初中数学绝对值专项练习题有问题详解
- 格式:doc
- 大小:63.70 KB
- 文档页数:8
专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。
题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。
例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。
初中数学七年级上册绝对值练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 化简−|−3|等于( )A.−3B.−13C.13D.32. 如果一个数的绝对值等于它的相反数,那么这个数一定是( )A.正数B.负数C.非正数D.非负数3. 已知a、b、c都是负数,且|x−a|+|y−b|+|z−c|=0,则xyz是()A.负数B.非负数C.正数D.非正数4. 下列推断正确的是( )A.若|a|=|b|,则a=bB.若|a|=|b|,则a=−bC.若|m|=|−n|,则m=−nD.若m=−n,则|m|=|n|5. 已知x、y、z为有理数,且x+y+z=0,xyz<0,则y−z|x|+x−z|y|+x+y|z|的值为().A.−1B.1C.1或−1D.−36. 下列判断正确的是()A.−14>−15B.−35<−45C.−34>−45D.−1>−0.017. 若关于x的方程|2x−3|+m=0无解,|3x−4|+n=0只有一个解,|4x−5|+k=0有两个解,则m, n, k的大小关系是()A.m>n>kB.n>k>mC.k>m>nD.m>k>n8. 下列四组有理数大小的比较正确的是()A.−12>13B.−|−1|>−|+1|C.12<13D.|−12|>|−13|9. 绝对值大于2,且不大于5的整数有( )10. 以下选项中比|−12|小的数是( )A.2B.32C.12D.−1311. 在数−4,−3,−1,2中,大小在−2和1之间的数是________.12. 已知1<x <2,化简|x −1|+|x −2|=________.13. √3−2的相反数是________,绝对值是________.14. 绝对值小于227的整数有________.15. 若|x −1|=|−3|,那么x =________.16. 当a =________时,代数式|a −4|+3有最小值是________.17. 已知|a −2|+|b −4|=0,则2a +3b =________.18. 已知,则的值可能是________.19. 已知有理数a ,b 在数轴上的位置如图所示,则︱b −a ︱=________.20. 比较大小:−34________−45;−(−2)________−|−2|.21. 已知|x −1|+|y +2|=0,则x −y =________.22. 比较下列各对数的大小:(2)−518和−29.23. 已知|x|=3,|y|=4,且xy <0,求x +y 的值.24.(1)计算:|−6|−√9+(1−√2)0−(−3).(2)如图,BD 是菱形ABCD 的对角线,∠ABF =30∘,EF 为AB 的垂直平分线, 垂足为E ,交AD 于F ,连接BF ,求∠ABD 的度数.25. 某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时检修小组是否回到A 地?(2)在第________次纪录时距A 地最远.(3)若每千米耗油0.2升,每升汽油需8元,问检修小组工作一天需汽油费多少元?26. 问题:比较 −|65| 与+(−43) 的大小. 解:化简可得−|65|=−65,+(−43)=−43①,因为|65|=65,|−43|=43②又65=1815<2015=43③,所以−65<−43④,所以−|6|<+(−4)⑤(2)请按照上述方法比较 −(+1011)与−|910|的大小.27. 比较下列各数的大小,用“<”连接起来.−1017,−1219,−1523,−3031,−6091.28. 已知a =−4,b =−5,求a −b 的值.29. 已知|a|=2,|b|=3,且a +b <0,求a +b 的值.30. 比较下面两个数的大小.(1)−43与−32(2)比较−(−3.1)与3.2的绝对值.31. 比较有理数的大小.(1)−57与23(2)−8与−5(3)−57与−34(4)已知a >b >0,试比较−a 和−b 的大小.32. 已知a <b <0<c ,化简|a|−|−b|+|c|.33. 有理数a 、b 在数轴上的位置如图,计算|a −b|−2|a −c|−|b +c|.(1)如果甲报的数为x ,则乙报的数为x −1,丙报的数为________,丁报的数为________;(2)若丁报出的答案为2,则甲报的数是多少?35. 大家都知道,|5−(−2)|表示5与−2之差的距离,试探索:若x 表示一个有理数,且|x −2|+|x +4|>6,则有理数x 的取值范围是________.36. 若|a −2|+|b −3|+|c −1|=0,求a +2b +3c 的值.37. 已知x|=|−7|,|y|=|−5|,求x +y 的值.38. 若|x|<1,化简|x +1|+|x −1|.39. 已知下列有理数:−(−3)、−4、0、+5、−12(1)这些有理数中,整数有________个,非负数有________个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:________.40. 利用绝对值比较大小(1)−3.14与−π(2)−32与−54(3)−56与−57参考答案与试题解析初中数学七年级上册绝对值练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答5.【答案】B此题暂无解析【解答】此题暂无解答6.【答案】C【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】有理数大小比较非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答10.有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−1【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答12.【答案】1【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答13.【答案】2−√3,2−√3【考点】绝对值的意义相反数的意义【解析】此题暂无解析【解答】此题暂无解答14.【答案】7个【考点】绝对值【解析】此题暂无解析【解答】【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答16.【答案】4,3【考点】绝对值的意义非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答17.