固体物质的溶解度
- 格式:pptx
- 大小:1.92 MB
- 文档页数:16
易溶物质的溶解度范围
溶解度是指在特定温度和压力下,一定量溶剂中可以溶解的溶质的最大量。
不同物质的溶解度范围差异很大,主要取决于溶质与溶剂之间的相互作用力。
一般来说,极性物质容易溶解于极性溶剂,非极性物质容易溶解于非极性溶剂。
这是由于"像溶像"的化学原理所决定的。
此外,温度、压力等因素也会影响溶解度。
1. 固体物质的溶解度范围
- 盐类(如NaCl)、糖类等极性无机/有机物质在水中的溶解度较高,可达数克至数百克/100毫升。
- 大多数金属氧化物、金属氢氧化物等离子化合物在水中的溶解度较低,通常在毫克/100毫升量级。
- 非极性有机物,如长链烷烃、脂肪等在水中几乎不溶解。
2. 液体物质的溶解度范围
- 极性液体(如醇类)在水中具有较高的溶解度,可达任意比例混溶。
- 非极性液体(如烃类)在水中的溶解度极低,通常在毫克/100毫升量级。
3. 气体物质的溶解度范围
- 一些极性气体(如氨、二氧化硫等)在水中的溶解度较高。
- 大多数非极性气体(如氮气、氧气等)在水中溶解度较低,大约在
20-60毫克/100毫升范围内。
溶解度是物质在溶剂中溶解的一个重要参数,对化学反应、生产过程等都有重要影响。
了解不同物质在不同溶剂中的溶解度范围,对于合理选择溶剂、控制反应条件等都非常必要。
固体物质的溶解度的影响因素
溶解度是指溶质在溶剂中溶解所能达到的相对浓度,它是影响溶解过程的重要
因素,其值由不同的实际因素决定,例如温度、压力、溶剂性质及它们的相互作用。
以下梳理出溶解度的影响因素:
首先,温度有助于溶解度的增加。
一般来说,只要溶物的熔点比溶剂低,就会
随着温度升高而溶解度升高。
其次,压力也会影响溶解度;溶物在适当压力作用下,通常会溶解在溶剂中得较快,因此溶解的速度会变快,溶解度也会增加。
此外,溶剂的性质也具有重要作用;由于不同的溶剂之间溶解能力的差别,溶物需要更强的能量投入,以使它在不同的溶剂中得到更好的溶解,所以他们的溶解度也是不同的。
此外,溶物和溶剂间的相互作用也很重要。
结合反应会减少溶质的结合能力,这样溶质就容易溶解在溶剂中,因此溶解度也会提高。
总而言之,溶解度受温度、压力、溶剂性质及它们之间的相互作用等实际因素
的影响。
因此,要提高溶解度,可以通过调整这些因素,有效地改变实际条件,以达到较理想的溶解度。
溶解度【识记部分】本节课的知识点1. 固体溶解度(1)定义:在一定温度下,某固态物质在100g溶剂里达到饱和状态时所溶解的质量,称为该固体物质在该温度下的溶解度。
如0℃时NaCl的溶解度是36克,表示NaCl在0℃时,在100克水中最多能溶解36克NaCl(或溶解36克NaCl达到饱和)。
(2)理解固体物质溶解度应注意四个因素:①温度:一定温度下②溶剂的量:100克溶剂中③状态:饱和状态④单位:克2. 溶解度曲线(1)定义:用纵坐标表示溶解度,横坐标表示温度,得到的物质的溶解度随温度变化的曲线,叫溶解度曲线。
(2)溶解度曲线的变化规律:①大多数固体物质的溶解度随温度的升高而明显增大,如KNO3。
②少数固体物质的溶解度受温度的影响较小,如NaCl。
③极少数固体物质的溶解度随温度的升高而减小,如Ca(OH)2。
(3)溶解度曲线意义:①可判断某物质在一定条件下的溶解度。
②可以比较不同物质在相同温度下或某一温度范围内溶解度的大小。
③反映物质的溶解度随温度的变化规律。
3. 气体溶解度定义(1)定义:在压强为101kPa和一定温度时,气体溶解在1体积水里达到饱和状态时的气体体积,称为气体物质的溶解度。
如0℃时二氧化碳的溶解度是1,表示二氧化碳在压强为101kPa和0℃时,1体积水里最多能溶解1体积二氧化碳。
