完全平方数和完全平方式
- 格式:doc
- 大小:75.50 KB
- 文档页数:4
数学知识点:完全平方数和完全平方式填空题1.已知a+b=6,ab=3,则a2+b2=_________.2.若=5,则=_________.3.x2﹣3x+_________=(x﹣_________)2.4.已知a2+b2=13,ab=6,则a+b的值是_________.5.已知x2+y2+4x﹣6y+13=0,那么x y=_________6.已知=6,则=_________.7.若(x﹣m)2=x2+x+a,则m=_________,a=_________.8.x2+kx+9是完全平方式,则k=_________.9.若4x2﹣kxy+y2是一个完全平方式,则k=_________.10.若9x2﹣kxy+4y2是一个完全平方式,则k的值是_________.11.若x2+3x+m是一个完全平方式,则m=_________.12.若9x2+mxy+16y2是一个完全平方式,则m=_________.13.多项式4y2+my+9是完全平方式,则m=_________.14.若4x2+mx+25是一个完全平方式,则m的值是_________.15.已知x2﹣mxy+y2是完全平方式,则m=_________.16.如果x2+mx+16是一个完全平方式,那么m=_________.17.若x2﹣ax+16是一个完全平方式,则a=_________.18.若x2﹣2ax+16是完全平方式,则a=_________.19.若a2+2ka+9是一个完全平方式,则k等于_________.20.若x2+mx+1是完全平方式,则m=_________.21.若x2+mx+4是完全平方式,则m=_________.22.代数式4x2+3mx+9是完全平方式,则m=_________.23.若二次三项式4x2+ax+9是一个完全平方式,则a=_________.24.多项式x2+2mx+64是完全平方式,则m=_________.解答题25.(2009•佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.26.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.28.已知(x+y)2=18,(x﹣y)2=6,求x2+y2及xy的值.29.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为_________;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是_________;(3)若x+y=﹣6,xy=2.75,则x﹣y=_________;_________(4)观察图③,你能得到怎样的代数恒等式呢?(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.30.阅读材料并回答问题:我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1)或图(2)等图形的面积表示.(1)请写出图(3)所表示的代数恒等式:_________;(2)试画一个几何图形,使它的面积表示:(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与它对应的几何图形.数学知识点:完全平方数和完全平方式参考答案与试题解析填空题1.已知a+b=6,ab=3,则a2+b2=30.2.若=5,则=23.a+=253.x2﹣3x+=(x﹣)2.×(3x+4.已知a2+b2=13,ab=6,则a+b的值是±5.5.已知x2+y2+4x﹣6y+13=0,那么x y=﹣86.已知=6,则=32.+a+=36)2+7.若(x﹣m)2=x2+x+a,则m=﹣,a=.,.8.x2+kx+9是完全平方式,则k=±6.9.若4x2﹣kxy+y2是一个完全平方式,则k=±4.10.若9x2﹣kxy+4y2是一个完全平方式,则k的值是±12.11.若x2+3x+m是一个完全平方式,则m=.,)..12.若9x2+mxy+16y2是一个完全平方式,则m=±24.13.多项式4y2+my+9是完全平方式,则m=±12.14.若4x2+mx+25是一个完全平方式,则m的值是±20.15.已知x2﹣mxy+y2是完全平方式,则m=±2.16.如果x2+mx+16是一个完全平方式,那么m=±8.17.若x2﹣ax+16是一个完全平方式,则a=±8.18.若x2﹣2ax+16是完全平方式,则a=±4.19.若a2+2ka+9是一个完全平方式,则k等于±3.20.若x2+mx+1是完全平方式,则m=±2.21.若x2+mx+4是完全平方式,则m=±4.22.代数式4x2+3mx+9是完全平方式,则m=±4.23.若二次三项式4x2+ax+9是一个完全平方式,则a=±12.24.多项式x2+2mx+64是完全平方式,则m=±8.解答题25.(2009•佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.)2a+ab+bab+b+﹣26.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.28.已知(x+y)2=18,(x﹣y)2=6,求x2+y2及xy的值.29.