期权定价模型
- 格式:doc
- 大小:131.50 KB
- 文档页数:3
期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。
期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。
BSM模型是最早也是最经典的期权定价模型之一。
该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。
该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。
通过对组合进行数学推导,可以得到期权价格的解析公式。
BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。
有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。
与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。
该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。
通过逐步计算,可以得到期权价格的近似值。
二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。
无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。
其中,最关键的参数是标的资产的波动率。
波动率代表了市场对标的资产未来价格变动的预期。
根据波动率的不同,期权的价格也会有所变化。
其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。
需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。
实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。
因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。
总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。
BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。
期权定价模型期权定价模型是金融衍生品定价领域的重要模型之一,它通过考虑期权的各项特性,将期权的价值与其相关的标的资产、行权价格、到期时间、波动率、无风险利率等一系列因素联系起来,从而确定期权的公平价格。
在期权定价模型中,常用的模型有布莱克-斯科尔斯模型(Black-Scholes Model)和它的改进模型,如布莱克-斯科尔斯-默顿模型(Black-Scholes-Merton Model)。
这些模型基于一些假设,包括市场无摩擦、无风险利率不变、标的资产价格服从几何布朗运动等。
布莱克-斯科尔斯模型是最早的期权定价模型之一,它将期权价格视为标的资产价格的函数,通过假设标的资产价格服从几何布朗运动,并应用风险中性估计,推导出了一个偏微分方程,即著名的布莱克-斯科尔斯方程。
利用该方程可以计算出欧式看涨/看跌期权的价格。
然而,布莱克-斯科尔斯模型在实际应用中存在一些限制,例如假设市场无摩擦和无风险利率不变的条件,并且假设标的资产价格服从几何布朗运动,这些假设在现实市场中并不总是成立。
因此,为了更准确地定价期权,学者们提出了一系列改进的模型。
其中,布莱克-斯科尔斯-默顿模型是对布莱克-斯科尔斯模型的一个重要改进。
该模型引入了对标的资产价格波动率的估计,通过蒙特卡洛模拟或数值方法,可以计算出更加准确的欧式期权价格。
此外,还有许多其他的改进模型,如跳跃扩散模型、随机波动率模型等,针对不同的市场和期权特性提供了更加精确的定价方法。
总之,期权定价模型是金融衍生品定价领域的重要工具,它通过考虑期权的各项特性和相关因素,计算出期权的公平价格。
布莱克-斯科尔斯模型和其改进模型是常用的期权定价模型,但也存在一些假设和限制。
为了更精确地定价期权,学者们提出了一系列改进模型,以适应不同市场和期权特性的需求。
在期权定价领域,除了布莱克-斯科尔斯模型和其改进模型外,还有许多其他的期权定价模型被广泛应用。
这些模型包括跳跃扩散模型、随机波动率模型、二叉树模型等等,它们分别在不同的金融市场和期权类型中发挥着重要的作用。
第9章 期 权9.1 期权的概念期货无选择权:买入期货合约,即使交割时的现货价格低于期货价格,也必须买入而亏损;出售期货合约,即使交割时的现货价格高于期货价格,也必须卖出而亏损。
看涨买权(call option ):到期时的现货价格低于执行价格,持有者可选择不执行合约,以避免亏损;到期时的现货价格高于执行价格,持有者可选择 执行合约,以获得盈利。