【答案】16【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答18.【答案】2或0或−2【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答19.【答案】a−b【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】3【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)∵−(−5)=5,−(+6)=−6,∴−(−5)>−(+6);(2)∵|−518|=518,|−29|=29,∴−518<−29.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy<0,∴x=3时,y=−4,x+y=−1,x=−3时,y=4,x+y=−3+4=1,综上所述,x+y的值是1或−1.【考点】绝对值【解析】此题暂无解析【解答】24.【答案】解:(1)原式=6−3+1+3=7.(2)∵ EF 为AB 的垂直平分线,∴ FA =FB ,∴ ∠A =∠ABF =30∘.∵ 四边形ABCD 是菱形,∴ AD =AB ,∴ ∠ABD =180∘−30∘2=75∘.【考点】绝对值的意义零指数幂、负整数指数幂二次根式的性质与化简菱形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:(1)−3+8−9+10+4−6−2=2(千米).∴ 收工时检修小组未回到A 地.五(3)(3+8+9+10+4+6+2)×0.2×8=42×0.2×8=67.2(元)答:检修小组工作一天需汽油费67.2元.【考点】绝对值的意义有理数的混合运算正数和负数的识别【解析】此题暂无解析【解答】此题暂无解答26.【答案】(1)②(2)解:化简可得−(+1011)=−1011,−|910|=−910,因为|−1011|=1011,|−910|=910, 又1011=100110>99110=910,所以−1011<−910, 所以−(+1011)<−|910|.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:∵ |−1017|=1017=60102,|−1219|=1219=6095,|−1523|=1523=6092,|−3031|=3031=6062,|−6091|=6091 ∴ −3031<−6091<−1523<−1219<−1017.(各负数绝对值的分子相同,分母越小,其绝对值就越大,本身反而越小)【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答28.【答案】解:因为a =−4,b =−5,所以a −b =−4+5=1.【考点】实数的运算【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:由题意得|a|=2,|b|=3,a +b <0,∴ a =±2 ,b =−3,①当a =2,b =−3时,a +b =−1;②当a =−2,b =−3时,a +b =−5.∴a+b=−1或−5【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答30.【答案】解:(1)∵|−43|=43=86,|−32|=32=96,∴−43>−32.(2)∵−(−3.1)=3.1,3.2的绝对值是3.2,∴−(−3.1)<3.2的绝对值.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答31.【答案】解:(1)−57<23;(2)−8<−5(3)∵57<34,∴−57>−34;(4)∵a>b>0,∴|a|>|b|>0,又∵−a<0,−b<0,∴−a<−b.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答32.【答案】解:∵a<b<0<c,|a|−|−b|+|c|=−a−(−b)+c=−a+b+c.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:根据数轴可知:b<a<0<c,且|a|<|c|<|b|,∴a−b>0,a−c<0,b+c<0,∴|a−b|−2|a−c|−|b+c|=a−b+2a−2c+b+c=3a−c.【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答34.【答案】|x−1|,|x−1|−1设甲为x,则|x−1|−1=2,解得:x=4或x=−2.所以甲报的数是4或者−2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】x>2或x<−4【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:根据题意得:{a −2=0b −3=0c −1=0,解得:{a =2b =3c =1,则原式=2+6+3=11.【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】解:∵ |x|=|−7|=7,|y|=|−5|=5, ∴ x =±7,y =±5,∴ 当x =7、y =5时,x +y =12, 当x =7、y =−5时,x +y =2, 当x =−7、y =5时,x +y =−2, 当x =−7、y =−5时,x +y =−12.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:∵ 由|x|<1可得−1<x <1, ∴ x −1<0,x +1>0,则|x +1|+|x −1|=x +1+1−x =2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答39.【答案】4,3解:在数轴上表示这些有理数如图:−4<-12<0<−(−3)<+5【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵ |−3.14|<|−π|, ∴ −3.14>−π 解:∵ |−32|>|−54|,∴ −32<−54解:∵ |−56|>|−57|,∴ −56<−57【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答。
初中数学绝对值练习题答案及解析绝对值(温习知识点)1.2.4绝对值1、定义在数轴上,表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
例如,图1.2-8中A,B两点分别表示10和-10,它们与原点的距离都是10个长度单位,所以10和-10的绝对值都是10,即|10|=10,|-10|=10。
(课本P11)在数轴上,表示数0的点是原点,显然|0|=0。