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是(m﹣n)2+4mn=(m+n)2;(3)若x+y=﹣6,xy=2.75,则x﹣y=5;﹣5(4)观察图③,你能得到怎样的代数恒等式呢?(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.30.阅读材料并回答问题:我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1)或图(2)等图形的面积表示.(1)请写出图(3)所表示的代数恒等式:(2a+b)(a+2b)=2a2+5ab+2b2;(2)试画一个几何图形,使它的面积表示:(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与它对应的几何图形.(答案不唯一)。
完全平方公式【概念】 【推导证明】 【典型例题】 【专项练习】 【相关链接】概念:完全平方公式:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。
222222()2()2a b a ab b a b a ab b +=++-=-+这两个公式叫做(乘法的)完全平方公式。
运用公式时应注意:①公式中的字母a ,b 可以是任意的代数式,②公式的结果应为三项,注意不要漏项和写错符号。
推导证明:方法一:(代数法)1两数和的平方公式22222()()()2a b a b a b a ab ab b a ab b +=++=+++=++2两数差的平方公式22222()()()2a b a b a b a ab ab b a ab b -=--=--+=-+或(a -b )2=[a +(-b )]2=a 2+2⋅a ⋅(-b )+(-b )2=a 2-2ab +b 2即(a -b )2=a 2-2ab +b 2方法二:(几何法)a b a ba 2ababb 2说明:两数差的完全平方公式几何证法(略)典型例题:【例1】.计算(x+2y)2解:(x+2y)2=x2+2⋅x⋅2y+(2y)2=x2+4xy+4y2【例2】.计算(-x+2y)2解法一:(-x+2y)2=(-x)2+2⋅(-x)⋅2y+(2y)2=x2-4xy+4y2解法二:(-x+2y)2=(2y-x)2=(2y)2-2⋅2y⋅x+x2=4y2-4xy+x2解法三:(-x+2y)2=[-(x-2y)]2=(x-2y)2=x2-4xy+4y2【例3】下列计算中,正确的有()(1)(b-4c)2=b2-16c2(2)(x-2yz)2=x2+4xyz+4y2z2(3)222 1124 a b a ab b ⎛⎫+=++⎪⎝⎭(4)(4m-n)2=16m2-4mn+n2(5)(-2a-b)2=4a2-4ab+b2解析:只有(3)是正确的(1)(b-4c)2=b2-16c2按平方差公式计算了,结果应为b2-8bc+16c2,(2)(x-2yz)2=x2+4xyz+4y2z2应该是两数差的完全平方公式,结果应为x2-4xyz+4y2z2(4)(4m-n)2=16m2-4mn+n2 , 中间项应该为-8mn而不是-4mn,结果应为16m2-8mn+n2(5)(-2a-b)2=4a2-4ab+b2可以先将(-2a-b)2变形为[-(2a+b)]2=(2a+b)2, 所以结果为4a2+4ab+b2【例4】.运用公式简便计算(1)1032(2)1982解:(1)1032=(100+3)2=1002+2⨯100⨯3+32=10000+600+9=10609(2)1982=(200-2)2=2002-2⨯200⨯2+22=40000-800+4【例5】.解下列各式(1)已知a2+b2=13,ab=6,求(a+b)2,(a-b)2的值。
完全平方公式知识讲解二次方程的一般形式是 ax^2 + bx + c = 0,其中a,b和c是已知常数,而x是未知数。
完全平方公式的形式为 x = (-b ± √(b^2 -4ac)) / 2a。
让我们详细解释一下完全平方公式的推导过程。
首先,我们要将二次方程写成平方的形式。
我们可以通过配方来完成这一步骤。
将二次方程移项,我们得到 ax^2 + bx = -c。
接下来,我们需要创建一个完全平方。
我们可以通过将b的一半平方加入方程的两边来实现这一点。
这意味着我们需要将b/2平方并加入方程两边。
形式上写为(b/2)^2通过这样做,我们可以将方程转变为一个完全平方的形式。
现在方程变为 (ax^2 + bx + (b/2)^2) = (b/2)^2 - c。
简化方程,我们得到 (ax + b/2)^2 = (b^2/4) - c。
将方程再次移项,我们得到 (ax + b/2)^2 - (b^2/4) = -c。
注意到,左边的式子是两个平方的差。
这是一个重要的公式,称为平方差公式。
平方差公式是 (a-b)(a+b) = a^2 - b^2、应用这个公式,我们可以将方程进一步简化为 (ax + b/2)^2 - (b^2/4) = -c。
通过移项,我们得到 (ax + b/2)^2 = (b^2/4) - c。
然后,我们可以开始解方程。
首先,我们要对两边的式子开根号,可以得到ax + b/2 = ±√((b^2/4) - c)。
接下来,我们继续化简。
我们将b/2移项,得到 ax = -b/2 ±√((b^2/4) - c)。
