水平地震作用的振型分解反应谱法
- 格式:ppt
- 大小:1.18 MB
- 文档页数:5
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件〔1〕高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。
〔此为底部剪力法的适用范围〕〔2〕除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。
〔3〕特别不规则的建筑、甲类建筑和标准规定的高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近标准限值时,应采用加强刚度的方法;当某主轴方向刚重比大于标准限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近标准限值时,应采用加强结构外围刚度的方法标准上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足标准上限要求,说明重力二阶效应的影响较大,应该予以考虑。
标准下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,防止结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
刚重比不满足标准下限要求,说明结构的刚度相对于重力荷载过小。
但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
掌握地震动的基本特性,结构地震响应特性,反应谱,钢筋混凝土结构、钢结构、砌体结构和桥梁结构的抗震验算和构造措施,隔震减震的基本原理等。
掌握排架结构简化为单质点体系时,多遇地震水平地震作用标准值的计算(例题3.1)钢筋混凝土框架简化成多质点体系时,用振型分解反应谱法计算该框架在多遇地震下的层间地震剪力,以及内力图。
(例题3.3)多层钢筋混凝土框架结构,用底部剪力法计算其在多遇地震作用下各质点上的水平地震作用。
(例题3.7)一、填空题1、构造地震为由于地壳构造运动造成地下岩层断裂或错动引起的地面振动。
2、建筑的场地类别,可根据土层等效剪切波速和场地覆盖层厚度划分为四类。
3、《抗震规范》将50年内超越概率为 10% 的烈度值称为基本地震烈度,超越概率为 63.2% 的烈度值称为多遇地震烈度。
4、丙类建筑房屋应根据抗震设防烈度,结构类型和房屋高度采用不同的抗震等级。
5、柱的轴压比n定义为 n=N/fc Ac(柱组合后的轴压力设计值与柱的全截面面积和混凝土抗压强度设计值乘积之比)6、震源在地表的投影位置称为震中,震源到地面的垂直距离称为震源深度。
7、表征地震动特性的要素有三,分别为振幅、频谱和持时。
8、某二层钢筋混凝土框架结构,集中于楼盖和屋盖处的重力荷载代表值相等G 1=G2=1200kN,第一振型φ12/φ11=1.618/1;第二振型φ22/φ21=-0.618/1。
则第一振型的振型参与系数j= 0、724 。
9、多层砌体房屋楼层地震剪力在同一层各墙体间的分配主要取决于楼盖的水平刚度(楼盖类型)和各墙体的侧移刚度及负荷面积。
10、建筑平面形状复杂将加重建筑物震害的原因为扭转效应、应力集中。
11、在多层砌体房屋计算简图中,当基础埋置较深且无地下室时,结构底层层高一般取至 室外地面以下500mm 处 。
12、某一场地土的覆盖层厚度为80米,场地土的等效剪切波速为200m/s,则该场地的场地土类别为 Ⅲ类场地 (中软土) 。
简述振型分解反应谱法求地震作用的步骤振型分解反应谱法是一种常用的求解地震作用的方法。
其基本思想是将结构的振型分解成若干个单自由度系统,并在每个单自由度系统上进行分析,最后将分析结果合成得到整个结构的反应谱。
具体步骤如下:
1. 确定结构的振型
通过结构的模态分析,得到结构的振型及对应的振动周期和阻尼比。
2. 将振型分解为单自由度系统
根据振型的特点,将其分解为若干个单自由度系统,并确定每个单自由度系统的振动周期和阻尼比。
3. 计算单自由度系统的反应谱
在每个单自由度系统上,按照地震加速度谱和单自由度系统的特性进行计算,得到该单自由度系统的反应谱。
4. 合成结构的反应谱
将各个单自由度系统的反应谱按照一定的规则进行合成,得到整个结构在不同周期下的反应谱。
5. 分析反应谱
根据结构的设计要求和反应谱的分析结果,确定结构在地震作用下的最大位移、最大加速度等参数,以便进行结构的设计和验算。
总之,振型分解反应谱法是一种简单有效的求解地震作用的方法,但其结果的精度受到结构的振型分解精度等因素的影响,需要结合实
际情况进行综合分析。
简答题1、简述两阶段三水准抗震设计方法。
答:我国《建筑抗震设计规范》(GB50011-2001)规定:进行抗震设计的建筑,其抗震设防目标是:当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用,当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用,当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。
具体为两阶段三水准抗震设计方法:第一阶段是在方案布置符合抗震设计原则的前提下,按与基本烈度相对应的众值烈度的地震动参数,用弹性反应谱求得结构在弹性状态下的地震作用效应,然后与其他荷载效应组合,并对结构构件进行承载力验算和变形验算,保证第一水准下必要的承载力可靠度,满足第二水准烈度的设防要求(损坏可修),通过概念设计和构造措施来满足第三水准的设防要求;对大多数结构,一般可只进行第一阶段的设计。
对于少数结构,如有特殊要求的建筑,还要进行第二阶段设计,即按与基本烈度相对应的罕遇烈度的地震动参数进行结构弹塑性层间变形验算,以保证其满足第三水准的设防要求。
2、简述确定水平地震作用的振型分解反应谱法的主要步骤。
(1)计算多自由度结构的自振周期及相应振型;(2)求出对应于每一振型的最大地震作用(同一振型中各质点地震作用将同时达到最大值);(3)求出每一振型相应的地震作用效应;(4)将这些效应进行组合,以求得结构的地震作用效应。
3、简述抗震设防烈度如何取值。
答:一般情况下,抗震设防烈度可采用中国地震动参数区划图的地震基本烈度(或与本规范设计基本地震加速度值对应的烈度值)。
对已编制抗震设防区划的城市,可按批准的抗震设防烈度或设计地震动参数进行抗震设防。
4、简述框架节点抗震设计的基本原则。
节点的承载力不应低于其连接构件的承载力;多遇地震时节点应在弹性范围内工作;罕遇地震时节点承载力的降低不得危及竖向荷载的传递;梁柱纵筋在节点区内应有可靠的锚固;节点配筋不应使施工过分困难。
振型分解反应谱法振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。
