,且a·b<0;则△ABC的形状为( )A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形解析:选A 由a·b=cos∠BAC<0知cos∠BAC<0,∴∠BAC为钝角.4.河水的流速为2 m/s,一艘小船想以垂直于河岸方向10 m/s的速度驶向对岸,则小船的静水速度大小为________.解析:设小船的静水速度为v,依题意|v|=22+102=226.答案: 226 m/s5.一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态,已知F1、F2成60°角,且F1、F2的大小分别为2和4,则F3的大小为________.解析:由向量加法的平行四边形法则知F3的大小等于以F1、F2为邻边的平行四边形的对角线的长,故|F3|2=|F1|2+|F2|2+2|F1||F2|·cos 60°=4+16+8=28,∴|F3|=27.答案: 276.已知△ABC为直角三角形,设AB=c,BC=a,CA=b.若c=90°,试证:c2=a2+b2.证明:以C点为原点建立如图所示的直角坐标系.则A(b,0),B(0,a).∴AB=(0,a)-(b,0)=(-b,a).∴|AB|=-b2+a2=c.故c2=a2+b2.一、选择题1.已知直线l:mx+2y+6=0,向量(1-m,1)与l平行,则实数m的值是( )A.-1 B.1C.2 D.-1或2解析:选D 取直线l的方向向量v=(-2,m),则m(1-m)-1×(-2)=0,即m2-m-2=0,得m=-1或m=2.2.用两条成60°的绳索拉船,每条绳的拉力大小是12 N,则合力的大小为(精确到0.1 N)( )A.20.6 N B.18.8 NC .20.8 ND .36.8 N解析:选C设两条绳索的拉力F 1,F 2的合力为F 合.如图所示,则=12,F 合=,连接BD 交AC 于M ,∠BAM =30°,∴|F 合|=2||=2×12cos 30°=123≈20.8 N. 3.在△ABC 中,若=0,则△ABC 为( )A .正三角形B .直角三角形C .等腰三角形D .无法确定4.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,现加上一个力f 4,则f 4等于( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D 由题可知f 4=-(f 1+f 2+f 3)=-[(-2,-1)+(-3,2)+(4,-3)]=-(-1,-2)=(1,2).二、填空题5.已知F =(2,3)作用于一物体,使物体从A (2,0)移动到B (-2,3),则力F 对物体做的功为________.解析:∵AB =(-4,3),∴W =F ·s =F ·AB =(2,3)·(-4,3)=-8+9=1.答案:1 6.已知直线l 经过点(-5,0)且方向向量为(2,-1),则原点O 到直线l 的距离为________.解析:可知直线l 的斜率k =-12, ∴l 的方程为y =-12(x +5),即x +2y +5=0, ∴原点到l 的距离为d =512+22=1.答案:17.在边长为1的正三角形中,设,则=________.=12(-1-13×1×1×cos 60°+23×1) =-14. 答案:-148.已知直线ax +by +c =0与圆x 2+y 2=1相交于A 、B 两点,且|AB |=3,则=__________.解析:如图,取D 为AB 的中点,∵OA =1,AB =3,∴∠AOD =π3. ∴∠AOB =2π3. ∴=1×1×cos 2π3=-12. 答案:-12三、解答题9.一辆汽车在平直公路上向西行驶,车上装着风速计和风向标,测得风向为东偏南30°,风速为4 m/s ,这时气象台报告的实际风速为2 m/s ,试求风的实际方向和汽车速度的大小.解:依据物理知识,有三对相对速度,车对地的速度为v 车地,风对车的速度为v 风车,风对地的速度为v 风地,风对地的速度可以看成车对地与风对车的速度的合速度,即v 风地=v 风车+v 车地如图所示,根据向量求和的平行四边形法则,可知表示向量v风地的有向线段AD 对应▱ABDC的对角线.∵|AC |=4,∠ACD =30°,∴∠ADC =90°.在Rt △ADC 中,|DC |=|AC |cos 30°=2 3.∴风的实际方向是正南方,汽车速度的大小为2 3 m/s.10.试用向量法证明:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍. 