最后,我们将x与a相除,得到 x = (-b ± √(b^2 - 4ac)) / 2a。
这就是完全平方公式的最终形式。
需要注意的是,完全平方公式只适用于二次方程。
对于高次方程,我们需要采用其他方法来求解。
总结起来,完全平方公式是一个用于求解二次方程的重要公式。
第11讲完全平方数一、知识要点1.完全平方数的定义:一个自然数与自身相乘的乘积叫做完全平方数或平方数.2.完全平方数表:3.完全平方数的常用性质:完全平方数乘完全平方数是完全平方数。
二、例题精选【例1】计算:215,225,235,245,255,并说明规律。
【巩固1】计算:162,262,362,462,562,并说明规律。
【例2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
997:____________________;6983:____________________;5112:____________________;6478:____________________;【巩固2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
1199:____________________;7886:____________________;1834:____________________;1275:____________________;【例3】A 是由2017个“9”组成的多位数,即920179999个 ,A 是不是某个自然数B 的平方?如果是,写出B ;如果不是,请说明理由.【巩固3】A 是由2018个“56”组成的多位数,即 5620185656...5656个,A 是不是某个自然数B 的平方?如果是,写出B;如果不是,请说明理由.【例4】1016与正整数a的乘积是正整数b的平方,则a的最小值是多少?b的最小值是多少?【巩固4】已知3528a恰是自然数b的平方数,a的最小值是多少?b的最小值是多少?【例5】因为快乐学校的孩子都很喜欢平方数,所以将年份数是平方数的年份定义为“快乐年”。
如公元900年,900=302,所以公元900年是快乐年。
那么从1000年到今年(2018年),有多少个“快乐年”?【巩固5】黑暗世界的小朋友不喜欢年份数是平方数的年份,因为这些年份总会遭遇困恼,其他年份则不会。
完全平方数完全平方即用一个整数乘以自己例如1*1,2*2,3*3等,依此类推。
若一个数能表示成某个整数的平方的形式,则称这个数为完全平方数。
完全平方数是非负数,而一个完全平方数的项有两个。
注意不要与完全平方式所混淆。
完全平方数性质推论例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,529…观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。
下面我们来研究完全平方数的一些常用性质:性质1:末位数只能是0,1,4,5,6,9。
(此为完全平方数的必要不充分条件,且定义为“一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数”,0为整数,故0是完全平方数)性质2:奇数的平方的个位数字一定是奇数,偶数的平方的个位数一定是偶数。
证明奇数必为下列五种形式之一:10a+1,10a+3,10a+5,10a+7,10a+9分别平方后,得综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果十位数字是奇数,则它的个位数字一定是6;反之也成立证明已知,证明k为奇数。
因为k的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。
则或即或∴k为奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
这是因为性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
(奇数:n比那个所乘的数-1;偶数:n比那个所乘的数-2)在性质4的证明中,由k(k+1)一定为偶数可得到是8n+1型的数;由为奇数或偶数可得(2k)2为8n型或8n+4型的数。
性质6:形式必为下列两种之一:3k,3k+1。
完全平方数和平方根的计算完全平方数,即一个数的平方等于另一个整数的情况。
例如,4是完全平方数,因为2的平方等于4。
平方根,则是指一个数的平方等于另一个数的非负数根。
例如,√4 = 2,因为2的平方等于4。
在日常生活和数学中,计算完全平方数和平方根的值非常常见。
本文将介绍一些常见的计算方法和技巧,帮助读者更好地理解和应用这两个概念。
一、计算完全平方数的方法1. 直接计算法:通过对给定的数进行平方运算,判断结果是否是另一个整数。
例如,判断16是否是完全平方数,我们可以计算4²=16,所以16是完全平方数。
2. 累加法:这是一种更为高效的判断方法。
我们可以从1开始,每次将该数加上连续的奇数(即1、3、5...),并判断累加的结果是否等于给定的数。
如果等于,则该数是完全平方数;如果超过给定的数,则不是完全平方数。
例如,判断36是否是完全平方数,我们可以进行如下计算:1 + 3 = 4 (不等于36)4 +5 = 9 (不等于36)9 + 7 = 16 (不等于36)16 + 9 = 25 (不等于36)25 + 11 = 36 (等于36)因此,36是完全平方数。