2、性质(课本P11)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即(1)如果a0,那么|a|=a;(2)如果a=0,那么|a|=0;绝对值(习题)1.2.4绝对值(1)写出下列各数的绝对值:12,-29,-4.6,15/7,-6/7,-169,0上面的数中哪个数的绝对值最大?哪个数的绝对值最小?(2)判断下列说法是否正确:1.一个数的绝对值越大,在数轴上,表示它的点越靠右。
2.当a0时,|a|总是大于0。
(3)当ac时,化简|a-b|+|b-c|。
(4)检测5个排球,其中质量超过标准的克数记为正数,不足的克数记为负数。
从轻重的角度看,哪个球最接近标准?+5,-3.5,+0.7,-2.5,-0.6(5)如果|x|=2,那么x一定等于2吗?如果|x|=0,那么x等于?绝对值(答案及解析)1.2.4绝对值(1)答案12,29,4.6,15/7,6/7,169,0;-169的绝对值最大,0的绝对值最小。
解析考点:绝对值定义解题技巧:正数和0的绝对值写原数,负数的绝对值去-。
(注意:化简后)解题步骤:|12|=12,写原数|-29|=29,去符号-|0|=0,写原数其他过程省略小结:有理数的绝对值0;正负数的绝对值0。
(2)答案错,对解析考点:绝对值定义、绝对值性质说明:表示数a的点与原点的距离叫做数a的绝对值。
解题步骤:一个数的绝对值越大,在数轴上,表示它的点与原点的距离越大,所以离原点越远,不一定越靠右。
说明:a0,|a|=a;a=0,|a|=0;a0,|a|=-a。
初三数学下册综合算式专项练习题绝对值运算初三数学下册综合算式专项练习题:绝对值运算绝对值运算是初中数学中的重要内容之一。
绝对值表示一个数离零的距离,无论这个数是正数还是负数,其绝对值都是非负数。
在解决绝对值运算的综合算式时,我们需要熟练掌握绝对值的定义和基本性质,以便能够正确而高效地解题。
本文将针对初三数学下册综合算式专项练习题中的绝对值运算进行详细说明,帮助同学们更好地理解和掌握这个概念。
一、绝对值的定义绝对值的定义很简单,即一个数离零的距离。
假设实数a,它的绝对值记作|a|,可以用下面的公式表示:|a| = a,若a ≥ 0|a| = -a,若a < 0例如,对于数-5和数3,它们的绝对值分别是5和3,因为它们与零的距离分别是5和3。
绝对值的性质如下:1. 对于任意实数a,有|a| ≥ 0,即绝对值永远是非负数。
2. 若a > 0,则|a| = a。
3. 若a < 0,则|a| = -a。
二、绝对值运算的基本规则在解决综合算式中的绝对值运算时,我们需要遵循以下基本规则:1. 若绝对值内是一个正数,则去掉绝对值符号,即|a| = a。
2. 若绝对值内是一个负数,则去掉绝对值符号,并将负号取反,即| -a| = a。
3. 在复杂的综合算式中,可以先计算绝对值内的部分,再根据绝对值的定义来确定最终结果的正负。
三、综合算式练习题解析下面,我们来解析一些典型的综合算式练习题。
例题1:求下列各式的值(结果为非负数)。
1. |-7| + |5|2. |-3| - |-7|3. |4 - 7| + |-3 + 8|解答:1. |-7| + |5| = 7 + 5 = 122. |-3| - |-7| = 3 - 7 = -4(注意:根据绝对值的定义,结果应该是非负数,这里需要重新计算)3. |4 - 7| + |-3 + 8| = |-3| + |5| = 3 + 5 = 8例题2:解方程组{x + 2y = 4,|2x - 5| + y = 9}。
初一七年级数学绝对值练习题及答案解析数学绝对值是初中数学中的一个重要概念,它常常在方程、不等式、函数等各个章节中出现。
掌握绝对值的概念和性质对于解决数学问题非常重要。
下面是一些初一七年级的数学绝对值练习题及答案解析,帮助你巩固对绝对值的理解。
1. 计算以下数的绝对值:a) |-5|b) |0|c) |3|答案:a) |-5| = 5b) |0| = 0c) |3| = 3解析:绝对值表示一个数与0点之间的距离。
所以绝对值的结果总是非负数。
对于a) |-5|,-5与0之间的距离是5,所以结果是5。
对于b) |0|,0与0之间的距离是0,所以结果是0。
对于c) |3|,3与0之间的距离是3,所以结果是3。
2. 求解以下方程:a) |x| = 5b) |2x - 3| = 7答案:a) x = 5 或 x = -5b) x = 5 或 x = -2解析:对于a) |x| = 5,由于绝对值的定义是非负数,所以x可以是5或-5。
因为5与-5的绝对值都是5。
对于b)|2x - 3| = 7,需要分情况讨论。
当2x - 3 = 7时,解得x = 5。
当2x - 3 = -7时,解得x = -2。
3. 解以下不等式:a) |x + 2| < 3b) |3x - 1| ≥ 5答案:a) -5 < x < 1b) x ≤ -2 或x ≥ 2解析:对于a) |x + 2| < 3,我们可以使用绝对值的定义进行讨论。
当x + 2 > 0时,即x > -2,方程等价于x + 2 < 3,解得x < 1。
当x + 2 < 0时,即x < -2,方程等价于-(x + 2) < 3,解得x > -5。
所以综合起来,-5 < x < 1。
对于b) |3x - 1| ≥ 5,我们也需要分情况讨论。
当3x - 1 > 0时,即3x > 1,方程等价于3x - 1 ≥ 5,解得x ≥ 2。
绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,•运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存在6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、能力拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、•12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立, 故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。