(2)气体溶解度的影响因素:①随着温度升高,气体的溶解度减小。
②随着压强增大,气体的溶解度增大。
【理解部分】通过例题理解知识点例1:判断题(难度:易)(1)氯化钠的溶解度为36g。
(×)【解析】物质的溶解度受温度的影响,不指明温度,溶解度没有意义。
(2)对于任何物质的不饱和溶液,在降低温度时均可变为饱和溶液。
(×)【解析】对于溶解度随温度的升高而减小的物质,其不饱和溶液在降低温度时,由于溶解度增大,溶液仍为不饱和溶液。
(3)通常采用蒸发溶剂的方法使食盐从其溶液中结晶出来。
(√)【解析】由于食盐的溶解度受温度影响较小,降低温度时只能析出少量或不析出晶体,故采用蒸发溶剂结晶法使食盐从其溶液中分离出来。
溶解度的概念是什么意思溶解度的概念1、固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解的克数。
在未注明的情况下,通常溶解度指的是物质在水里的溶解度。
2、气体的溶解度通常指的是该气体(其压强为1标准大气压)在一定温度时溶解在1体积水里的体积数。
通常把在室温(20度)下:溶解度在10g/100g水以上的物质叫易溶物质;溶解度在1~10g/100g水叫可溶物质;溶解度在0.01g~1g/100g水的物质叫微溶物质;溶解度小于0.01g/100g水的物质叫难溶物质.可见溶解是绝对的,不溶解是相对的。
不同状态溶解度的基本情况固体溶解度固体物质的能容溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解的质量,用字母s表示,其单位是“g/100g水”。
在未注明的情况下,通常溶解度指的是物质在水里的溶解度。
例如:在20℃时,100g水里最多能溶36g氯化钠(这时溶液达到饱和状态),在20℃时,氯化钠在水里的溶解度是36g。
气体溶解度在一定温度和压强下,气体在一定量溶剂中溶解的最高量称为气体的溶解度。
常用定温下1体积溶剂中所溶解的最多体积数来表示。
如20℃时100mL水中能溶解1.82mL氢气,则表示为1.82mL/100mL水等。
气体的溶解度除与气体本性、溶剂性质有关外,还与温度、压强有关,其溶解度一般随着温度升高而减少,由于气体溶解时体积变化很大,故其溶解度随压强增大而显著增大。
关于气体溶解于液体的溶解度,在1803年英国化学家W.亨利,根据对稀溶液的研究总结出一条定律,称为亨利定律。
【提示】如果不指明溶剂,通常所说的溶解度是指物质在水里的.溶解度。
另外,溶解度不同于溶解速度。
搅拌、振荡、粉碎颗粒等增大的是溶解速度,但不能增大溶解度。
溶解度也不同于溶解的质量,溶剂的质量增加,能溶解的溶质质量也增加,但溶解度不会改变。
实例大部分固体随温度升高溶解度增大,如硝酸钾。
少部分固体溶解度受温度影响不大,如食盐(氯化钠)。
固体的溶解度概念溶解度是指某一固体物质在某一温度下,在一定的体积的溶剂中的溶解量的大小。
它是指在固定条件下,一段时间内,某一固体物质完全溶解到某一体积溶剂中所需要的质量。
溶解度随温度的变化而变化,一般而言,随着温度的升高,溶解度也会增加。
溶解度也受溶剂性质和溶质性质的影响,在一定温度条件下,溶剂对同一溶质有不同的溶解度。
溶解度用来衡量某一固体物质在一定温度下,在固定体积的溶剂中的溶解量。
溶解度的大小取决于温度,体积和溶剂的性质。
在一定温度下,一定量的溶剂能够完全溶解某一定量的溶质,这就是一种溶解度。
换句话说,溶解度是指某一固体物质在某一温度下,在一定的体积的溶剂中的溶解量的大小。
溶解度的大小取决于温度,温度越高,溶解度越大,反之温度越低,溶解度越小。
这是因为随着温度的升高,分子粒子的运动速度也会增加,从而增加分子粒子与溶质之间的接触面积,从而增加溶质的溶解度。
