第三章 时域分析
- 格式:doc
- 大小:868.50 KB
- 文档页数:12
第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。
熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。
2了解一阶系统的脉冲响应和斜坡响应的特点。
3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。
4正确理解稳态误差的概念,明确终值定理的应用条件。
5熟练掌握计算稳态误差的方法。
6掌握系统的型次和静态误差系数的概念。
控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。
3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。
依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。
这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。
二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。
即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。
2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。
第3章 时域分析法1.选择题(1)一阶系统传递函数为4242++s s ,则其ξ,ωn 依次为( B )A .2,1/2B .1/2,2C .2,2D .1/2,1(2)两个二阶系统的最大超调量δ相等,则此二系统具有相同的( B ) A .ωn B .ξ C .k D .ωd(3)一个单位反馈系统为I 型系统,开环增益为k ,则在r(t)=t 输入下系统的稳态误差为( A ) A .k 1 B .0 C .k+11 D .∞ (4)某系统的传递函数为)16)(13(18)(++=s s s G ,其极点是 ( D )A .6,3-=-=s sB .6,3==s sC .61,31-=-=s s D .61,31==s s (5)二阶最佳系统的阻尼比ζ为( D )A. 1B. 2C. 0.1D. 0.707 (6)对于欠阻尼系统,为提高系统的相对稳定性,可以( C )A .增大系统的固有频率; B. 减小系统固有频率 C. 增加阻尼 D. 减小阻尼 (7)在ζ不变的情况下,增加二阶系统的无阻尼固有频率,系统的快速性将( A ) A. 提高 B. 降低 C. 基本不变 D. 无法得知 (8)一系统对斜坡输入的稳态误差为零,则该系统是( C )A.0型系统B. I 型系统C. II 型系统D. 无法确定(9)系统))((b s a s s cs +++的稳态误差为0,它的输入可能是( A )A.单位阶跃B.2tC.2t D. 正弦信号(10)系统开环传函为)1)(1(132+++s s s s ,则该系统为( B )系统 A.0型 B.I 型 C. II 型 D.III 型2.为什么自动控制系统会产生不稳定现象?开环系统是不是总是稳定的? 答:在自动控制系统中,造成系统不稳定的物理原因主要是:系统中存在惯性或延迟环节,它们使系统中的信号产生时间上的滞后,使输出信号在时间上较输入信号滞后了r时间。
当系统设有反馈环节时,又将这种在时间上滞后的信号反馈到输入端。
3.系统的稳定性与系统特征方程的根有怎样的关系?为什么?答:如果特征方程有一个实根s=a ,则齐次微分方程相应的解为c(t)=Ce at 。
它表示系统在扰动消失以后的运动过程中是指数曲线形式的非周期性变化过程。
若a 为负数,则当t →∞时,c(t)→0,则说明系统的运动是衰减的,并最终返回原平衡状态,即系统是稳定的。
则当t →∞时,c(t)→∞,则说明系统的运动是发散的,不能返回原平衡状态,即系统是不稳定的。
若a=0,c(t)→常数,说明系统处于稳定边界(并不返回原平衡状态,不属于稳定状态)4.什么是系统的稳定误差? 答:自动控制系统的输出量一般都包含着两个分量,一个是稳态分量,另一个是暂态分量。
暂态分量反映了控制系统的动态性能。
对于稳定的系统,暂态分量随着时间的推移。
将逐渐减小并最终趋向于零。
稳态分量反映系统的稳态性能,即反映控制系统跟随给定量和抑制扰动量的能力和准确度。
稳态性能的优劣,一般以稳态误差的大小来衡量。
5.已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间ts 减小为原来的0.1倍,并保证总放大系数不变。
试确定参数Kh 和K0的数值。
解:首先求出系统传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间ts 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+=)()11012.0(1010s s K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K6.设控制系统如图所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
7.设二阶控制系统的单位阶跃响应曲线如图所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
系统模型为4 30 0.1 t二阶控制系统的单位阶跃响应h (t )222)(nn ns s s ωξωφ++=然后由响应的%p M 、p t 及相应公式,即可换算出ξ、n ω。
%33334)()()(%=-=∞∞-=c c t c M p p1.0=p t (s )由公式得%33%21/==--ξπξe M p1.012=-=ξωπn p t换算求解得: 33.0=ξ、 2.33=n ω8.设系统如图所示。
