最新初中数学数据分析经典测试题附答案

  • 格式:doc
  • 大小:274.00 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学数据分析经典测试题附答案

一、选择题

1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()

A.3,2 B.3,4 C.5,2 D.5,4

【答案】B

【解析】

试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:

;新的方差:

,故选

B.

考点:平均数;方差.

2.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为()

A.7,6 B.7,4 C.5,4 D.以上都不对

【答案】B

【解析】

【分析】

根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出1

3

(-2+b-2+c-2)的值;再由

方差为4可得出数据a-2,b-2,c-2的方差.

【详解】

解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15,

∴1

3

(a-2+b-2+c-2)=3,

∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4,

∴1

3

[(a-5)2+(b-5)2+(c-5)2]=4,

∴a-2,b-2,c-2的方差=1

3

[(a-2-3)2+(b-2-3)2+(c--2-3)2]

= 1

3

[(a-5)2+(b-5)2+(c-5)2]=4,

故选B.【点睛】

本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.

3.对于一组统计数据:1,1,4,1,3,下列说法中错误的是()

A.中位数是1 B.众数是1

C.平均数是1.5 D.方差是1.6

【答案】C

【解析】

【分析】

将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】

解:将数据重新排列为:1、1、1、3、4,

则这组数据的中位数1,A选项正确;

众数是1,B选项正确;

平均数为11134

5

++++

=2,C选项错误;

方差为1

5

×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;

故选:C.

【点睛】

本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.

4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()

A.队员1 B.队员2 C.队员3 D.队员4

【答案】B

【解析】

【分析】

根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.

【详解】

解:因为队员1和2的方差最小,所以这俩人的成绩较稳定,

但队员2平均数最小,所以成绩好,即队员2成绩好又发挥稳定.

故选B.

【点睛】

本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.

5.甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表

对他们的训练成绩作如下分析,其中说法正确的是()

A.他们训练成绩的平均数相同B.他们训练成绩的中位数不同

C.他们训练成绩的众数不同D.他们训练成绩的方差不同

【答案】D

【解析】

【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.

【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,

∴甲成绩的平均数为6788910

6

+++++

=8,中位数为

88

2

+

=8、众数为8,

方差为1

6

×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=

5

3

∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,

∴乙成绩的平均数为778889

6

+++++

=

47

6

,中位数为

88

2

+

=8、众数为8,

方差为1

6

×[2×(7﹣

47

6

)2+3×(8﹣

47

6

)2+(9﹣

47

6

)2]=

17

36

则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,

故选D.

【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.

6.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是()