溶胶凝胶法制备纳米薄膜材料
- 格式:doc
- 大小:93.00 KB
- 文档页数:5
纳米多孔薄膜材料的制备与性能研究随着科技的迅猛发展,纳米技术在材料科学领域扮演着重要的角色。
纳米多孔薄膜材料作为一种新型材料,具有广泛的应用前景。
这些材料不仅具备纳米尺度的特性,还具有孔隙结构的优点,因此具有较大的比表面积、高度可控的孔径和出色的分离性能。
纳米多孔薄膜材料的制备是研究的重点之一。
目前,有许多方法可用于制备纳米多孔薄膜材料,如溶胶-凝胶法、电化学沉积法和层析法等。
溶胶-凝胶法是一种常见的方法,它通过将溶胶转化为胶凝体,再通过加热和烘干的方式制备薄膜材料。
这种方法可以制备出具有较大比表面积和独特结构的纳米多孔薄膜材料。
纳米多孔薄膜材料的性能研究也是与制备同等重要的一环。
其中,比表面积和孔径大小是常见的性能指标。
由于纳米多孔薄膜材料具有较大的比表面积,因此可以提供更多的活性位点,增加反应物质与表面的接触面积,从而提高反应效率。
孔径大小对于分离和过滤等应用具有重要影响。
通过调控制备过程的参数,可以实现对孔道大小进行精确控制,从而满足不同应用的需求。
除了比表面积和孔径大小外,纳米多孔薄膜材料的物理、化学性质也是研究的热点。
例如,一些纳米多孔薄膜材料具有特殊的光学性质,可以应用于传感器和光电器件等领域。
另外,一些金属氧化物纳米多孔薄膜材料具有良好的电化学性能,可以应用于超级电容器和电池等能源器件。
纳米多孔薄膜材料在环境和能源领域的应用也是当前的研究重点。
由于其独特的孔隙结构,纳米多孔薄膜材料被广泛应用于气体分离、水处理和催化等领域。
例如,一些具有超疏水性质的多孔薄膜材料可以应用于油水分离和海水淡化等环境领域。
此外,一些具有高度选择性孔道的纳米多孔薄膜材料可以用于气体分离和有害物质的去除等应用。
虽然纳米多孔薄膜材料在各个领域都有广泛的应用前景,但是目前仍存在一些挑战。
首先,纳米多孔薄膜材料制备的过程复杂,需要精确控制制备参数,以获得期望的结构和性能。
其次,由于材料的尺寸缩小至纳米级别,控制材料的稳定性和可重现性也变得更加困难。
溶胶—凝胶法制备ZnO薄膜一、本文概述本文旨在探讨溶胶-凝胶法制备ZnO薄膜的工艺及其相关特性。
ZnO薄膜作为一种重要的半导体材料,在光电子器件、太阳能电池、气体传感器等领域具有广泛的应用前景。
溶胶-凝胶法作为一种制备薄膜材料的常用技术,具有工艺简单、成本低廉、易于控制等优点,因此受到广大研究者的关注。
本文将首先介绍溶胶-凝胶法的基本原理和步骤,然后详细阐述制备ZnO薄膜的具体过程,包括前驱体溶液的配制、溶胶的制备、凝胶的形成以及薄膜的成膜过程。
接着,我们将讨论制备过程中可能影响薄膜性能的因素,如溶胶浓度、凝胶温度、退火条件等,并通过实验验证这些因素的影响。
我们将对制备得到的ZnO薄膜进行表征和分析,包括其结构、形貌、光学性能和电学性能等方面。
通过对比不同制备条件下的薄膜性能,优化制备工艺参数,为实际应用提供指导。
本文的研究结果有望为ZnO薄膜的制备和应用提供有益的参考。
二、溶胶—凝胶法原理溶胶-凝胶法(Sol-Gel)是一种湿化学方法,用于制备无机材料,特别是氧化物薄膜。
该方法基于溶液中的化学反应,通过控制溶液中的化学反应条件,使溶液中的物质发生水解和缩聚反应,从而生成稳定的溶胶。
随着反应的进行,溶胶中的颗粒逐渐增大并相互连接,形成三维网络结构,最终转化为凝胶。
在制备ZnO薄膜的溶胶-凝胶法中,通常使用的起始原料是锌的盐类(如硝酸锌、醋酸锌等)和溶剂(如乙醇、水等)。
锌盐在溶剂中溶解形成溶液,然后通过加入水或其他催化剂引发水解反应。
水解产生的锌离子与溶剂中的羟基(OH-)结合,形成氢氧化锌(Zn(OH)2)的胶体颗粒。
这些胶体颗粒在溶液中均匀分散,形成溶胶。
随着反应的进行,溶胶中的氢氧化锌颗粒逐渐长大,并通过缩聚反应相互连接,形成三维的凝胶网络。
凝胶网络中的空隙被溶剂填充,形成湿凝胶。
湿凝胶经过陈化、干燥和热处理等步骤,去除溶剂和有机残留物,同时促进ZnO晶体的生长和结晶,最终得到ZnO薄膜。
