最新初中数学数据分析经典测试题附答案
- 格式:doc
- 大小:274.00 KB
- 文档页数:11
最新初中数学数据分析经典测试题附答案
一、选择题
1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()
A.3,2 B.3,4 C.5,2 D.5,4
【答案】B
【解析】
试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:
;新的方差:
,故选
B.
考点:平均数;方差.
2.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()
A.7,6 B.7,4 C.5,4 D.以上都不对
【答案】B
【解析】
【分析】
根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出1
3
(-2+b-2+c-2)的值;再由
方差为4可得出数据a-2,b-2,c-2的方差.
【详解】
解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,
∴1
3
(a-2+b-2+c-2)=3,
∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,
∴1
3
[(a-5)2+(b-5)2+(c-5)2]=4,
∴a-2,b-2,c-2的方差=1
3
[(a-2-3)2+(b-2-3)2+(c--2-3)2]
= 1
3
[(a-5)2+(b-5)2+(c-5)2]=4,
故选B.【点睛】
本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.
3.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()
A.中位数是1 B.众数是1
C.平均数是1.5 D.方差是1.6
【答案】C
【解析】
【分析】
将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】
解:将数据重新排列为:1、1、1、3、4,
则这组数据的中位数1,A选项正确;
众数是1,B选项正确;
平均数为11134
5
++++
=2,C选项错误;
方差为1
5
×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;
故选:C.
【点睛】
本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.
4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()
A.队员1 B.队员2 C.队员3 D.队员4
【答案】B
【解析】
【分析】
根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.
【详解】
解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,
但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.
故选B.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
对他们的训练成绩作如下分析,其中说法正确的是()
A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同
C.他们训练成绩的众数不同D.他们训练成绩的方差不同
【答案】D
【解析】
【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.
【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,
∴甲成绩的平均数为6788910
6
+++++
=8,中位数为
88
2
+
=8、众数为8,
方差为1
6
×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=
5
3
,
∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,
∴乙成绩的平均数为778889
6
+++++
=
47
6
,中位数为
88
2
+
=8、众数为8,
方差为1
6
×[2×(7﹣
47
6
)2+3×(8﹣
47
6
)2+(9﹣
47
6
)2]=
17
36
,
则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,
故选D.
【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.
6.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()