绝对值的综合化简【真题精选】1.已知m<﹣1,化简|m﹣3|=.2.若|a|=﹣a,则a是()A.非负数B.负数C.正数D.非正数3.如果|x﹣2|=x﹣2,那么x的取值范围是.4.若x<﹣2,则|1﹣|1+x||等于()A.2+x B.﹣2﹣x C.x D.﹣x 5.已知|a|+a=0,则化简|a﹣1|+|2a﹣3|的结果是()A.2B.﹣2C.3a﹣4D.4﹣3a 6.已知数a<0,ab<0,化简|a﹣b﹣3|﹣|4+b﹣a|的结果是()A.﹣1B.1C.7D.﹣7 7.已知|m﹣2|+|3﹣n|=0,则﹣n m=.8.已知|a+1|与|b﹣2|互为相反数,求a﹣b的值.9.设a<0,且x≤,则化简|x+1|﹣|x﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x 10.若m、n满足|m﹣3|+(n﹣2)2=0,则(n﹣m)2011的值等于.11.若|x﹣2|+|y+3|+|z﹣5|=0计算:(1)x,y,z的值.(2)求|x|+|y|+|z|的值.12.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.13.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c0,c﹣b0,b+a0,abc0;(2)化简:|a+c|+|c﹣b|﹣|b+a|.14.有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:0,a,b,c;(2)化简:3|a﹣b|﹣|c﹣a|+2|b﹣c|.15.若mn≠0,则﹣的所有可能取值共有()A.1个B.2个C.3个D.4个16.如果2a+b=0,(ab≠0),求的值.17.若a、b都是不为零的数,则++的结果为()A.3或﹣3B.3或﹣1C.﹣3或1D.3或﹣1或1 18.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.19.若a>0,=;若a<0,=;①若,则=;②若abc<0,则=.20.阅读下列材料,并解决有关问题:我们知道,|x|=,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1、2分别为|x+1|与|x﹣2|的零点值).在有理数范围内,零点值x=﹣1和x=2可将全体有理数不重复且不遗漏地分成如下三种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分为以下3种情况:(Ⅰ)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(Ⅱ)当﹣1≤x<2时,原式=(x+1)﹣(x﹣2)=3;(Ⅲ)当x≥2时,原式=(x+1)+(x﹣2)=2x﹣1;综上所述:原式=.通过以上阅读,请你类比解决以下问题:(1)填空:|x+2|与|x﹣4|的零点值分别为;(2)化简式子|x﹣3|+2|x+4|.【挑战来袭】21.有理数a,b,c均不为0,且a+b+c=0.设,试求代数式x19+99x+2000之值.22.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.23.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x 对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为.(2)不等式|x﹣3|+|x+4|≥9的解集为.绝对值的综合化简参考答案与试题解析一.试题(共23小题)1.已知m<﹣1,化简|m﹣3|=3﹣m.【分析】根据m的取值范围可确定m﹣3<0,再利用绝对值的性质进行计算即可.【解答】解:|m﹣3|=3﹣m,故答案为:3﹣m.【点评】此题主要考查了绝对值,关键是掌握负数的绝对值等于它的相反数.2.若|a|=﹣a,则a是()A.非负数B.负数C.正数D.非正数【分析】直接利用绝对值的非负性解决问题即可.【解答】解:∵|a|=﹣a,∴﹣a≥0,∴a为非正数,故选:D.【点评】本题考查了绝对值,直接利用绝对值的非负性.3.如果|x﹣2|=x﹣2,那么x的取值范围是x≥2.【分析】含绝对值的式子,在去绝对值时要考虑式子的符号.若>等于0,可直接去绝对值;若<0,去绝对值时原式要乘以﹣1.由此可得x﹣2≥0,再解此不等式即可.【解答】解:∵|x﹣2|=x﹣2,∴x﹣2≥0,即x≥2.故答案为:x≥2.【点评】本题考查了绝对值和不等式的性质.含绝对值的式子,在去绝对值时要考虑式子的符号.若大于等于0,可直接去绝对值;若小于0,去绝对值时原式要乘以﹣1.4.若x<﹣2,则|1﹣|1+x||等于()A.2+x B.﹣2﹣x C.x D.﹣x【分析】由x<﹣2,根据异号两数相加的取符合方法:取绝对值较大数的符合可得x+1与x+2都小于0,然后根据绝对值的代数意义:负数的绝对值等于它的相反数,化简|1+x|后,利用去括号法则去掉括号合并后,再利用绝对值的代数意义化简可得值.【解答】解:∵x<﹣2,∴1+x<0,x+2<0,∴|1+x|=﹣(1+x),则|1﹣|1+x||=|1﹣[﹣(1+x)]|=|2+x|=﹣(2+x)=﹣2﹣x.故选:B.【点评】此题考查了绝对值的代数意义,即正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.化简绝对值类型题的方法主要是判断绝对值里代数式的正负,本题在判断x+1与x+2的符合时可以用异号相加取符号的法则,也可以用取特值的方法判断.5.已知|a|+a=0,则化简|a﹣1|+|2a﹣3|的结果是()A.2B.﹣2C.3a﹣4D.4﹣3a【分析】直接利用绝对值的性质分别化简得出答案.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,∴a﹣1<0,2a﹣3<0,故原式=1﹣a+3﹣2a=4﹣3a.故选:D.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.6.已知数a<0,ab<0,化简|a﹣b﹣3|﹣|4+b﹣a|的结果是()A.﹣1B.1C.7D.﹣7【分析】根据数a<0,ab<0,可知b>0,从而判断出a﹣b﹣3、4+b﹣a的符号,然后去绝对值,合并同类项.【解答】解:根据数a<0,ab<0,可知b>0,则a﹣b﹣3<0,4+b﹣a>0,∴|a﹣b﹣3|﹣|4+b﹣a|=﹣a+b+3﹣4﹣b+a=﹣1.故选:A.【点评】本题考查了绝对值的知识,属于基础题,关键是判断绝对值里式子的符号,准确去绝对值.7.已知|m﹣2|+|3﹣n|=0,则﹣n m=﹣9.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣2|+|3﹣n|=0,∴m﹣2=0,3﹣n=0,∴m=2,n=3.∴﹣n m=﹣9.故答案为:﹣9.【点评】本题考查的知识点是:两个绝对值的和为0,那么这两个绝对值里面的代数式均为0.8.已知|a+1|与|b﹣2|互为相反数,求a﹣b的值.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵|a+1|与|b﹣2|互为相反数,∴|a+1|+|b﹣2|=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,所以,a﹣b=﹣1﹣2=﹣3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.设a<0,且x≤,则化简|x+1|﹣|x﹣2|结果为()A.3B.