另外,溶质和溶剂本身的性质也会影响溶解度,当溶质与溶剂的性质接近时,它们之间的相互作用较小,从而降低溶解度。
除温度外,溶剂的体积也会影响溶解度。
一般而言,体积越小,溶质和溶剂之间的相互作用越小,溶解度越低,反之体积越大,溶质和溶剂之间的相互作用越大,溶解度越高。
此外,溶剂本身的性质也会影响溶解度。
溶剂越稠,溶质越难溶解,溶解度越低,反之溶剂越稀,溶质越容易溶解,溶解度越高。
最后,溶质本身的性质也会影响溶解度。
一般而言,溶质的密度越高,表面越粗糙,溶解度越低。
同样,溶质的极性越强,溶解度越高。
总之,溶解度是某一固体物质在某一温度下,在固定体积的溶剂中的溶解量。
它受温度、溶剂体积、溶剂性质和溶质性质的影响。
随着温度的升高,溶解度也会增加;而随着体积的增加,溶解度也会增加。
溶剂的性质也会影响溶质的溶解度,当溶剂和溶质的性质接近时,它们之间的相互作用较小,溶解度会降低。
溶质本身的性质也会影响溶解度,溶质的密度越高,极性越强,溶解度越高。
几种固体物质的溶解度曲线引言溶解度是指单位溶剂中能够溶解的最大量溶质。
固体物质的溶解度是一个重要的物化性质,对于理解溶液的形成和研究反应动力学等方面具有重要意义。
不同固体物质在不同温度下的溶解度表现出不同的趋势,可以通过绘制溶解度曲线来直观地展示这些变化规律。
本文将针对几种常见固体物质,分别探讨它们在水中的溶解度随温度变化的规律,并绘制相应的溶解度曲线。
1. 食盐(氯化钠)食盐是一种常见的无机盐类,其主要成分为氯化钠(NaCl)。
在常温下,食盐为固体状态。
我们将研究食盐在水中的溶解度随温度变化的规律。
实验方法1.准备一定量的食盐和去离子水。
2.将一定量的食盐加入一系列已经预先称好并标有不同温度标记(如10℃、20℃、30℃等)的容器中。
3.将每个容器放入恒温水浴中,保持不同温度下的稳定状态。
4.等待一段时间,直到食盐完全溶解。
5.用玻璃棒搅拌溶液,以确保食盐充分溶解。
6.使用饱和溶液过滤装置过滤出溶液,并将过滤后的溶液收集在干燥的容器中。
7.使用电子天平称量所得的溶液质量。
结果与讨论根据实验数据,我们可以绘制食盐在水中的溶解度曲线。
以下是数据和相应曲线图:温度(℃)溶解度(g/100g水)10 2620 3630 3940 4350 3860 36从实验结果可以看出,随着温度的升高,食盐在水中的溶解度呈现递增趋势。
这符合一般固体物质在溶剂中的溶解规律。
随着温度升高,溶剂分子的动能增加,使其更容易克服固体颗粒间的相互作用力,从而使固体物质更容易溶解。
石蜡是一种常见的烷烃类有机化合物,主要成分为长链烷烃。
在常温下,石蜡为固体状态。
我们将研究石蜡在水中的溶解度随温度变化的规律。
实验方法1.准备一定量的石蜡和去离子水。
2.将一定量的石蜡加入一系列已经预先称好并标有不同温度标记(如10℃、20℃、30℃等)的容器中。
3.将每个容器放入恒温水浴中,保持不同温度下的稳定状态。
4.等待一段时间,直到石蜡完全溶解。
几种固体物质的溶解度曲线引言溶解度是指在一定温度下,溶质在溶剂中所能溶解的最大量。
固体物质的溶解度受到多种因素的影响,如温度、压力和化学性质等。
本文将探讨几种常见固体物质的溶解度曲线,包括盐类、糖类和气体。
盐类的溶解度曲线盐类是指由阳离子和阴离子组成的化合物。
常见的盐类有氯化钠、硫酸钠等。
盐类在水中的溶解度随着温度的升高而增加,这是因为随着温度升高,水分子运动加剧,能够更好地与盐离子相互作用,从而增加了盐类的溶解度。
如图所示,盐类的溶解度曲线呈现出一个随着温度升高而递增的趋势。
当温度较低时,盐类只能部分溶解在水中;随着温度升高,其溶解度逐渐增加,直到达到饱和溶解度。
超过饱和溶解度后,盐类会析出形成晶体。