溶胶-凝胶法制备材料摘 要:溶胶-凝胶法广泛应用于制备薄膜材料和粉体材料,其主要原理是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。
本文主要介绍了一些溶胶-凝胶法制备材料的发展历史,原理以及一些溶胶-凝胶法实际应用案例。
关键词:溶胶-凝胶法;纳米材料;陶瓷薄膜材料;掺杂;锂电池;包覆材料 溶胶-凝胶法发展过程:1846年法国化学家J.J.Ebelmen 用SiCl 4与乙醇混合后,发现在湿空气中发生水解并形成了凝胶。
20世纪30年代W.Geffcken 证实用金属醇盐的水解和凝胶化可以制备氧化物薄膜。
1971年德国H.Dislich 报道了通过金属醇盐水解制备了SiO 2-B 2O-Al 2O 3-Na 2O-K 2O 多组分玻璃。
1975年B.E.Yoldas 和M.Yamane 制得整块陶瓷材料及多孔透明氧化铝薄膜。
80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以及传统方法难以制得的复合氧化物材料得到成功应用。
分类:溶胶-凝胶法按产生溶胶凝胶过程机制主要分成三种类型: (1)传统胶体型:通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉淀得到稳定均匀的溶胶,再经过蒸发得到凝胶。
(2)无机聚合物型:通过可溶性聚合物在水中或有机相中的溶胶过程,使金属离子均匀分散到其凝胶中。
常用的聚合物有聚乙烯醇、硬脂酸等。
(3)络合物型:通过络合剂将金属离子形成络合物,再经过溶胶,凝胶过程成络合物凝胶。
制备方法及原理:溶胶一凝胶科学技术是以金属醇盐为原料制作玻璃、玻璃陶瓷、陶瓷以及其它功能无机材料的一种新工艺方法。
溶胶-凝胶法制备材料的方法属于化学制备方法,溶胶-凝胶体的制备有3种途径:(1)溶胶溶液的凝胶化;(2)醇盐或硝酸盐前驱体的水解聚合,继之超临界干燥凝胶;(3)醇盐前驱体的水解聚合。
溶胶-凝胶法的化学过程首先是将原料分散在溶剂中,然后经水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需材料。
溶胶凝胶法的原理
溶胶凝胶法是一种用于制备纳米材料、薄膜以及复合材料的常用方法,其原理主要包括溶胶的制备、凝胶的形成和凝胶体的处理过程。
首先,溶胶的制备是指将所需的材料按照一定的配比加入到有机溶剂或水中进行充分搅拌,形成均匀溶胶体系。
通常会使用超声波或机械搅拌等方法来加速混合过程,以确保溶胶中各种组分能够均匀分散。
接下来,凝胶的形成是指在溶胶中引入适当的引发剂或调节剂,通过热处理、光照等方式引发胶束或聚合物的形成。
在这一过程中,溶胶中的分子或聚合物会逐渐聚集形成三维网络结构,从而形成凝胶体。
最后,凝胶体的处理是指对凝胶体进行干燥、烧结或热处理等后续工艺,使其形成所需的纳米材料、薄膜或复合材料。
通过适当的处理方式,可以控制材料的形貌、成分和性能。
总的来说,溶胶凝胶法通过溶胶的制备、凝胶的形成和凝胶体的处理,实现了纳米材料的制备。
这种方法具有成本低、操作简便以及对材料成分、形貌和性能的可控性高等优点,在材料科学和工程领域有着广泛的应用前景。
溶胶-凝胶法制备TiO 2纳米薄膜材料1、实验原理溶胶-凝胶法是以金属醇盐的水解和缩合反应为基础的,其反应过程可以用以下方程式表示:金属醇盐M(OR)n 溶于有机溶剂与水发生水解反应:xROH OR OH M O xH n OR M x n x +→+-)()()(2此反应可持续进行下去,直到生成M(OH)n 。
同吋也发生金属醇盐的缩聚反 应,分为失水缩聚和失醇缩聚:O H M O M M OH OH M 2+----→--+--(失水缩聚)ROH M O M M OH OR M +----→--+--(失醇缩聚)由于-M-0-M-桥氧键的形成,使得相邻两胶粒联在一起,这就是导致凝胶的胶粒间相互结合的机理。
2、实验部分2.1、实验药品及主要实验仪器实验药品:钛酸丁酯(化学纯)、冰醋酸、浓盐酸、二次蒸馏水,无水乙醇。
实验仪器:磁力加热搅拌器、电子天平、温度计、PH 计(PH 试纸)、恒温干燥箱、马弗炉、径直提拉制膜装置(如果没有手工也可以)、XRD 、量筒、烧杯、普通玻璃片(此用作为TiO 2基体)等。