﹣3C.2x﹣1D.1﹣2x【分析】根据a的取值范围,将不等式中的绝对值去掉;然后根据不等式的基本性质求得x的取值范围;最后根据x的取值范围来求|x+1|﹣|x﹣2|的值.【解答】解:∵a<0,且x≤,∴x≤﹣1,∴|x+1|﹣|x﹣2|=﹣(x+1)+(x﹣2)=﹣3.故选:B.【点评】考查了绝对值、不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.10.若m、n满足|m﹣3|+(n﹣2)2=0,则(n﹣m)2011的值等于﹣1.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可求解.【解答】解:根据题意得,m﹣3=0,n﹣2=0,解得m=3,n=2,∴(n﹣m)2011=(2﹣3)2011=﹣1.故答案为:﹣1.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.11.若|x﹣2|+|y+3|+|z﹣5|=0计算:(1)x,y,z的值.(2)求|x|+|y|+|z|的值.【分析】(1)根据非负数的性质“三个非负数相加,和为0,这三个非负数的值都为0”列出三元一次方程组,即可解出x、y、z的值;(2)将(1)中求出的x、y、z的值分别代入,先根据绝对值的性质去掉绝对值的符号,再运用有理数加法法则计算即可.【解答】解:(1)由题意,得x﹣2=0,y+3=0,z﹣5=0,解得x=2,y=﹣3,z=5,即x=2,y=﹣3,z=5;(2)当x=2,y=﹣3,z=5时,|x|+|y|+|z|=|2|+|﹣3|+|5|=2+3+5=10.【点评】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.12.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.【分析】此题可借助数轴用数形结合的方法求解.根据数轴可知a,b的符号,然后判断a+b,1﹣a,b+1的正负,再依据绝对值的性质,化简后求得|a|+|a+b|﹣|1﹣a|﹣|b+1|的值.【解答】解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a.【点评】此题主要考查了绝对值和数轴的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0;数轴左边的数为负数,右边的数为正数.13.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c<0,c﹣b>0,b+a<0,abc>0;(2)化简:|a+c|+|c﹣b|﹣|b+a|.【分析】(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可.【解答】解:(1)根据数轴可知:a<b<0<c,且|c|<|b|<|a|,∴a+c<0,c﹣b>0,b+a<0,abc>0,故答案为:<,>,<,>;(2)原式=﹣(a+c)+(c﹣b)+(b+a)=﹣a﹣c+c﹣b+b+a=0.【点评】本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.14.有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:0,a,b,c;(2)化简:3|a﹣b|﹣|c﹣a|+2|b﹣c|.【分析】(1)根据在数轴上表示的数,右边的数总比左边的数大比较即可;(2)先去掉绝对值符号,再合并即可.【解答】解:(1)a<b<0<c;(2)∵从数轴可知:a<b<0<c,|a|>|b|>|c|,∴a﹣b<0,c﹣a>0,b﹣c<0,∴3|a﹣b|﹣|c﹣a|+2|b﹣c|=3(b﹣a)﹣(c﹣a)+2(c﹣b)=3b﹣3a﹣c+a+2c﹣2b=b﹣2a+c.【点评】本题考查了数轴,绝对值,合并同类项,有理数的大小比较等知识点,能根据数轴得出a<b<0<c和|a|>|b|>|c|是解此题的关键.15.若mn≠0,则﹣的所有可能取值共有()A.1个B.2个C.3个D.4个【分析】根据mn≠0,当m>0,n>0;m>0,n<0;m<0,n>0;m<0,n<0,利用绝对值得性质分别得出即可.【解答】解:根据mn≠0,当m>0,n>0,则﹣=1﹣1=0,当m>0,n<0,则﹣=1﹣(﹣1)=2,当m<0,n>0,则﹣=﹣1﹣1=﹣2,当m<0,n<0,则﹣=﹣1﹣(﹣1)=0,则﹣的所有可能取值共有3个,故选:C.【点评】此题主要考查了绝对值得性质以及分类讨论思想应用,根据已知得出m,n的取值分别得出是解题关键.16.如果2a+b=0,(ab≠0),求的值.【分析】先由2a+b=0,得出b=﹣2a,再分别由当a>0,b<0和a<0,b>0两种情况求代数式的值.【解答】解:∵2a+b=0,∴b=﹣2a且当a>0时,b<0;当a<0时,b>0;①当a>0,b<0时,=|﹣1|+|﹣2|=|﹣1|+|﹣2|=+=3;②a<0,b>0时,=|﹣1|+|﹣2|=|﹣1|+|﹣2|=+=3.【点评】此题考查的知识点是绝对值及代数式求值,关键是由已知得到当a>0时,b<0;当a<0时,b>0;17.若a、b都是不为零的数,则++的结果为()A.3或﹣3B.3或﹣1C.﹣3或1D.3或﹣1或1【分析】可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1=3;②当a<0,b<0时=﹣1﹣1+1=﹣1;③当a>0,b<0时=1﹣1﹣1=﹣1;④当a<0,b>0时=﹣1+1﹣1=﹣1;故选:B.【点评】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.互为相反数(0除外)的两个数的商为1,相同两个数(0除外)的商为1.18.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.【分析】(1)利用绝对值的代数意义化简即可求出值;(2)根据有理数的乘法法则和绝对值的代数意义化简即可求出值;【解答】解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;【点评】此题考查了绝对值,利用绝对值的代数意义化简是解本题的关键.19.若a>0,=1;若a<0,=﹣1;①若,则=1;②若abc<0,则=1或﹣3.【分析】根据实数绝对值的性质|a|=,根据a的符号确定它的绝对值是它本身还是绝对值即可.【解答】解:∵a>0,∴|a|=a,∴==1;∵a<0,∴|a|=﹣a,∴==﹣1,故答案为:1,﹣1;①∵,∴ab<0,∴|ab|=﹣ab,∴==1,故答案为:1;②∵abc<0,∴a、b、c中有一个负数、两个正数和三个负数两种情况,当a、b、c中有一个负数、两个正数时,=﹣1+1+1=1,当a、b、c中有三个负数时,=﹣1﹣1﹣1=﹣3,故答案为:1或﹣3.【点评】此题考查了分类讨论解决含字母参数绝对值的问题,关键是能确定含字母参数绝对值是它本身还是它的相反数.20.