糖类的溶解度曲线糖类是指由碳、氢、氧原子组成的有机化合物,如蔗糖、葡萄糖等。
糖类的溶解度与温度的关系较为复杂,一般情况下,随着温度的升高,糖类的溶解度也会增加。
如图所示,糖类的溶解度曲线呈现出一个递增的趋势。
随着温度升高,糖分子之间的相互作用减弱,使得糖分子更容易与水分子相互作用而溶解在水中。
然而,在一定温度范围内,有些特定类型的糖类可能存在反溶解现象,即随着温度升高,其溶解度反而下降。
气体的溶解度曲线气体在液体中的溶解度也受到温度和压力等因素的影响。
一般情况下,随着温度升高或压力降低,气体的溶解度会增加。
如图所示,气体的溶解度曲线呈现出一个随着温度升高而递减的趋势。
这是因为随着温度升高,液体中的分子运动加剧,气体分子更容易从液相逸出;同时,温度升高还会降低液相中分子之间的相互作用力,使得气体分子更容易溶解在液体中。
结论固体物质的溶解度受到多种因素的影响,包括温度、压力和化学性质等。
盐类在水中的溶解度随着温度的升高而增加,糖类一般情况下也是如此,但在特定情况下可能存在反溶解现象。
气体在液体中的溶解度则随着温度升高而递减。
了解固体物质的溶解度曲线对于实际应用具有重要意义,可以指导我们合理控制和利用这些物质。
初中化学固体溶解度的定义(化学溶解度概念并举例) 各位老铁们好,相信很多人对初中化学固体溶解度的定义都不是特别的了解,因此呢,今天就来为大家分享下关于初中化学固体溶解度的定义以及化学溶解度概念并举例的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!本文目录固体溶解度影响固体溶解度大小的因素有哪些溶解度随温度升高而降低的物质有哪些固体物质溶解度与什么有关呢固体物质的溶解度受温度的影响,可分为哪三种情况化学溶解度概念并举例固体溶解度受温度影响的三种情况固体溶解度固体的溶解度概念:在一定温度下,某固体物质在100g溶剂里达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂里的溶解度.在理解固体的溶解度概念时,要抓住五个要点:①“在一定温度下”:因为每种固体物质的溶解度在一定温度下有一个对应的定值,但这定值是随温度变化而变化的,所以给某固体物质的溶解度时,必须指出在什么温度下的溶解度才有意义.②“在100g溶剂里”:溶剂质量有规定的值,统一为100g,但并不是100g溶液,在未指明溶剂时,一般是指水.③“饱和状态”:所谓饱和状态,可以理解为,在一定温度下,在一定量的溶剂里,溶质的溶解达到了最大值.④“所溶解的质量”:表明溶解度是有单位的,这个单位既不是度数(°),也不是质量分数(%),而是质量单位“g”.⑤“在这种溶剂里”:就是说必须指明在哪种溶剂里,不能泛泛地谈溶剂.因为同一种物质在不同的溶剂里的溶解度是不相同的.影响固体溶解度大小的因素有哪些①溶质、溶剂本身的性质。
同一温度下溶质、溶剂不同,溶解度不同。
②温度。
大多数固态物质的溶解度随温度的升高而增大;少数物质(如氯化钠)的溶解度受温度的影响很小;也有极少数物质(如熟石灰)的溶解度随温度的升高而减小。
影响气体溶解度的因素:①温度:温度越高,气体溶解度越小;②压强:压强越大,气体溶解度越大。
溶解度随温度升高而降低的物质有哪些溶解度随温度升高而降低的物质有Ca(OH)2、Li2SO4、Li2CO3、Na2SO4、La2SO4、Ce2(SO4)3、CdSeO4、Er2(SO4)3、CeSeO4。
二、溶解度1.固体物质的溶解度:在一定温度下,某固体物质在100 g溶剂里达到饱和状态时所溶解的质量。
2.溶解度四要素:一定温度、100 g溶剂、饱和状态、溶质质量。
3.影响因素:影响溶解性大小的因素主要是溶质、溶剂的本性,其次是温度(固体溶质)或温度和压强(气体溶质)等。