2.2、实验预处理采用普通玻璃作为制备Ti02薄膜的基体,需要保证玻璃表面洁净,否则,经热处理后得不到均匀连续的Ti02膜。
基片清洗过程一般为:首先取出玻璃先用自来水清洗几遍,然后用二次蒸馏水清几遍洗,最后将玻璃片用无水乙醇清洗,干燥即可。
烧杯、量筒等容器用蒸馏水洗净、烘干后备用。
2.3实验具体步骤(1)、精确称取11.35g 钛酸丁酯,准确量取3ml 冰醋酸和12.60ml 无水乙醇。
(2)、常温下将钛酸丁酯和冰醋酸加到无水乙醇烧杯中,快速搅拌0.5h 使其均匀混合,得淡黄色透明混合溶液A 。
(3)、量取2.40 mL H 2O( 经二次蒸馏) 和4.80 mL 无水乙醇配成的溶液,并向混合溶液中滴加浓盐酸, 调pH 约为 1, 充分搅拌得到均匀溶液B 。
(4)、剧烈搅拌下将溶液 B 以约12滴/ min 的速率缓慢滴加到溶液A 中, 滴加完毕得到均匀透明的溶胶,缓慢将温度升至约40度, 继续搅拌3 h 左右, 通过溶剂慢慢挥发得半透明湿凝胶.2.4 Ti02薄膜的制备采用浸渍提拉技术制备Ti02薄膜的操作过程:将处理过的洁净的玻璃基体浸入到已配制好的Ti02溶胶中,均匀用力提拉得到Ti02湿膜。
纳米氧化铝薄膜简介纳米氧化铝薄膜是一种由纳米级氧化铝材料制成的薄膜。
纳米氧化铝的粒径通常在1到100纳米之间,具有良好的热稳定性、机械强度和光学性能。
纳米氧化铝薄膜在聚合物复合材料、光电子器件和涂层技术等领域有着广泛的应用。
制备方法纳米氧化铝薄膜的制备方法多种多样,常见的方法包括溶胶-凝胶法、磁控溅射法、电化学沉积法等。
下面将详细介绍其中的几种方法:溶胶-凝胶法1.准备溶胶和凝胶:将铝盐与合适的溶剂混合,搅拌得到均匀的溶胶;加入适量的催化剂,使得溶胶能够迅速凝胶化。
2.涂覆基底:将准备好的溶胶涂覆在基底上,通过旋涂、刷涂等方法使溶胶均匀附着于基底表面。
3.热处理:将涂覆好的基底放入烘箱中,在适当的温度下进行热处理,使溶胶中的铝盐氧化生成氧化铝凝胶。
4.煅烧:将热处理后的基底放入高温炉中,进行煅烧,使氧化铝凝胶转变为稳定的纳米氧化铝薄膜。
磁控溅射法1.准备目标材料:将氧化铝粉末制备成块状的氧化铝靶材。
2.真空腔体:将含有氧化铝靶材的靶枪放入真空腔体中,确保内部形成高真空环境。
3.溅射:加入适量的气体(通常是氩气)并施加高频电场,使得氧化铝靶材表面的原子被电离和加速,撞击到基底上形成氧化铝薄膜。
4.磁控:在溅射的过程中,通过磁场的控制,可以调节溅射速率、改变薄膜结构和性能。
电化学沉积法1.准备电解液:将含有氧化铝前体的适当溶液制备成电解液。
2.设计电解槽:将基底和计数电极放入电解槽中,使其能够与电解液进行接触。
3.电沉积:通过外加电压,控制电解液中的阴、阳极反应,使氧化铝前体在基底上沉积形成薄膜。
4.后处理:对沉积好的薄膜进行退火或其他处理,以提高薄膜的结晶度和致密度。
应用领域纳米氧化铝薄膜在各个领域都有着广泛的应用。
以下是一些常见的应用领域:聚合物复合材料纳米氧化铝薄膜可以用作聚合物复合材料的增强剂。
将纳米氧化铝薄膜添加到聚合物基体中,可以显著提高复合材料的力学性能、热稳定性和耐磨性。
光电子器件纳米氧化铝薄膜在光电子器件中有着重要的应用。
溶胶凝胶法的原理及基本步骤-概述说明以及解释1.引言1.1 概述概述:溶胶凝胶法是一种常见的材料制备方法,其原理是利用溶胶(一种液体中的悬浮颗粒)和凝胶(一种具有网状结构的固体)相互作用,在适当的条件下形成一种新的物质结构。
这种方法被广泛应用于制备陶瓷材料、纳米材料、薄膜材料等领域。
本篇文章将系统介绍溶胶凝胶法的原理及基本步骤,以及在材料制备中的应用,旨在帮助读者全面了解这一制备方法,并且对未来的研究和应用提供一定的参考。
文章结构部分内容:1.2 文章结构本文主要分为引言、正文和结论三部分。
在引言部分,将对溶胶凝胶法进行概述,并介绍文章的结构和目的。
在正文部分,将详细介绍溶胶凝胶法的原理和基本步骤,以及在材料制备中的应用。
在结论部分,将对文章进行总结,并展望溶胶凝胶法在未来的应用前景,最后进行结束语。
整个文章将全面而系统地介绍溶胶凝胶法的原理及基本步骤,并探讨其在材料领域的应用及未来发展方向。