证明:设△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,如图:=b 2-2bc cos A +c 2,即a 2=b 2+c 2-2bc cos A .同理可证:b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.法二:如图,以A为原点,AB所在直线为x轴,建立直角坐标系,则:C(b cos A,b sin A),B(c,0),∴=(b cos A,b sin A)-(c,0)=(b cos A-c,b sin A),∴a2=||2=(b cos A-c)2+(b sin A)2=b2cos2A-2bc cos A+c2+b2sin2A,=b2-2bc cos A+c2,即:a2=b2+c2-2bc cos A.同理可证:b2=c2+a2-2ca cos B,c2=a2+b2-2ab cos C.。
2.7.1 点到直线的距离公式备课资料一、利用向量解决几何问题的进一步探讨用平面向量的几何运算处理平面几何问题有其独到之处,特别是处理线段相等,线线平行,垂直,点共线,线共点等问题,往往简单明了,少走弯路,同时避免了复杂,烦琐的运算和推理,可以收到事半功倍的效果.现举几例以供教师、学生进一步探究使用. 1.简化向量运算例1 如图12所示,O 为△ABC 的外心,H 为垂心,求证:OH =OA +OB +OC .图12证明:如图12,作直径BD,连接DA,DC,有OB =-OD , 且DA⊥AB,DC⊥BC,AH⊥BC,CH⊥AB,故CH∥DA,AH∥DC,得四边形AHCD 是平行四边形. 从而=.又DC =OC -OD =OC +OB ,得OH =OA +=OA +DC , 即OH =++.2.证明线线平行例 2 如图13,在梯形ABCD 中,E,F 分别为腰AB,CD 的中点.求证:EF∥BC,且||=21(||+|BC |).图13证明:连接ED,EC,∵AD∥BC,可设=λ(λ>0), 又E,F 是中点,∴EA +EB =0, 且EF =21(ED +). 而+EC =+++=AD +BC =(1+λ)BC ,∴EF =21λ+BC .EF 与BC 无公共点, ∴EF∥BC.又λ>0, ∴|EF |=21(||+|λ|)=21(|AD |+||). 3.证明线线垂直例3 如图14,在△ABC 中,由A 与B 分别向对边BC 与CA 作垂线AD 与BE,且AD 与BE 交于H,连接CH,求证:CH⊥AB.图14证明:由已知AH⊥BC,BH⊥AC, 有AH ·BC =0,BH ·=0. 又AH =AC +CH ,BH =+CH ,故有(AC +CH )·=0,且(+CH )·AC =0,两式相减,得CH ·(-CA )=0,即CH ·=0,∴CH ⊥. 4.证明线共点或点共线例4 求证:三角形三中线共点,且该点到顶点的距离等于各该中线长的32.图15解:已知:△ABC 的三边中点分别为D,E,F(如图15). 求证:AE,BF,CD 共点,且CD CG BF BG AE AG ===32. 证明:设AE,BF 相交于点G,AG =λ1, 由定比分点的向量式有BG =111111λλλ+=++BA +)1(211λλ+,又F 是AC 的中点,BF =21(BA +), 设BG =λ2BF ,则111λ++)1(211λλ+BC =22λ+22λBC ,∴⎪⎪⎩⎪⎪⎨⎧=+=+.2)1(2,21121121λλλλλ ∴.32,32,2)1(21121111====⇒+=+BF BG AF AG 即λλλλλ 又CG =32)(2132)2(31111=+∙=+=++λλ,∴C,G,D 共线,且32===CD CG BF BG AE AG . 二、备用习题1.有一边长为1的正方形ABCD,设AB =a ,BC =b ,=c,则|a -b +c |=___________.2.已知|a |=2,|b|=2,a 与b 的夹角为45°,则使λb -a 与a 垂直的λ=____________.3.在等边△ABC 中,=a ,BC =b ,=c ,且|a |=1,则a ·b +b ·c +c ·a =__________.4.已知三个向量OA =(k,12),OB =(4,5),OC =(10,k),且A,B,C 三点共线,则k=__________.5.如图16所示,已知矩形ABCD,AC 是对角线,E 是AC 的中点,过点E 作MN 交AD 于点M,交BC 于点N,试运用向量知识证明AM=CN.图166.