3. 公式法:对于一个数n,如果它是完全平方数,那么它可以表示为一个整数x的平方,即n = x²。
我们可以通过求平方根的方法得到x 的值,从而判断是否是完全平方数。
例如,判断100是否是完全平方数,我们可以计算√100 = 10,因此100是完全平方数。
二、计算平方根的方法1. 试探法:通过尝试不同的数值来逼近给定数的平方根。
例如,为了计算√16,我们可以从1开始尝试,直到找到一个数x,使得x²≈16。
可以发现4²=16,因此√16 = 4。
2. 牛顿迭代法:这是一种更为精确的计算平方根的方法。
首先,我们猜测一个初始的平方根近似值x₀,然后通过不断迭代计算来逼近实际的平方根值。
具体步骤如下:a) 计算 x₁ = (x₀ + n / x₀) / 2b) 重复上述计算直到 xₙ 与 xₙ₋₁的差值足够小(通常小于给定的精度要求)例如,我们要计算√16,可以选择一个初始值x₀=4,然后进行如下迭代计算:x₁ = (4 + 16 / 4) / 2 = 6x₂ = (6 + 16 / 6) / 2 = 4.6667x₃ = (4.6667 + 16 / 4.6667) / 2 ≈ 4.5826...迭代若干次后,当计算结果足够接近实际平方根值时,我们可以得到近似的平方根。
北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
初中数学竞赛专题选讲(初三.2)
完全平方数和完全平方式
一、内容提要
一定义
1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数.
例如0,1,0.36,25
4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.
2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式.
如果没有特别说明,完全平方式是在实数范围内研究的.
例如:
在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式.
在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.
二. 整数集合里,完全平方数的性质和判定
1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.
2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..
若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.
例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数.
又如:444能被3整除,但不能被9整除,所以444不是完全平方数.
三. 完全平方式的性质和判定
在实数范围内
如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;
如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.
在有理数范围内
当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.
四. 完全平方式和完全平方数的关系
1. 完全平方式(ax+b )2 中
当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;
当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.
2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数.
所以,完全平方式和完全平方数,既有联系又有区别.
五. 完全平方数与一元二次方程的有理数根的关系
1. 在整系数方程ax 2+bx+c=0(a ≠0)中
① 若b 2-4ac 是完全平方数,则方程有有理数根;
② 若方程有有理数根,则b 2-4ac 是完全平方数.
2. 在整系数方程x 2+px+q=0中
① 若p 2-4q 是整数的平方,则方程有两个整数根;
② 若方程有两个整数根,则p 2-4q 是整数的平方.
二、例题
例1. 求证:五个连续整数的平方和不是完全平方数.
证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.
那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2
=5(m 2+2).
∵m 2的个位数只能是0,1,4,5,6,9
∴m 2+2的个位数只能是2,3,6,7,8,1
∴m 2+2不能被5整除.
而5(m 2+2)能被5整除,
即S 能被5整除,但不能被25整除.
∴五个连续整数的平方和不是完全平方数.
例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?
解:根据在实数范围内完全平方式的判定,得
当且仅当⎩⎨⎧>-0
10m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.