1.3 目的本文旨在深入探讨溶胶凝胶法在材料制备中的原理及基本步骤,通过对溶胶凝胶法的相关知识进行系统梳理和总结,使读者能够全面了解这一制备方法的工作原理、操作步骤以及在材料制备中的应用。
同时,希望通过本文的介绍,能够为科研工作者和学习者提供一份详尽的参考,促进溶胶凝胶法在材料科学和工程领域的进一步应用和发展。
2.正文2.1 溶胶凝胶法原理溶胶凝胶法是一种常用的化学制备方法,其原理基于溶液中溶质形成溶胶,通过控制条件使其逐渐形成凝胶。
在这一过程中,溶胶的成核和生长是关键步骤。
溶胶的成核是指溶质在溶剂中形成原子团团核,并随后生长成为凝胶。
溶胶凝胶法的原理可以通过几种途径来解释,包括凝胶化理论、溶胶分散理论和溶胶-凝胶相变动力学理论。
首先,根据凝胶化理论,溶胶凝胶法是通过使溶质构成三维网状结构来形成凝胶。
在溶胶形成初期,溶质在溶剂中分散,然后逐渐形成原子团团核。
这些团核互相连接形成网状结构,最终形成凝胶。
根据溶胶分散理论,溶胶凝胶法原理是利用溶剂对溶质的分散作用。
实验名称:溶胶-凝胶法制备TiO2薄膜材料纳米TiO2具有许多特殊功能,如良好的抗紫外线性能、耐化学腐蚀性能和耐热性、白度好、可见光透射性好以及化学活性高等。
TiO2纳米材料还具有净化空气、杀菌、除臭、超亲水性等功能,已广泛应用于抗菌陶瓷,空气净化器、不用擦拭的汽车后视镜等领域,20世纪80年代末纳米发展起来成为主要的纳米材料之一。
研究表明,紫外线过量照射人体,会使人的记忆力减退、反应迟钝、视力下降、易失眠等影响。
在玻璃上负载TiO2膜可以有效地吸收紫线。
本次实验利用溶胶凝胶法制备TiO2纳米薄膜材料,在一定程度上是对TiO2在实际生活中应用的尝试。
一.实验目的1.了解溶胶-凝胶法制备纳米薄膜材料的应用。
2.掌握溶胶-凝胶法制备纳米薄膜材料的原理以及实际应用。
3.掌握XRD颜射原理以及实际操作技能。
4.掌握根据X-射线衍射图分析晶体的基本方法。
5.二.实验原理溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。
其基本反应如下:(l)水解反应:M(OR)n + H2O → M (OH) x (OR) n-x + xROH(2) 聚合反应:-M-OH + HO-M-→ -M-O-M-+H2O-M-OR + HO-M-→ -M-O-M-+ROH三.实验器材:实验仪器:移液管(10ml)1只量筒(50ml)1只吸量管(5ml)2只小烧杯(100ml ) 2只载玻片若干滴管2只恒温磁力搅拌器1台恒温干燥箱1台原子吸光光度计1台X-射线衍射仪1台马弗炉1台实验原料:三乙醇胺(AR)乙醇(AR)钛酸丁酯(AR)四.实验过程1.取载玻片若干片(一般4-5)片,先用丙酮清洗,再用去离子水清洗,放在烘箱中烘干编号备用。
溶胶—凝胶法薄膜制备摘要:随着科学技术的进展和人类社会的进步,人们对物质材料不断提出新的性能要求,材料制备的新方式、新工艺不断被应用。
专门是20世纪以来,溶胶—凝胶技术被成功地应用于制备块状多组分凝胶玻璃,取得材料界研究者的普遍关注并取得迅速进展,制备的薄膜具有一般块状材料所不具有的性能。
研究溶胶—凝胶制备薄膜技术具有十分重要的意义。
本文通过查阅文献,重点研究溶胶—凝胶法制备薄膜的大体原理、工艺和最新研究方向。
通过本次的研究能够看出近几年来薄膜产业进展迅速,薄膜科学技术和薄膜材料已成为材料科学中最为活跃的研究领域之一。
此刻对溶胶-凝胶进程的许多细节的明白得还不全面还需对反映机理成核机理和产品质量的操纵等方面进行深切研究。