该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。
振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。
适用条件(1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。
(此为底部剪力法的适用范围)(2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。
(3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。
刚重比刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数刚重比=Di*Hi/GiDi-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高Gi-第i楼层重力荷载设计值刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。
因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。
同样,对刚重比的调整也可能影响周期比。
特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。
见高规5.4.1和5.4.2及相应的条文说明。
刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。
规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。
见高规5.4.4及相应的条文说明。
刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。
但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
六、 计算题1、某两层钢筋混凝土框架,集中于楼盖和屋盖处的重力荷载代表值相等kN 120021==G G ,每层层高皆为4.0m ,各层的层间刚度相同m /kN 863021=∑=∑D D ;Ⅱ类场地,设防烈度为7度,设计基本地震加速度为0.10g ,设计分组为第二组,结构的阻尼比为05.0=ζ。
(1)求结构的自振频率和振型,并验证其主振型的正交性(2)试用振型分解反应谱法计算框架的楼层地震剪力解1):(1)计算刚度矩阵m kN k k k /17260286302111=⨯=+=m kN k k k /863022112-=-==m kN k k /8630222==(2)求自振频率])(4)()[(21211222112121122211122212122,1k k k k m m k m k m k m k m m m --++= ω ])8630(863017260[(1201204)172601208630120()172601208630120[(1201202122--⨯⨯⨯-⨯+⨯⨯+⨯⨯⨯=28.188/47.27=s r a d /24.51=ω s rad /72.132=ω(3)求主振型当s r a d /24.51=ω 1618.186301726024.5120212112111112=--⨯=-=k k m X X ω 当s rad /72.132=ω1618.086301726072.13120212112212122-=--⨯=-=k k m X X ω (4)验证主振型的正交性质量矩阵的正交性0618.0000.112000120618.1000.1}]{[}{21=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧=T T X m X 刚度矩阵的正交性 0618.0000.186308630863017260618.1000.1}]{[}{21=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡--⎭⎬⎫⎩⎨⎧=T T X k X 解2):由表3.2查得:Ⅱ类场地,第二组,T g =0.40s由表3.3查得:7度多遇地震08.0max=α 第一自振周期g g T T T T 5s,200.12111<<==ωπ 第二自振周期g g T T T T 5s,458.02122<<==ωπ (1)相应于第一振型自振周期1T 的地震影响系数:030.008.0200.140.09.0max 9.011=⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=ααT T g第一振型参与系数 724.0618.11200000.11200618.11200000.11200222121111=⨯+⨯⨯+⨯==∑∑==i i i n i i i m m φφγ 于是:kN 06.261200000.1724.0030.01111111=⨯⨯⨯==G F φγαkN 17.421200618.1724.0030.02121112=⨯⨯⨯==G F φγα第一振型的层间剪力:kN 17.421212==F VkN 23.68121111=+=F F V(2)相应于第二振型自振周期2T 的地震影响系数: 071.008.0458.040.09.0max 9.022=⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=ααT T g第二振型参与系数 276.0)618.0(1200000.11200)618.0(1200000.11200222122122=-⨯+⨯-⨯+⨯==∑∑==i i i n i i i m m φφγ 于是:kN 52.231200000.1276.0071.01212221=⨯⨯⨯==G F φγαkN 53.141200)618.0(276.0071.02222222-=⨯-⨯⨯==G F φγα第二振型的层间剪力:kN 53.142222-==F VkN 99.8222121=+=F F V(3)由SRSS 法,计算各楼层地震剪力: kN 60.44)53.14(17.422222222=-+==∑=j j V VkN 821.6899.823.682222211=+==∑=j j VV2、某两层钢筋混凝土框架,集中于楼盖和屋盖处的重力荷载代表值相等kN 120021==G G ,每层层高皆为4.0m ,框架的自振周期s 028.11=T ;各层的层间刚度相同m /kN 863021=∑=∑D D ;Ⅱ类场地,7度第二组()08.0 s,40.0max ==αg T ,结构的阻尼比为05.0=ζ,试按底部剪力法计算框架的楼层地震剪力,并验算弹性层间位移是否满足要求([]450/1=e θ)。