看跌卖权(put option ):到期时的现货价格低于执行价格,持有者可选择 执行合约,以获得盈利;到期时的现货价格高于执行价格,持有者可选择不执行合约,以避免亏损。
期权价格(option price ):购买选择权支付的单位成本。
9.2 到期股票期权定价1. 到期期权的价值: 标的资产:股票标的变量:股价 S 也就是 S 元∕股 执行价格: E 或X 比如 100元∕股 到期时间: T 比如 3个月到期时股价: T S 比如 120元∕股,或80元∕股 股票现价: 0S看涨买权到期价值: C T = =)0,max(E S T -例:C T =)0,max(E S T -=)0,100120max(-=20 C T =)0,max(E S T -=)0,10080max(-=0 注:到期价值C T 随到期股价T S 的不同而变化,T S 是自变量,C T 是因变量或函数,并且C T 是T S 的分段函数。
看涨买权到期价值看跌卖权到期价值:)0,max(T T S E P -=看跌卖权到期价值2. 到期期权的盈亏设期初买权价为0C 、期初卖权价为0P ,则到期期权的盈亏为),max(),max(000000P P S E P P C C E S C C T T P T T C ---=-=---=-=ππ(1)购入买权(2)购入卖权例如:购入买权,E =100,100=C , 到期时T S 为115和90的两种情况的盈亏分别为:;10)10,1010090max()90(;5)10,10100115max()115(-=---==---=C C ππ注意: 买权是一个产品,设售出买权的盈亏为C π,则有0=+C C ππ或C πC π-=,即售出和购入买权的盈亏是零和的,原因是,售出买权的一方看跌,售出卖权的一方看涨。
金融学中的期权定价模型在金融学领域中,期权是一种金融工具,赋予持有人在未来某个特定时间以特定价格购买或出售标的资产的权利。
期权定价模型是为了确定期权合理价格的数学模型。
本文将介绍金融学中常用的期权定价模型,包括布莱克-斯科尔斯模型和风险中性定价模型。
布莱克-斯科尔斯模型(Black-Scholes Model)是最为著名和广泛使用的期权定价模型之一。
该模型于1973年由费舍尔·布莱克(Fisher Black)和米伦·斯科尔斯(Myron Scholes)共同提出,并获得了1997年诺贝尔经济学奖。
布莱克-斯科尔斯模型基于一系列假设,包括标的资产价格服从随机几何布朗运动、市场无摩擦、无交易成本等。
根据这些假设,该模型通过偏微分方程推导出了期权的定价公式。
该公式可以用来计算欧式期权的价格,在交易中发挥了重要的作用。
风险中性定价模型(Risk-Neutral Pricing Model)是另一种常用的期权定价模型。
该模型的基本原理是假设市场参与者对风险持中立态度,即市场对未来价格的期望值等于当前价格。
根据这个假设,风险中性定价模型通过建立与衍生品价格相关的风险中性测度,将期权的定价问题转化为风险中性测度下的期望值计算。
相对于布莱克-斯科尔斯模型,风险中性定价模型更加灵活,可以应用于更复杂的市场情况,并且可以解决了一些布莱克-斯科尔斯模型无法解决的问题。
除了布莱克-斯科尔斯模型和风险中性定价模型,金融学中还有其他的期权定价模型,如扩散模型、二叉树模型和蒙特卡洛模拟等。
这些模型都有各自的优势和适用范围,可以根据具体情况选择合适的模型进行期权定价。
需要注意的是,期权定价模型只是一种理论框架,模型的有效性和适用性需要在实践中进行验证。
实际应用中,投资者还需要考虑市场流动性、实际交易成本、波动率预测等因素,并结合自身的投资策略进行决策。
总结而言,金融学中的期权定价模型是为了计算期权的合理价格而设计的数学模型。
金融工程中的期权定价模型一、期权定义期权是金融工具中的一种,是指在未来某个时间,按照约定的价格、数量和期限,有权买入或者卖出某种标的资产的一种金融合约。
通过买入期权,持有人可以在未来某个时间以约定的价格买进标的资产;通过卖出期权,交易人可以获得期权费用,承担未来某个时间按照约定价格进行买卖的义务。
期权的本质是对未来的权利,是一种寄予了未来的期望和信心。
二、期权定价方法期权定价是指通过计算期权价格,来实现期权交易的方法或模型。
期权定价的理论基础主要包括两个主流模型:布莱克-斯科尔斯模型和考克斯-鲁宾斯坦模型。
下面我们分别来介绍一下这两种期权定价模型。
1. 布莱克-斯科尔斯模型布莱克-斯科尔斯模型,是由弗兰克-布莱克和梅伦-斯科尔斯在1973年提出的一种期权定价模型。
这个模型的核心思想是将期权看作是一种债券和股票组成的投资组合,通过对这个投资组合的定价,来推导出期权的价格。