如果要求系统的超调量等于%15,峰值时间等于0.8s ,试确定增益K 1和速度反馈系数K t 。
同时,确定在此K 1和K t 数值下系统的延迟时间、上升时间和调节时间。
解 由图示得闭环特征方程为0)1(112=+++K s K K s t即21n K ω=,nnt t K ωωξ212+=由已知条件1+Ts Kbs R (s )C (s ))1(1+s s K1+K t s8.0115.0%21/2=-===--tn p p t e M t t ξωπξπξ解得1588.4,517.0-==s n t ωξ于是05.211=K 178.0211==-K K nt t ωξs t nt t d 297.02.06.012=++=ωξξs t tn t tn r 538.01arccos 122=--=--=ξωξπξωβπs t nt s 476.15.3==ωξ9.已知系统特征方程式为0516188234=++++s s s s试用劳斯判据判断系统的稳定情况。
解 劳斯表为4s 1 18 5 3s 8 16 0 2s168161188=⨯-⨯ 580158=⨯-⨯1s5.1316581616=⨯-⨯ 0 0s55.1301655.13=⨯-⨯ 由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。
10.一种测定直流电机传递函数的方法是给电枢加一定的电压,保持励磁电流不变,测出电机的稳态转速;另外要记录电动机从静止到速度为稳态值的50%或63.2%所需的时间,利用转速时间曲线(如图3-47)和所测数据,并假设传递函数为)()()()(a s s Ks V s s G +=Θ=可求得K 和a 的值。
若实测结果是:加10V 电压可得1200min r 的稳态转 速,而达到该值50%的时间为1.2s ,试求电机传递函数。
提示:注意as Ks V s +=Ω)()(,其中dt d t θω=)(,单位是s rad解 依题意有: 10)(=t v (伏) ππω406021200)(=⨯=∞ (弧度/秒) (1)πωω20)(5.0)2.1(=∞= (弧度/秒) (2)设系统传递函数 as Ks V s s G +=Ω=)()()(0 πω401010lim )()(lim )(000==+⋅⋅=⋅=∞→→aK a s K s s s V s G s s s (3) [][]ate a K a s s L a K a s s K L s V s G L t -----=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+=⋅=1101110)(10)()()(1101ω 由式(2),(3) [][]ππω20140110)2.1(2.12.1=-=-=--a a e e aK得 5.012.1=--ae解出 5776.02.15.0ln =-=a (4) 将式(4)代入式(3)得 2586.74==a K π11.单位反馈系统的开环传递函数)5(4)(+=s s s G ,求单位阶跃响应)(t h 和调节时间t s 。
解:依题,系统闭环传递函数)1)(1(4)4)(1(4454)(212T s T s s s s s s ++=++=++=Φ ⎩⎨⎧==25.0121T T41)4)(1(4)()()(210++++=++=Φ=s C s C s C s s s s R s s C1)4)(1(4lim)()(lim 000=++=Φ=→→s s s R s s C s s34)4(4l i m)()()1(l i m 011-=+=Φ+=→-→s s s R s s C s s31)1(4l i m)()()4(l i m 042=+=Φ+=→-→s s s R s s C s st t e e t h 431341)(--+-=421=T T , ∴3.33.3111==⎪⎪⎭⎫ ⎝⎛=T T T t t s s 。
12.设角速度指示随动系统结构图如图3-48所示。
若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少?解 依题意应取 1=ξ,这时可设闭环极点为02,11T -=λ。
写出系统闭环传递函数 Ks s Ks 101010)(2++=Φ 闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D 比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 159.075.40''<''==T t s13.给定典型二阶系统的设计指标:超调量%5%≤σ,调节时间 s t s 3<,峰值时间s t p 1<,试确定系统极点配置的区域,以获得预期的响应特性。
解 依题%5%≤σ, )45(707.0︒≤≥⇒βξ;35.3<=ns t ωξ, 17.1>⇒n ωξ;np t ωξπ21-=1<, 14.312>-⇒n ωξ综合以上条件可画出满足要求的特征根区域如图解所示。
14.电子心脏起博器心律控制系统结构图如题图所示,其中模仿心脏的传递函数相当于一纯积分环节。
(1) 若5.0=ξ对应最佳响应,问起博器增益K 应取多大?(2) 若期望心速为60次/min ,并突然接通起博器,问1s 钟后实际心速为多少?瞬时最大心速多大?解 依题,系统传递函数为2222205.005.0105.0)(nn n s s K s s Ks ωξωω++=++=Φ ⎪⎪⎩⎪⎪⎨⎧⨯==n n Kωξω205.0105.0 令 5.0=ξ可解 ⎩⎨⎧==2020nK ω将 s t 1=代入二阶系统阶跃响应公式()βωξξξω+---=-t e t h n t n 221sin 11)(可得 min 00145.60000024.1)1(次次==s h5.0=ξ时,系统超调量 %3.16%=σ,最大心速为min 78.69163.1163.01(次次)==+=s t h p15. 机器人控制系统结构图如图3-50所示。