阅读下列材料,并解决有关问题:我们知道,|x|=,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1、2分别为|x+1|与|x﹣2|的零点值).在有理数范围内,零点值x=﹣1和x=2可将全体有理数不重复且不遗漏地分成如下三种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分为以下3种情况:(Ⅰ)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(Ⅱ)当﹣1≤x<2时,原式=(x+1)﹣(x﹣2)=3;(Ⅲ)当x≥2时,原式=(x+1)+(x﹣2)=2x﹣1;综上所述:原式=.通过以上阅读,请你类比解决以下问题:(1)填空:|x+2|与|x﹣4|的零点值分别为﹣2和4;(2)化简式子|x﹣3|+2|x+4|.【分析】(1)令x+2=0和x﹣4=0,即可求得|x+2|与|x﹣4|的零点值;(2)先求出零点值,然后根据零点值分三种情况进行讨论;【解答】解:(1)令x+2=0和x﹣4=0,求得:x=﹣2和x=4,故答案为:﹣2和4;(2)由x﹣3=0得x=3,由x+4=0得x=﹣4,①当x<﹣4时,原式=﹣(x﹣3)﹣2(x+4)=﹣3x﹣5;②当﹣4≤x<3时,原式=﹣(x﹣3)+2(x+4)=x+11;③当x≥3时,原式=(x﹣3)+2(x+4)=3x+5;综上所述:原式=.【点评】本题考查了绝对值,相反数,整式的加减,根据零点值分类讨论是解题的关键,注意正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.21.有理数a,b,c均不为0,且a+b+c=0.设,试求代数式x19+99x+2000之值.【分析】根据题意可得a,b,c中不能全同号,必有一正两负或两正一负与a=﹣(b+c),b=﹣(c+a),c=﹣(a+b),则可得的值为两个+1,一个﹣1或两个﹣1,一个+1,即可求得x的值,代入即可求得答案.【解答】解:由a,b,c均不为0,知b+c,c+a,a+b均不为0,又a,b,c中不能全同号,故必一正二负或一负二正,∴a=﹣(b+c),b=﹣(c+a),c=﹣(a+b),即,∴中必有两个同号,另一个符号其相反,即其值为两个+1,一个﹣1或两个﹣1,一个+1,∴,,∴x19+99x+2000=1+99+2000=2100.【点评】本题考查了分式的运算,注意分类讨论思想的应用.能得到的值为两个+1,一个﹣1或两个﹣1,一个+1是解此题的关键,要注意仔细分析,难度适中.22.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【分析】(1)分为x<﹣2、﹣2≤x<4、x≥4三种情况化简即可;(2)分x<﹣1、﹣1≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出代数式的最大值.【解答】解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.【点评】本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答.23.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x 对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为x=1或x=﹣7.(2)不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x﹣3|+|x+4|≥9表示到3与﹣4两点距离的和,大于或等于9个单位长度的点所表示的数.【解答】解:(1)方程|x+3|=4的解就是在数轴上到﹣3这一点,距离是4个单位长度的点所表示的数,是1和﹣7.故解是x=1或x=﹣7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和﹣4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得:x≥4或x≤﹣5.故答案为:(1)x=1或x=﹣7;(2)x≥4或x≤﹣5.【点评】本题主要考查了绝对值的意义,就是表示距离,正确理解题中叙述的题目的意义是解决本题的关键.。
专题一绝对值的几何意义(361)1.求|x+11|+|x−12|+|x+13|的最小值是.2.解答下列各题:(1)求|x−1|+2|x−3|+3|x−4|的最小值;(2)求|x−2|+|x−4|+|x−6|+⋯+|x−2000|的最小值.3.已知|x+2|+|1−x|=9−|y−5|−|1+y|,求x+y的最大值与最小值.4.先阅读下面的材料,然后解答问题:在一条直线上有依次排列的n(n>1)台机床在工作,我们要设置一个零件供应站P,使这n台机床到供应站P的距离总和最小,要解决这个问题先“退”到比较简单的情形.假设n台机床分别用A1,A2,…,A n表示.如图①,如果直线上有2台机床,很明显供应站P设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之和等于A1到A2的距离.如图②,如果直线上有3台机床,不难判断,供应站P设在中间一台机床A2处最合适,因为如果供应站P不放在A2处,甲和丙所走的距离之和恰好是A1到A3的距离,可是乙还得走从A2到P的这一段,这是多出来的,因此把供应站P放在A2处是最佳选择.不难知道,如果直线上有4台机床,供应站P应设在第二台机床与第三台机床之间的任何地方;如果直线上有5台机床,供应站P应设在第三台机床的位置.(1)有n台机床时,供应站P应设在何处,才能使这n台机床到供应站P的距离总和最小?(2)根据(1)的结论,求|x−1|+|x−2|+|x−3|+⋯+|x−617|的最小值.5.如图所示,在一条笔直的公路上有7个村庄,其中A,B,C,D,E,F离城市的距离分别为4km,10km,15km,17km,19km,20km,而村庄G正好是AF的中点.现要在某个村庄建一个活动中心,使各村庄到活动中心的路程之和最短,则活动中心应建在()A.A处B.C处C.G处D.E处6.如图,工作流程线上A,B,C,D处各有1名工人,且AB=BC=CD,现在工作流程线上要安放一个工具箱,使4名工人到工具箱取工具所花费的总时间最少,那么这个工具箱的安放位置是()A.A处或D处B.B处或C处C.B与C之间D.BC的中点处7.解答下列各题:(1)某省遭受雪灾,在其境内一段笔直的高速公路上依次停着100辆受阻的汽车,救援部队要设置一个临时食品供应站P,使得这100辆汽车到供应站P的距离之和最小,则供应站P应设在何处?(2)利用上述问题的解题规律计算|x−1|+|x−2|+|x−3|+⋯+|x−19|+|x−20|的最小值.参考答案1.【答案】:25【解析】:此题可转化为:数轴上有三个点,它们分别表示−13,−11,12,求数轴上一点P到这三个点的距离之和的最小值.