解这个方程, 得 m 1=0.5, m 2=2.
解不等式 m -1>0 , 得m>1.
即⎩
⎨⎧>==125.0m m m 或 它们的公共解是 m=2.
答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.
例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.
求证: a=b=c.
证明:把已知代数式整理成关于x 的二次三项式,得
原式=3x 2+2(a+b+c)x+ab+ac+bc
∵它是完全平方式,
∴△=0.
即 4(a+b+c)2-12(ab+ac+bc)=0.
∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,
(a -b)2+(b -c)2+(c -a)2=0.
要使等式成立,必须且只需:
⎪⎩
⎪⎨⎧=-=-=-000a c c b b a
解这个方程组,得a=b=c.
例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.
解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.
可设△= m 2 (m 为整数),
即(-5)2-4k=m 2 (m 为整数),
解得,k=4
252
m -. ∵ k 是非负整数,
∴ ⎪⎩⎪⎨⎧-≥-的倍数
是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;
由25-m 2是4的倍数,得 m=±1, ±3, ±5.
以 m 的公共解±1, ±3, ±5,分别代入k=4
252
m -. 求得k= 6, 4, 0.
答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解
例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.
证明: (用反证法)设方程有有理数根,那么△是整数的平方.
∵△=(8k )2-16(k 2+1)=16(3k 2-1).
设3k 2-1=m 2 (m 是整数).
由3k 2-m 2=1,可知k 和m 是一奇一偶,
下面按奇偶性讨论3k 2=m 2+1能否成立.
当k 为偶数,m 为奇数时,
左边k 2是4的倍数,3k 2也是4的倍数;
右边m 2除以4余1,m 2+1除以4余2.
∴等式不能成立.; 当k 为奇数,m 为偶数时,
左边k 2除以4余1,3k 2除以4余3
右边m 2是4的倍数,m 2+1除以4余1
∴等式也不能成立.
综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.
∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.
∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根
三、练习
1. 如果m 是整数,那么m 2+1的个位数只能是____.
2. 如果n 是奇数,那么n 2-1除以4余数是__,n 2+2除以8余数是___,3n 2除以4
的余数是__.
3. 如果k 不是3的倍数,那么k 2-1 除以3余数是_____.
4. 一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?
5. 一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.
(1990年全国初中数学联赛题)
6. m 取什么值时,代数式x 2-2m(x -4)-15是完全平方式?
7. m 取什么正整数时,方程x 2-7x+m=0的两个根都是整数?
8. a, b, c 满足什么条件时,代数式(c -b)x 2+2(b -a)x+a -b 是一个完全平方式?
9. 判断下列计算的结果,是不是一个完全平方数:
① 四个连续整数的积; ②两个奇数的平方和.
10. 一个四位数加上38或减去138都是平方数,试求这个四位数.
11. 已知四位数aabb 是平方数,试求a, b.
12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.
13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.
14. 已知:a, b 是自然数且互质,试求方程x 2-abx+2
1(a+b)=0的自然数解. (1990年泉州市初二数学双基赛题)
练习题参考答案
1. 1,2,5,6,7,0
2. 0,3,3
3. 0
4. 不是平方数,因为能被3整除而不能被9整除
5. 5。
因为平方数的个位数是
(1+4+9+6+5+6+9+4+1+0)×12345678+(1+4+9+6+5+6+9+4+1) 即个位数为5×8+5
6. 3,5
7. 12,10,6
8. a=b,a=c 且c>b
9. 都不是
10. 1987. ∵⎪⎩⎪⎨⎧=-=+2213838B
x A x A 2-B 2=176=2×2×2×2×11 ⎩⎨⎧=-=+B A B A …… 11. 7744(882). ∵b a aabb 011⨯=是平方数, a+b 是11的倍数
∴可从⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==9
256473829b a b a b a b a b a 中检验,得出答案. 12 用反证法,设2n -1=A 2,A 必是奇数, 设A =2k+1……
13 ⎩⎨⎧==612b a ⎩⎨⎧-=-=6
12b a 14 ⎩⎨
⎧==31b a x 1=1, x 2=2。