外文摘要:With the development of science and technology and the progress of human society, people to the material continuously put forward new performance requirements, a new method of material preparation, the new technology is being applied. Especially since the 20th century, sol - gel technology was successfully applied to the preparation of glass block multicomponent gel, materials are obtained wide attention of researchers and get rapid development, preparation of thin films with the massive materials do not have the performance of the ordinary. The sol - gel preparation of thin film technology is of great significance. This article through the literature, the key research of thin film prepared by sol - gel basic principle, process and the latest research can be seen through the study of the film industry has developed rapidly in recent years, membrane science and technology and thin film material has become one of the most active area of research in material science. Now many of the details of the process of sol-gel understanding is not comprehensive to the reaction mechanism of nucleation mechanism and conduct the thorough research to the product quality control, etc.1 溶胶—凝胶薄膜制备的概念溶胶—凝胶法对咱们来讲并非陌生,这能够追溯到古代豆腐的制作,但是溶胶—凝胶法应用于工业方面比较晚,直到20世纪,溶胶—凝胶技术被成功地应用于制备块状多组分凝胶玻璃,取得材料界研究者的普遍关注并取得迅速进展。
利用溶胶凝胶法制备纳米材料的基本原理学院:材料学院班号:1109102 学号:1110910209 姓名:袁皓摘要:本文介绍了纳米材料的性能用途以及制备方法,主要是新兴的制备纳米材料低温工艺——溶胶凝胶法,在文中详细说明了溶胶凝胶法的类型和特征,重点描述了利用溶胶凝胶法制备纳米材料的类型,基本原理以及简略的操作流程。
关键词:纳米材料溶胶凝胶基本原理一溶胶凝胶法的基本原理溶胶凝胶(sol-gel)法是一种制备超细粉末的一种湿化学法,它是以液体的化学试剂配制成金属有机或无机化合物或者是金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或是醇解反应,反应生成物在液相下均匀混合,均匀反应,生成稳定且无沉淀的溶胶体系,放置一段时间后或是干燥处理溶胶之后转变为凝胶,在凝胶中通常含有大量的液相物质,需要利用萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物粉体,利用溶胶凝胶法还可以制备其他形态的材料包括单晶、纤维、图层、薄膜材料等。
表2-1 对于制备纳米材料的溶胶凝胶法类型和特征1.1 溶剂化能电离的前驱物-金属盐的金属阳离子M z+吸引水分子形成溶剂单元(M(H2O)n)z+(z 为M 离子的价数),为保持它的配位数而具有强烈的释放H+的趋势。
(M(H2O)n)z+==(M(H2O)n-1(OH))(z-1)++H+1.2 水解反应非电离式分子前驱物,如金属醇盐M(OR)n(n 为金属M 的原子价,R 代表烷基),与水反应,反应可延续进行,直至生成M(OH)n。