由例题中模型建立的规律可知当x=−11时,|x+11|+|x−12|+|x+13|取得最小值,最小值为0+23+2=25.2(1)【答案】解:求|x−1|+2|x−3|+3|x−4|的最小值,即求|x−1|+|x−3|+|x−3|+|x−4|+|x−4|+|x−4|的最小值,利用绝对值在数轴上的意义,可知当3≤x≤4时,原式有最小值,不妨取x=3,则|x−1|+2|x−3|+3|x−4|=2+2×0+3×1=2+3=5.所以|x−1|+2|x−3|+3|x−4|的最小值是5.(2)【答案】当1000≤x≤1002时,原式有最小值,不妨取x=1002,这个最小值为(1002−2)+(1002−4)+⋯+(2000−1002)=500000.3.【答案】:解:因为|y−5|+|y+1|≥6,所以9−|y−5|−|1+y|≤3.因为|x+2|+|1−x|=9−|y−5|−|1+y|,|x+2|+|x−1|≥3,所以|x+2|+|x−1|=3,|y−5|+|y+1|=6,得−2≤x≤1,−1≤y≤5,故x+y的最大值为6,最小值为−3.4(1)【答案】解:当n为偶数时,供应站P应设在第n2台机床和第(n2+1)台机床之间的任何地方,这n台机床到供应站P的距离总和最小;当n为奇数时,供应站P应设在第n+12台机床的位置,这n台机床到供应站P的距离总和最小.(2)【答案】以(1)中的这条直线画数轴,n台机床是数轴上的n个点,这些点表示的有理数分别是a1,a2,a3,…,a n,问题转化为:在数轴上找一点P,其表示有理数x,当x取何值时,y=|x−a1|+ |x−a2|+⋯+|x−a n|取得最小值.由上面的讨论及绝对值的几何意义可知(2)中的问题即在数轴上找出表示x的点,使它到表示1,2,3,…,617各点的距离总和最小.当x=309时,原式的值最小,最小值是|309−1|+|309−2|+|309−3|+⋯+|309−308|+ 0+|309−310|+|309−311|+⋯+|309−616|+|309−617|=308+307+⋯+1+0+1+2+⋯+308=95172.5.【答案】:B6.【答案】:C7(1)【答案】解:通过2辆车、3辆车、4辆车试验可以发现:当车辆为偶数n时,食品供应站P应设在第n2辆汽车与第(n2+1)辆汽车之间的任何地方,此时n辆车到食品供应站的距离之和最小;当车辆为奇数n时,食品供应站P应设在第n+12辆汽车处,此时n辆车到食品供应站的距离之和最小.故当车辆数为100时,食品供应站P应设在第50辆汽车与第51辆汽车之间的任何地方.(2)【答案】|x−1|+|x−2|+|x−3|+⋯+|x−19|+|x−20|可以看成在数轴上x对应的点到1至20这20个数对应点的距离之和,所以当10≤x≤11时,比如x=10.5时,|x−1|+|x−2|+|x−3|+⋯+|x−19|+|x−20|取得最小值为9.5+8.5+ 7.5+⋯+0.5+0.5+1.5+⋯+7.5+8.5+9.5=100.。
肃七年级数学上册《绝对值》专项训练辑一.选择题妍1,若」^1= — 1,则a为()a蝇A. a> 0 B. a<0 C. 0v av 1 D. Tvav0菜考点:绝对值。
妨分析:根据―个负数的绝对值是它的相反数”求解.敢解答:解:<上」二—1,a鬟|a|=- a,着,「a是分母,不能为0,肃. . a v 0.聿故选B.蜗点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.噩2.若ab>0,贝U占+4+_^_的值为()Ib| |b| |ab|蒙A. 3 B. - 1 C. 土或i3 D.3 或—1衿考点:绝对值。
票分析:首先根据两数相乘,同号得正,得到a, b符号相同;再根据同正、同负进行分情况讨论.肄解答:解:因为ab>0,所以a, b同号.辐①若a, b同正,贝U &+&+_^_=1+1+1=3 ;lb I |b| |ab|薄②若a, b 同负,贝U -r^T+~r^T+ ।」>=—1 — 1 + 1= — 1 .lb I |b| |ab|荽故选D.藏点评:考查了绝对值的性质,要求绝对值里的相关性质要牢记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.该题易错点是分析a, b的符号不透彻,漏掉一种情况.筮3.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c| 等于()展A.TB.0 C. 1 D.2薇考点:有理数的加法。
薄分析:先根据有理数的相关知识确定a、b、c的值,然后将它们代入a+b+|c|中求解.腿解答:解:由题意知:a=1, b= - 1, c=0;犀所以a+b+|c|=1 — 1+0=0 .覆故选B.蜜点评:本题主要考查的是有理数的相关知识.最小的正整数是1,最大的负整数是-1,绝对值最小的有理数是0.蔻4.已知|a|=3, |b|=5,且abv0,那么a+b的值等于()袁A. 8 B. - 2 C. 8 或—8 D. 2 或—2莆考点:绝对值;有理数的加法。
标准、据探测,月球表面白天垂直照射的地方温度高达127℃,而夜晚温度可降低到1 ℃℃.根据以上数据推算,在月球上昼夜温差有零下183,则此时甲、乙,乙走了—32m、甲、乙两人在一条笔直的公路上,同时从2A地出发,记向右为正,甲走了+48m m
之间的距离是
(填“>”、“<”或“=”)3 、比较大小:--3的非负整数是4、大于-2而小于集合.、从正有理数集合中去掉正分数集合,得到53,4,5,6.根据图,6、一个体的每个面分别标有数字12,?中该体三种状态所显示的数据,可推出“?”处的数字是多少?
7、绝对值不小于3又不大于5的所有整数之和为__________
8、写出一个值,使你写出的值为 .
9、在数轴上到-2所表示的点的距离为3个单位长度的点表示的数是 .
10、如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是.
11、下表是我市某一天在不同时段测得的气温情况:则这一天气温的极差是℃.
文案.
标准时间0:00 4:00 8:00 12:00 16:00 20:00
18℃17气温℃19℃26℃27℃22℃
ABCABACBC中点间距离是.中点与两点之间的距离是5 cm,是线段上的任意一点,
则12、已知,13、绝对值大于2,且小于4的整数有_______.
abab= ,则│—+5│=014、若│+—4│。
的两点之间的距离是__________15、数轴上表示数和表示二、简答题
元买了礼物去看爷爷,母亲节时他又取元,存入银行.十一放假取出35080016、某同学春节期间将自己的压岁钱)
元给妈妈买了礼物,则存上存入、支出情况显示为( 出100+100
,+800,+350100 .+800,+350,﹣B.A
+100
350,.﹣,﹣100 D800,﹣,﹣C.+800350分别填入六个形,使得按虚线折成体后,相对,2710,7,,-2,-1017、右面是一个体纸盒的展开图,请把-)
分面上的两数互为相反数。
(4
文案.
