函数极限的运算法则
- 格式:doc
- 大小:115.00 KB
- 文档页数:3
函数极限的四则运算法则函数极限是数学中重要的概念之一,它在数学分析和微积分中有着广泛的应用。
四则运算法则指的是对函数进行加减乘除运算时,其极限的运算规则。
在本文中,我们将对四则运算法则进行详细的说明。
1.加法法则:如果有两个函数 f(x) 和 g(x),且它们的极限都存在,则它们的和的极限等于两个极限的和,即lim(x→a) [f(x) + g(x)] = lim(x→a)f(x) + lim(x→a) g(x)。
证明如下:假设lim(x→a) f(x) = L1,lim(x→a) g(x) = L2,我们需要证明lim(x→a) [f(x) + g(x)] = L = L1 + L2根据极限的定义,我们可以找到两个足够小的正数ε1和ε2,使得当0<,x-a,<δ1时,有,f(x)-L1,<ε1,当0<,x-a,<δ2时,有,g(x)-L2,<ε2取δ = min{δ1, δ2},则当 0 < ,x-a,< δ 时,有,f(x) - L1,< ε1 且,g(x) - L2,< ε2此时,我们可以将不等式,f(x)-L1,+,g(x)-L2,<ε1+ε2转化为不等式,f(x)+g(x)-(L1+L2),<ε1+ε2根据极限的定义,当,f(x) + g(x) - (L1 + L2),< ε1 + ε2 时,有,x - a,< δ,即证明了lim(x→a) [f(x) + g(x)] = L1 +L22.减法法则:如果有两个函数 f(x) 和 g(x),且它们的极限都存在,则它们的差的极限等于两个极限的差,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
证明方法与加法法则类似,略。
3.乘法法则:如果有两个函数 f(x) 和 g(x),且它们的极限都存在,则它们的乘积的极限等于两个极限的乘积,即lim(x→a) [f(x) * g(x)] =lim(x→a) f(x) * lim(x→a) g(x)。
极限的运算法则及计算方法极限是微积分中的一个重要概念,用于研究函数在接近其中一点时的趋势。
在许多情况下,计算极限可以通过应用一些运算法则来简化。
本文将介绍极限的运算法则以及一些常用的计算方法。
一、极限的四则运算法则1. 乘法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) * g(x))的极限等于f(x)的极限乘以g(x)的极限,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。
2. 除法法则:如果函数f(x)的极限存在,g(x)的极限存在且g(x)不等于0,则(f(x) / g(x))的极限等于f(x)的极限除以g(x)的极限,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。
3. 加法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) + g(x))的极限等于f(x)的极限加上g(x)的极限,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。
4. 减法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) - g(x))的极限等于f(x)的极限减去g(x)的极限,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
二、极限的乘方法则1. 幂函数法则:对于任意正整数n,如果函数f(x)的极限存在,则(f(x)^n)的极限等于f(x)的极限的n次方,即lim(x→a) [f(x)^n] = [lim(x→a) f(x)]^n。
2. 平方根法则:如果函数f(x)的极限存在且大于等于0,则√[f(x)]的极限等于f(x)的极限的平方根,即lim(x→a) √[f(x)] =√[lim(x→a) f(x)]。
三、特殊函数的极限计算法则1. 三角函数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
极限的运算法则总结
在数学中,极限是一种重要的概念,用来描述函数在某一点趋近于某个值的行为。
极限的运算法则是一组规则,用于计算或简化满足特定条件的极限。
这些法则将在以下几个方面进行总结和讨论。
1. 四则运算法则:根据四则运算法则,如果两个函数的极限都存在,那么它们
的和、差、乘积以及商的极限也存在,并且等于相应运算的极限结果。
2. 乘法法则:该法则说明了两个函数极限的乘积是等于各自极限的乘积。
根据
这个法则,如果函数 f(x) 的极限为 A,函数 g(x) 的极限为 B,则 f(x) * g(x) 的极限
为 A * B。
3. 除法法则:该法则说明了两个函数极限的商等于各自极限的商。
按照这个法则,如果函数 f(x) 的极限为 A,函数 g(x) 的极限为 B,并且 B 不等于 0,则 f(x) /
g(x) 的极限为 A / B。
4. 幂函数法则:幂函数法则用于处理具有指数的函数。
根据这个法则,如果函