布莱克-斯科尔斯模型的核心公式如下:C = SN(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - SN(-d1)其中,C表示看涨期权的价格,P表示看跌期权的价格;S表示标的资产的价格,X表示行权价格;N()表示标准正态分布函数的值,其中d1和d2分别表示如下:d1 = [ln(S/X) + (r + σ^2/2)t] / σ√td2 = d1 - σ√t这个模型中,需要考虑的参数有标的资产的价格S、行权价格X、波动率σ、存续期t、无风险利率r。
其中,波动率是最重要的参数,它的大小决定了标的资产的风险水平,因此,布莱克-斯科尔斯模型中的波动率是需要通过历史数据或者其他方法进行计算和估算的。
2. 考克斯-鲁宾斯坦模型考克斯-鲁宾斯坦模型,是由约翰-考克斯和斯蒂芬-鲁宾斯坦在1979年提出的一种期权定价模型。
这个模型的最大特点是引入了离散时间的概念,将连续时间的布莱克-斯科尔斯模型离散化,以适应实际的市场需求。
金融衍生品学中的期权定价模型分析1. 引言金融衍生品是一种基于金融资产的衍生工具,其中期权是最常见的一种。
期权是一种购买或出售标的资产的权利,而非义务。
在金融衍生品学中,期权定价模型是评估期权价格的重要工具。
本文将对期权定价模型进行深入分析。
2. 期权定价理论期权定价理论是通过建立数学模型来计算期权价格的理论框架。
其中最著名的模型是布莱克-斯科尔斯期权定价模型(Black-Scholes Option Pricing Model)。
该模型基于一些假设,如市场无摩擦、无套利机会等,通过对期权价格的随机波动性进行建模,计算出期权的理论价格。
3. 布莱克-斯科尔斯期权定价模型布莱克-斯科尔斯期权定价模型是一种基于随机过程的数学模型,用于计算欧式期权的价格。
它的核心思想是将期权价格与标的资产价格、行权价格、无风险利率、期权到期时间和标的资产价格波动率等因素联系起来。
通过对这些因素的定量分析,可以计算出期权的理论价格。
4. 期权定价模型的应用期权定价模型在金融市场中有广泛的应用。
首先,它可以用于评估期权的合理价格,帮助投资者做出决策。
其次,它可以用于套利交易的策略设计。
通过对期权价格的预测,投资者可以利用价格差异来进行套利交易,从而获得利润。
此外,期权定价模型还可以用于风险管理,帮助投资者对期权的价格波动进行预测和控制。
5. 期权定价模型的局限性尽管期权定价模型在金融市场中有广泛的应用,但它也存在一些局限性。
首先,该模型基于一系列假设,如市场无摩擦、无套利机会等,这些假设在现实市场中并不总是成立。
其次,该模型对标的资产价格波动率的估计非常敏感,对波动率的估计误差会导致期权价格的误差。
此外,该模型只适用于欧式期权,对于其他类型的期权,如美式期权,需要使用其他的定价模型。
6. 其他期权定价模型除了布莱克-斯科尔斯期权定价模型之外,还存在其他的期权定价模型。
例如,考虑了股息支付的期权定价模型(Dividend-adjusted Option Pricing Model)、考虑了波动率的随机性的期权定价模型(Stochastic Volatility Option Pricing Model)等。
期权投资中的期权定价模型与风险中性估值期权是金融衍生品中重要的一种工具,它赋予持有者在未来某个时间以约定价格买入或卖出标的资产的权利。
为了准确定价期权合约并评估其风险,金融学家们提出了多种期权定价模型和风险中性估值方法。
1. 期权定价模型期权定价模型是对期权市场价值进行估计的数学模型。
其中最为经典的模型是BSM期权定价模型(Black-Scholes-Merton Model)。
BSM模型基于以下假设:- 市场具有无风险利率,期权交易无限制,并且期权的期限内无股息支付;- 资产价格连续且遵循几何布朗运动(Geometric Brownian Motion);- 市场无摩擦,投资者可以实施无限制的买卖交易。
根据BSM模型,最基本的欧式看涨期权(Call Option)定价公式为:C = S0 * N(d1) - X * exp(-r * T) * N(d2)其中,- C为期权的价格;- S0为标的资产的当前价格;- N为标准正态分布函数;- d1和d2的计算公式为:d1 = (ln(S0 / X) + (r + σ^2 / 2) * T) / (σ * s qrt(T))d2 = d1 - σ * sqrt(T)- X为期权的行权价格;- r为连续复利无风险利率;- σ为标的资产的波动率;- T为期权的剩余到期时间。
BSM模型为分析和定价欧式期权提供了理论基础,但在实际应用中,由于市场的不完美性和各种假设条件的不成立,通常需要结合其他模型和修正来增加其定价的准确性。
2. 风险中性估值风险中性估值是一种基于风险中性假设的期权定价方法。
风险中性假设认为市场参与者在无风险收益率下对所持有的所有风险资产的期望收益为相同的值。
基于风险中性估值,可以通过消除风险,把期权定价问题转化为无套利机会的定价问题。