标准6分)18、根据下面给出的数轴,解答下面的问题:(本题
B;:两点的位置,分别写出它们所表示的有理数A:、⑴请你根据图中AB观察数轴,与点A 的距离为4的点表示的数是:;⑵
⑶若将数轴折叠,使得A点与-3表示的点重合,则B点与数表示的点重合;
⑷若数轴上M、N两点之间的距离为2014(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N
两点表示的数分别是:M: N: .
19、数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8
(1). 计算以下各点之间的距离:
①A、B两点, ②B、C两点,③C、D两点,
(2). 若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.
20、如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,?再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,?请参照图1-8并思考,完成下列各题:
文案.
标准两点间的距离是BA,那么终点B?表示的数是_______,表示数-3,?将点A?向右移动7?个单位长度,?A (1)如果点;________表示的数是那么终点B个单位长度,再向右移动5个单位长度,? 点向左移动2)如果点A表示数3,将A7(
________;A,B两点间的距离为_______,表示的个单位长度,那么终点B168个单位长度,再向左移动256?)如果点A表示数-4,将A点向右移动(3 .B两点间的距离是________数是_________,A,个单位长度,那么,请你p?n个单位长度,再向左移动点表示的数为m,将A点向右移动A (4)一般
地,如果两点间的距离为多少?,B猜想终点B表示什么数?A三、选择题评卷人得分
分)(每空?分,共?
)21、下列说确的是(
越大B. 数轴上离原点越远,表示的数A.0大于一切非负数
C.没有最大的正数,却有最大的负数有理数是指正整数、负整数、正分数、负分数、零这五类数
D.
;③绝对值0,则这两个数互为倒数;②如果两数积为0,则至少有一个数为22、下列说法:①如果两个数的和为1 】【。
其中错误的个数是…………,,;④倒数是本身的数是是本身的有理数只有0-101
文案.
标准
A.0个
B.1个
C.2个
D.3个
23、下列说确的是…………………………………………………………………………………【】
.是最小的非负数B.有理数中存在最大的数A C.整数包括正整数和负整数D.0是最小的整数
24、图中所画的数轴,正确的是………………………………………………………………………【】
25、、如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2012将与圆周上的哪个数字重合()
ABCD.2 3
.1 .0 .
如,②规定以下两种变换:①.,;如26、
,2A,那么( 等于) .(B按照以上变换
有:),.(
3,.(C )),.(D 2)3
文案.
标准
为一个有理数,则一定是( )
27、设mA.负数B.正数C.非负数D.非正数
28、某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前为负,10时以后为正,例如,上午9:15记为-1,上午10:45记为1,依此类推,上午7:45应记为( )A.3 B.-3 C.-2.5 D.-7.45
29、下列说法错误的是( )
A.0既不是正数也不是负数
B.一个有理数不是整数就是分数
C.0和正整数是自然数
D.有理数又可分为正有理数和负有理数
30、室温度是15 C,室外温度是-3 C,则室外温度比室温度低( )
00(A) 12 C (B) 18 C (C) -12 C (D) -18 C
000031、某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.?2)kg,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差()
A.0.8kg B.0.6kg C.0.5kg D.0.4kg
32、现有以下四个结论:①绝对值等于其本身的有理数只有零;②相反数等于其本身的有理数只有零;③倒数等于其本身的有理数只有1;?④平方等于其本身的有理数只有1.其中正确的有()
文案.
标准
A.0个B.1个C.2个D.大于2个
33、如果a<2,那么│-1.5│+│a-2│等于()
A.1.5-a B.a-3.5 C.a-0.5 D.3.5-a
34、下面说确的有( )
①的相反数是-3.14;②符号相反的数互为相反数;③-(-3.8)的相反数是3.8;④一个数和它的相反数不
可能相等;⑤正数与负数互为相反数.
A.0个B.1个C.2个D.3个
、如果,下列成立的是(35)
..B . C
AD.
、比较的大小,结果正确的是(36)
..A.B .D C
37、当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3
38、下列说法不正确的是()
A.0既不是正数,也不是负数
文案.
标准
B.1是绝对值最小的数
C.一个有理数不是整数就是分数
D.0的绝对值是0
39、一个有理数的倒数是它本身,这个数是()A.0 B.1 C.﹣1 D.1或﹣1
>,那么该数轴的原点,如果O>、ab、c,AB=BC、、如图,数轴上的40A、BC三点所表示的数分别为) ( 的位置应该在
A.点A的左边B.点A与点B之间
C.点B与点C之间D.点C的右边
参考答案
一、填空题
310、1
文案.
标准
2、80
3、>
;、0,1,245、正整数
6、6
7、02即可8、只要大于或等于9、-5或1
10、﹣n>m>﹣m>n.
10 11、、12 2.5cm; 3 、±1314、9
15、9.
二、简答题
文案.
标准
16、C.
17、1:A-A.B-B.C-C是相对面,填互为相反数.
18、根据下面给出的数轴,解答下面的问题:(本题6分,每空1分)
(3) ;(4)-1008;;1006;或-;(1) 1-2.5;(2)53
)8,3 (2119、()2,20、(1)4 7 (2)1 2 (3)-92 88 (4)终点B表示的数是m+n-p,A,B两点间的距离为│n-p│.
三、选择题
D 21、、D 22A 、23D 、2425、C
26、D;
;、27C文案.
标准
B;28、29、D.
、B 30C 、31B 、32D 、33、34A
35、D
36、A.
37、B.
38、B.
39、D.
C 、40文案.。