已知四边形ABCD 满足|AB |2+|BC |2=|AD |2+|DC |2,M 为对角线AC 的中点.求证:|MB |=|MD |.7.求证:如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补. 参考答案: 1.2 2.2 3.-234.-2或115.证明:建立如图17所示的平面直角坐标系,设BC=a,BA=b,则C(a,0),A(0,b),E(2,2ba).图17又设M(x 2,b),N(x 1,0),则 AM =(x 2,0),CN =(x 1-a,0).∵∥,=(2a -x 2,-2b ),=(x 1-2a ,-2b ), ∴(2a -x 2)×(-2b )-(x 1-2a )×(-2b)=0. ∴x 2=a-x 1. ∴|AM |=22x =|x 2|=|a-x 1|=|x 1-a|.而|CN |=21)(a x =|x 1-a|, ∴||=|CN |, 即AM=CN.6.证明:设AB =a ,BC =b ,CD =c ,DA =d , ∵a +b +c +d =0, ∴a +b =-(c +d ).∴a 2+b 2+2a ·b =c 2+d 2+2c ·d .① ∵||2+||2=||2+|DC |2,∴a 2+b 2=(-d )2+(-c )2=c 2+d 2.② 由①②,得a ·b =c ·d .图18∵M 是AC 的中点,如图18所示, 则DM =21(d -c ),BM =21(b -a ). ∴||2=BM 2=41(b 2+a 2-2a ·b ), ||2=2=41(d 2+c 2-2c ·d ). ∴|MB |2=|MD |2. ∴|MB |=|MD |.7.解:已知OA∥O′A′,OB∥O′B′.求证:∠AOB=∠A′O′B′或∠AOB+∠A′O′B′=π.证明:∵OA∥O′A′,OB∥O′B′,∴OA =λ''A O (λ∈R ,λ≠0),=μ''O (μ∈R ,μ≠0). ||||OB OA ,===λμμλ当OA 与''A O ,与''O 均同向或反向时,取正号, 即cos∠AOB=cos∠A′O′B′. ∵∠AOB,∠A′O′B′∈(0,π), ∴∠AOB=∠A′O′B′.当OA 与''A O ,与''O 只有一个反向时,取负号, 即cos∠AOB=-cos∠A′O′B′=cos(π-∠A′O′B′). ∵∠AOB,π-∠A′O′B′∈(0,π), ∴∠AOB=π-∠A′O′B′. ∴∠AOB+∠A′O′B′=π. ∴命题成立.。
2.7.1 点到直线的距离公式
备课资料
一、利用向量解决几何问题的进一步探讨
用平面向量的几何运算处理平面几何问题有其独到之处,特别是处理线段相等,线线平行,垂直,点共线,线共点等问题,往往简单明了,少走弯路,同时避免了复杂,烦琐的运算和推理,可以收到事半功倍的效果.现举几例以供教师、学生进一步探究使用. 1.简化向量运算
例1 如图12所示,O 为△ABC 的外心,H 为垂心,求证:OH =OA +OB +OC .
图12
证明:如图12,作直径BD,连接DA,DC,有OB =-OD , 且DA⊥AB,DC⊥BC,AH⊥BC,CH⊥AB,
故CH∥DA,AH∥DC,得四边形AHCD 是平行四边形. 从而=.
又DC =OC -OD =OC +OB ,得OH =OA +=OA +DC , 即OH =++.
2.证明线线平行
例 2 如图13,在梯形ABCD 中,E,F 分别为腰AB,CD 的中点.求证:EF∥BC,且||=
2
1
(||+|BC |).
图13
证明:连接ED,EC,∵AD∥BC,可设=λ(λ>0), 又E,F 是中点,∴EA +EB =0, 且EF =
2
1
(ED +). 而+EC =+++BC
=AD +BC =(1+λ)BC ,
∴EF =
2
1λ
+BC .EF 与BC 无公共点, ∴EF∥BC.又λ>0, ∴|EF |=
21(||+|λ|)=2
1
(|AD |+||). 3.证明线线垂直
例3 如图14,在△ABC 中,由A 与B 分别向对边BC 与CA 作垂线AD 与BE,且AD 与BE 交于H,连接CH,求证:CH⊥AB.
图14
证明:由已知AH⊥BC,BH⊥AC, 有AH ·BC =0,BH ·AC =0. 又AH =AC +CH ,BH =+CH ,
故有(AC +CH )·=0,且(+CH )·AC =0,
两式相减,得CH ·(-CA )=0,即CH ·=0,∴⊥. 4.证明线共点或点共线
例4 求证:三角形三中线共点,且该点到顶点的距离等于各该中线长的
3
2.