M(OR)n+xH2O→M(OH)x(OR)n-x+xROH1.3 缩聚反应可分为失水缩聚:-M-OH+HO-M→M-O-M-+H2O失醇缩聚:-M-OR+HO-M→-M-O-M+ROH二溶胶凝胶法的工艺过程1.金属无机盐在水溶液中的水解金属盐在水中的性质受金属粒子半径大小、电负性、配位数的影响。
它们溶于纯水中常电离析出Mz+离子并溶剂化,根据溶液的酸度和相应的电荷转移大小,水解反应存在下列平衡关系:[M-OH]Z+——[M-OH](Z-1)+H+——[M=O](Z-2)+2H由上述平衡,任何无机盐前驱物的水解产物都可以粗略地写在[MONH2N-h](Z-h)+其中N是M的配位数,Z是M的原子价,h称为水解摩尔比。
实验名称:溶胶-凝胶法制备TiO2薄膜材料
纳米TiO2具有许多特殊功能,如良好的抗紫外线性能、耐化学腐蚀性能和耐热性、白度好、可见光透射性好以及化学活性高等。
TiO2纳米材料还具有净化空气、杀菌、除臭、超亲水性等功能,已广泛应用于抗菌陶瓷,空气净化器、不用擦拭的汽车后视镜等领域,20世纪80年代末纳米发展起来成为主要的纳米材料之一。
研究表明,紫外线过量照射人体,会使人的记忆力减退、反应迟钝、视力下降、易失眠等影响。
在玻璃上负载TiO2膜可以有效地吸收紫线。
本次实验利用溶胶凝胶法制备TiO2纳米薄膜材料,在一定程度上是对TiO2在实际生活中应用的尝试。
一.实验目的
1.了解溶胶-凝胶法制备纳米薄膜材料的应用。
2.掌握溶胶-凝胶法制备纳米薄膜材料的原理以及实际应用。
3.掌握XRD颜射原理以及实际操作技能。
4.掌握根据X-射线衍射图分析晶体的基本方法。
二.实验原理
溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。
其基本反应如下:
(l)水解反应:M(OR)n + H2O → M (OH) x (OR) n-x + xROH
(2) 聚合反应:
-M-OH + HO-M-→ -M-O-M-+H2O
-M-OR + HO-M-→ -M-O-M-+ROH
三.实验试剂与实验仪器
实验仪器:
移液管(10ml)1只
量筒(50ml)1只
吸量管(5ml)2只
小烧杯(100ml ) 2只
载玻片若干
滴管2只
恒温磁力搅拌器1台
恒温干燥箱1台
原子吸光光度计1台
X-射线衍射仪1台
马弗炉1台
实验试剂
三乙醇胺(AR)
乙醇(AR)
钛酸丁酯(AR)
四.实验步骤
1.取载玻片若干片(一般4-5)片,先用丙酮清洗,再用去离子水清洗,放在烘箱中烘干编号备用。
2.配制溶胶:
用大量筒取40ml的无水乙醇放到100ml烧杯中,用吸量管取3ml的三乙醇胺溶于乙醇中,放在恒温磁力搅拌器上搅拌均匀。
用移液管取10ml钛酸四丁酯逐滴滴加到混合液中,搅拌十
溶胶。
分钟后,用滴管滴加0.5ml去离子水。
继续搅拌1h,即可得到均匀,透明的淡黄色TiO
2
3.制备薄膜:
溶胶中,浸泡10s后,以1.98mm/s的速度缓慢提拉载玻将烘干备用的载玻片浸入到TiO
2
片,在空气中干燥1min,溶胶在载玻片上发生水解反应、缩聚反应,在玻片上形成凝胶。
重复上述步骤八次,制备多层薄膜。
重复操作,在2-5号载玻片上镀膜。
将上述镀膜的载玻片立即放在100℃的烘箱中干燥30min后,取出样品,用原子吸光光
度计测量吸光度。
取吸光度良好的样品在马弗炉中以3℃,min一℃/min速度升温至540℃,保温2h。
在炉内自然冷却至室温,即可得到锐钛矿相Ti02纳米薄膜。
4.性能表征
对所的样品进行XRD 性能表征。
五.实验现象记录与分析
1.当载玻片镀八层薄膜是其TiO 2薄膜在不同光波照射下的透射率如下图所示:
0.0
0.2
0.40.60.8
1.0
T bochang/nm
透射率--波长
2.样品X-射线衍射图谱如下图所示:
XRD衍射图与其PDF图像对照图
该TiO2薄膜XRD衍射图中最高峰出现在2θ=25.281°处,其晶面指数为(1,0,1)。
六.思考题
1.简述溶胶凝胶法制备薄膜的原理?
答:溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。