在风险中性估值框架下,可以运用风险中性概率来计算期权价值。
对于欧式期权而言,其价格通过期权价值与风险中性概率的乘积来计算。
二、期权价值评估的方法
(一)期权估价原理
1、复制原理
基本思想复制原理的基本思想是:构造一个股票和贷款的适当组合,使得无论股价如何变动投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。
基本公式每份期权价格(买价)=借钱买若干股股票的投资支出=购买股票支出-借款额
计算步骤(1)确定可能的到期日股票价格Su和Sd
上行股价Su=股票现价S×上行乘数u
下行股价Sd=股票现价S×下行乘数d
(2)根据执行价格计算确定到期日期权价值Cu和Cd:
股价上行时期权到期日价值Cu=上行股价-执行价格
股价下行时期权到期日价值Cd=0
(3)计算套期保值率:
套期保值比率H=期权价值变化/股价变化=(CU-Cd)/(SU-Sd)
(4)计算投资组合的成本(期权价值)=购买股票支出-借款数额
购买股票支出=套期保值率×股票现价=H×S0
借款数额=价格下行时股票收入的现值
=(到期日下行股价×套期保值率)/(1+r)= H×Sd/(1+r)
2、风险中性原理
基本思想假设投资者对待风险的态度是中性的,所有证券的预期收益率都应当是无风险利率;假设股票不派发红利,股票价格的上升百分比就是股票投资的收益率。
因此:
期望报酬率(无风险收益率)=(上行概率×股价上升时股价变动百分比)+(下行概率×股价下降时股价变动百分比)
=p×股价上升时股价变动百分比+(1-p)×股价下降时股价变动百分比
计算步骤
(1)确定可能的到期日股票价格Su和Sd(同复制原理)
(2)根据执行价格计算确定到期日期权价值Cu和Cd(同复制原理)
(3)计算上行概率和下行概率
期望报酬率=(上行概率×股价上升百分比)+(下行概率×股价下降百分比)
(4)计算期权价值
期权价值=(上行概率×Cu+下行概率×Cd)/(1+r)
(二)二叉树期权定价模型
1、单期二叉树定价模型
基本原理风险中性原理的应用
计算公式(1)教材公式
期权价格=
U=股价上行乘数=1+股价上升百分比
d=股价下行乘数=1-股价下降百分比
(2)理解公式:(与风险中性原理完全一样)
2、两期二叉树模型
基本原理把到期时间分成两期,由单期模型向两期模型的扩展,实际上就是单期模型的两次应用。
计算公式首先:利用单期定价模型,计算Cu和Cd:
其次:根据单期定价模型计算出期权价格C0:
3、多期二叉树模型
(三)布莱克-斯科尔斯期权定价模型
三、实物期权
实物期权隐含在投资项目中,有的项目期权价值很小,有的项目期权价值很大。
这要看项目不确定性的大小,不确定性越大则期权价值越大。
(一)扩张期权
扩张期权是指后续投资机会的权利。
【提示1】在确定二期项目未来现金流量的现值(S0)时,由于投资有风险,未来现金流量不确定,折现率要用考虑风险的投资人要求的必要报酬率;
【提示2】在确定二期项目投资额的现值PV(X)时,由于项目所需要的投资额相对比较稳定,这现率要用无风险的折现率。
【提示3】根据d求N(d)的数值时,可以查教材后附的"正态分布曲线面积表"。
由于表格的数据是不连续的,有时需要使用插补法计算更准确的数值。
当d为负值时,对应的N(d)=1-N(-d), 例如N(-0.35)=1-N(0.35)=1-0.6368=0.3632。
(二) 时机选择期权
从时间选择来看,任何投资项目都具有期权的性质。
如果一个项目在时间上不能延迟,只能立即投资或者永远放弃,那么它就是马上到期的看涨期权。
如果一个项目在时间上可以延迟,那么它就是未到期的看涨期权。
如果延期执行的期权价值大于立即执行的净现值,要考虑延期。
选择立即执行净现值和延期执行期权价值中较大的方案为优。
时机选择期权分析通常用二叉树定价模型。
根据风险中性原理计算上行概率
延期执行的期权价值的确定
(三)放弃期权
在评估项目时,就应当事先考虑中间放弃的可能性和它的价值。
确定最佳放弃策略:一个项目,只要继续经营价值大于资产的清算价值,它就会继续下去。
反之,如果清算价值大于继续经营价值,就应当终止。
这里的清算价值,不仅指残值的变现收入,也包括有关资产的重组和价值的重新发掘。
放弃期权决策通常采用多期二叉树法。
【练习题】
某公司的股票现在的市价是60元,有1股以该股票为标的资产的看涨期权,执行价格为63元,到期时间为6个月。
6个月以后股价有两种可能:上升25%或者降低20%,则套期保值比率为()。
A.0.5
B.0.44
C.0.4
D.1
【答案】B
【解析】上行股价=60×(1+25%)=75(元),下行股价=60×(1-20%)=48(元);股价上行时期权到期日价值=75-63=12(元),股价下行时期权到期日价值=0;套期保值比率=(12-0)/(75-48)=0.44。