图15
解:已知:△ABC 的三边中点分别为D,E,F(如图15). 求证:AE,BF,CD 共点,且
CD CG BF BG AE AG =
==3
2
. 证明:设AE,BF 相交于点G,AG =λ1, 由定比分点的向量式有=
1
1111
1λλλ+=++BA +)1(211λλ+,
又F 是AC 的中点,BF =2
1
(BA +), 设BG =λ2BF ,
则111λ++)1(211
λλ+BC =22λ+22λBC ,∴⎪⎪⎩⎪⎪⎨
⎧=+=+.2
)1(2,21121121λλλλλ ∴
.3
2
,32,2)1(21121111====⇒+=+BF BG AF AG 即λλλλλ 又CG =
CD CB CA CE CA 3
2
)(2132)2(31111=+∙=+=++λλ,
∴C,G,D 共线,且3
2
===CD CG BF BG AE AG . 二、备用习题
1.有一边长为1的正方形ABCD,设AB =a ,BC =b ,=c,则|a -b +c |=___________.
2.已知|a |=2,|b|=2,a 与b 的夹角为45°,则使λb -a 与a 垂直的λ=____________.
3.在等边△ABC 中,=a ,=b ,=c ,且|a |=1,则a ·b +b ·c +c ·a =__________.
4.已知三个向量OA =(k,12),=(4,5),=(10,k),且A,B,C 三点共线,则k=__________.
5.如图16所示,已知矩形ABCD,AC 是对角线,E 是AC 的中点,过点E 作MN 交AD 于点M,交BC 于点N,试运用向量知识证明
AM=CN.
图16
6.已知四边形ABCD 满足|AB |2+|BC |2=|AD |2+|DC |2
,M 为对角线AC 的中点.求
证:|MB |=|MD |.
7.求证:如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补. 参考答案: 1.2 2.2 3.-
2
3
4.-2或11
5.证明:建立如图17所示的平面直角坐标系,设BC=a,BA=b,则C(a,0),A(0,b),E(2
,2b
a
).
图17
又设M(x 2,b),N(x 1,0),则 AM =(x 2,0),CN =(x 1-a,0).
∵ME ∥EN ,ME =(2a -x 2,-2b ),EN =(x 1-2a ,-2
b ), ∴(
2a -x 2)×(-2b )-(x 1-2a )×(-2b
)=0. ∴x 2=a-x 1. ∴|AM |=
2
2x =|x 2|=|a-x 1|=|x 1-a|.
而|CN |=2
1)(a x =|x 1-a|,
∴||=||, 即AM=CN.
6.证明:设AB =a ,BC =b ,CD =c ,DA =d , ∵a +b +c +d =0, ∴a +b =-(c +d ).
∴a 2+b 2+2a ·b =c 2+d 2
+2c ·d .① ∵||2
+||2
=||2
+|DC |2
, ∴a 2
+b 2
=(-d )2
+(-c )2
=c 2
+d 2
.② 由①②,得a ·b =c ·d .
图18
∵M 是AC 的中点,如图18所示, 则DM =
21(d -c ),BM =2
1
(b -a ). ∴||2
=2
=4
1(b 2+a 2
-2a ·b ), ||2
=2
=
4
1(d 2+c 2
-2c ·d ). ∴|MB |2=|MD |2
. ∴|MB |=|MD |.
7.解:已知OA∥O′A′,OB∥O′B′.
求证:∠AOB=∠A′O′B′或∠AOB+∠A′O′B′=π.
证明:∵OA∥O′A′,OB∥O′B′,
∴OA =λ''A O (λ∈R ,λ≠0),=μ''O (μ∈R ,μ≠0). |
|||OB OA ,
±
==
=
λμμλ
当OA 与''O ,与''O 均同向或反向时,取正号, 即cos∠AOB=cos∠A′O′B′. ∵∠AOB,∠A′O′B′∈(0,π), ∴∠AOB=∠A′O′B′.
当OA 与''O ,与''O 只有一个反向时,取负号, 即cos∠AOB=-cos∠A′O′B′=cos(π-∠A′O′B′). ∵∠AOB,π-∠A′O′B′∈(0,π), ∴∠AOB=π-∠A′O′B′. ∴∠AOB+∠A′O′B′=π. ∴命题成立.。