固体物质的溶解度一般随温度的升高而增大,其中变化较大的如硝酸钾、变化不大的如氯化钠,但氢氧化钙等少数物质比较特殊,溶解度随温度的升高反而减小。
4.溶解度曲线:(1)表示:物质的溶解度随温度变化的曲线。
(2)意义:①表示同一种物质在不同温度时的溶解度;②可以比较同一温度时,不同物质的溶解度的大小;③表示物质的溶解度受温度变化影响的大小等。
5.气体的溶解度(1)定义:在压强为101 kPa和一定温度时,气体溶解在1体积水里达到饱和状态时的气体体积。
(2)五要素:101 kPa、一定温度、1体积水、饱和状态、气体体积。
(3)影响因素:温度、压强.升高温度,气体溶解度减小;降低温度,气体溶解度增大.增大压强,气体溶解度增大;减小压强,气体溶解度减小。
【例题2】对照溶解度概念分析“36 g食盐溶解在100 g水中,所以食盐的溶解度为36 g”这句话应怎样改正。
【解析】溶解度概念包括四要素:“一定的温度”“100 g溶剂”“饱和状态”“溶质的质量”。
题中错误之处在于:一没有指明在什么温度下,因为物质的溶解度随温度的改变而改变。
二没有指明是否达到饱和状态,所以不正确。
【答案】在20 ℃时,36 g NaCl溶解在100 g水中恰好达到饱和状态,所以20 ℃时NaCl的溶解度为36 g。
【例题3】甲、乙物质的溶解度均随温度的升高而增大。
在10 ℃时,在20 g水中最多能溶解3 g甲物质;在30 ℃时,将23 g乙物质的饱和溶液蒸干得到3 g乙物质。
则20 ℃时甲、乙两种物质的溶解度的关系是()A.甲=乙 B.甲<乙C.甲>乙 D.无法确定【解析】比较不同物质的溶解度大小,一定要在相同温度下进行。
几种固体物质的溶解度曲线摘要:I.引言- 介绍固体物质的溶解度曲线- 说明溶解度曲线的重要性II.固体物质的溶解度曲线类型- 类型1:随温度升高溶解度不变- 类型2:随温度升高溶解度上升- 类型3:随温度升高溶解度下降III.举例说明- 类型1:NaCl- 类型2:KNO3- 类型3:Ca(OH)2IV.溶解度曲线与实际应用- 利用溶解度曲线确定溶液的饱和度- 利用溶解度曲线预测溶解度变化- 利用溶解度曲线进行溶液配制V.总结- 总结溶解度曲线的重要性- 强调溶解度曲线在实际应用中的作用正文:固体物质的溶解度曲线是描述固体物质在特定温度下在溶剂中溶解度的变化规律。
溶解度曲线的重要性在于,它可以帮助我们了解不同固体物质在不同温度下的溶解度变化情况,从而更好地理解物质的溶解过程。
固体物质的溶解度曲线主要分为三种类型。
类型1 的溶解度曲线表示随温度升高,固体物质的溶解度基本不变。
这种类型的溶解度曲线通常呈水平状,代表物质在该温度下的溶解度已经达到最大值,无法再溶解更多物质。
例如,NaCl 的溶解度曲线就属于类型1。
类型2 的溶解度曲线表示随温度升高,固体物质的溶解度呈上升趋势。
这种类型的溶解度曲线通常呈上升状,代表物质在该温度下的溶解度随着温度的升高而增加。
例如,KNO3 的溶解度曲线就属于类型2。
类型3 的溶解度曲线表示随温度升高,固体物质的溶解度呈下降趋势。
这种类型的溶解度曲线通常呈下降状,代表物质在该温度下的溶解度随着温度的升高而减少。
例如,Ca(OH)2 的溶解度曲线就属于类型3。
在实际应用中,溶解度曲线可以帮助我们确定溶液的饱和度。
通过查看溶解度曲线,我们可以知道在特定温度下,某种物质在溶剂中的溶解度是否达到饱和。
此外,溶解度曲线还可以预测固体物质在不同温度下的溶解度变化,从而为实际应用提供依据。
例如,在制备溶液时,我们可以根据溶解度曲线选择合适的温度以获得所需的溶解度。
总之,固体物质的溶解度曲线对理解和预测固体物质在溶剂中的溶解度变化具有重要意义。