数 f(x) 的极限为 A,则 f(x)^n 的极限等于 A^n,其中 n 是一个常数。
5. 复合函数法则:复合函数法则适用于复合函数的极限计算,也称为链式法则。
根据这个法则,如果函数 f(x) 的极限为 A,函数 g(x) 在 A 的附近连续,则复合函
数 g(f(x)) 的极限等于 g(A)。
这些极限运算法则在求解极限问题时起到了重要的作用。
通过应用这些法则,
我们可以更简单地计算极限,并获得更准确的结果。
然而,在实际应用中,我们仍需注意特殊情况和条件,以确保运算正确性。
极限的运算法则及计算方法极限是数学分析中的重要概念,用于描述函数在一些点无限接近一些值的情况。
极限的运算法则涉及到极限的四则运算、复合函数的极限、反函数的极限以及夹逼定理等内容。
下面将详细介绍极限的运算法则及计算方法。
1.极限的四则运算法则:(1)和差运算法则:设函数f(x)和g(x)在点x=a处极限存在,那么函数f(x)和g(x)的和差的极限存在,并且有以下公式:lim (f(x) ± g(x)) = lim f(x) ± lim g(x)(2)乘积运算法则:设函数f(x)和g(x)在点x=a处极限存在,那么函数f(x)和g(x)的乘积的极限存在,并且有以下公式:lim f(x)g(x) = lim f(x) · lim g(x)(3)商运算法则:设函数f(x)和g(x)在点x=a处极限存在,并且lim g(x)≠0,那么函数f(x)和g(x)的商的极限存在,并且有以下公式:lim f(x)/g(x) = lim f(x)/lim g(x)2.复合函数的极限:(1)设函数f(x)在点x=a处极限存在,并且函数g(x)在点x=limf(x)处极限存在,那么复合函数g(f(x))在点x=a处极限存在,并且有以下公式:lim g(f(x)) = lim g(u) (u→lim f(x)) = lim g(u) (u→a) = lim g(v) (v→a)(2)特别地,如果函数f(x)在点x=a处极限存在,并且函数g(x)在点x=lim f(x)处连续,那么复合函数g(f(x))在点x=a处极限存在,并且有以下公式:lim g(f(x)) = g(lim f(x)) = g(f(a))3.反函数的极限:(1)设函数y=f(x)在点x=a处具有反函数,并且在点x=a处极限存在,那么函数x=f^[-1](y)在点y=f(a)处极限存在,并且有以下公式:lim x→a f^[-1](y) = f^[-1](lim y→f(a))4.夹逼定理:假设函数g(x)≤f(x)≤h(x)在点x=a处成立,并且g(x)和h(x)在点x=a处极限都等于L,那么函数f(x)在点x=a处也存在极限,并且极限等于L,即有以下公式:lim f(x) = L以上就是极限的运算法则及计算方法的基本内容。
教学目标:掌握函数极限的运算法则,并会求简单的函数的极限
教学重点:运用函数极限的运算法则求极限
教学难点:函数极限法则的运用
教学过程:
一、引入:
一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o
==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数
二 0). 说明:当三 例1 求)3(lim 2
2x x x +→
例2 求1
12lim 231++-→x x x x
例3 求4
16lim 24--→x x x
分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数
4
162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限.
例4 求1
33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、2
总结:lim x x o →lim x ∞→例5 求lim →x 计算了。
四 (1)lim 21
→x
(3)lim 4
→x 14321-+→x x x
(5)11lim 21+--→x x x (6)9
65lim 223-+-→x x x x
(7)13322lim 232+--+∞→x x x x x (8)5
2lim 32--∞→y y y y
五 小结
1 有限个函数的和(或积)的极限等于这些函数的和(或积);
2 函数的运算法则成立的前提条件是函数 )(),(x g x f 的极限存在,在进行极限运算时,要特别注意这一点.
3 两个(或几个)函数的极限至少有一个不存在时,他们的和、差、积、商的极限不一定不存在.
4 在求几个函数的和(或积)的极限时,一般要化简,再求极限.
六 作业(求下列极限)
(1)-→x 2
(4)lim 0→x
(7)lim 2→x
(10)x
(13)13lim 243+++∞→x x x x x (14)2332)2312(lim -+→x x x (15)3
526113lim 221--+-→x x x x x
(16)3526113lim 22--+-∞→x x x x x (17)3
23
203526lim x x x x x x x ----→ (18)32323526lim x x x x x x x ----∞→。