星形电阻网络与三角形电阻网络的等效变换讲课讲稿
- 格式:doc
- 大小:42.00 KB
- 文档页数:5
三角形网络与星型网络的变换下图两种电路的接法分别叫三角形接法(网络)和星形接法(网络),只有这两种电路任意两对应点之间的总电阻部分都相等,两个电路可以互相等效,对应点A 、a 、B 、b 和C 、c 将具有相同的电势.由R ab =R AB ,R ac =R AC ,R bc =R BC ,对ab 间,有CABC AB BC AB CA AB BC AC AB b a R R R R R R R R R R R R +++=++=+-1)11(① 同样,ac 间和bc 间,也有CA BC AB CA BC CA AB BC AB CA c a R R R R R R R R R R R R +++=++=+-1)11(② CABC AB CA BC BC AB CA AB BC c b R R R R R R R R R R R R +++=++=+-1)11(③ 将①+②-③得:CABC AB CAAB a R R R R R R ++=再通过①-②+③和③+②-①,并整理,就得到R b 和R C 的表达式. 在把R a 、R b 、R C 看做已知的,反解出R AB ,R AC 和R BC ,可以得到下面的式子bac c b b a CA CABC AB ACBC c a ac c b b a BC CA BC AB BCAB b c ac c b b a AB CA BC AB CAAB a R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R ++=++=++=++=++=++=左边是三角形网络转化成星型网络的一组变换式; 右边是星型网络转化为三角形网络的一组变换式;(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。
三角形和星形电阻电路的等效变换1. 引言大家好,今天我们聊聊电路中的那些事,特别是三角形和星形电阻电路的等效变换。
听起来是不是有点高大上?其实嘛,这就是把电阻放在不同的位置,让它们的工作变得更轻松而已。
电阻就像是电路里的小助手,有时候换个地方就能发挥出意想不到的效果,就像你换个角度看问题,顿时豁然开朗。
我们在这儿就像是在煮面,偶尔换点调料,味道也会大变样呢!2. 三角形电阻电路2.1 三角形电阻的特征首先,我们得认识一下三角形电阻。
想象一下,电阻排成一个三角形,三个边各自相连,就像三兄弟一起打拼。
这种连接方式让电流在不同的电阻之间穿梭,仿佛是在玩“你追我赶”的游戏。
而且,三角形的结构让我们能轻松计算出每个电阻的作用,真是聪明的设计!2.2 三角形电阻的用途那么,三角形电阻到底有什么用呢?比如,当我们需要调节电流或电压时,三角形电阻就派上了用场。
它能够将复杂的电路简化,让我们一目了然。
这就像是把一锅杂烩理顺成一碗清汤,简单明了,心里也舒服。
可是呢,三角形电阻有时候会让电流走得比较复杂,不容易理解。
3. 星形电阻电路3.1 星形电阻的特征说完了三角形,我们再来说说星形电阻。
这个星形可不是什么美丽的星空,而是电阻像星星一样,中心有个共同的节点,其他的电阻都从这个节点出发。
这就好比我们一家人围坐在一起,大家都有自己的事,但又紧紧联系在一起。
星形电阻的连接方式让电流分流更均匀,效率高得多,真是聪明绝顶!3.2 星形电阻的优势星形电阻的优势就在于它能有效降低电路的复杂度,简化计算。
想象一下,原本你得对着一大堆复杂的数学公式挠头,现在只需几笔,就能轻松搞定。
这样的电路就像是我们日常生活中的简约风格,虽然简单,却能达到很好的效果。
再说,星形电阻也能避免过大的电流,保护其他部件,就像是家里有个“大哥”,照顾着其他小弟弟们。
4. 三角形与星形的等效变换4.1 等效变换的原理好啦,说到这儿,咱们得聊聊怎么把三角形电阻变成星形电阻。
第三篇电阻星形连接与三角形连接的等效变
换
-CAL-FENGHAI.-(YICAI)-Company One1
第三篇电阻星形连接与三角形连接的等效变换
图 1 一 1 ( a )所示是一个桥式电路,显然用电阻串并联简化的办法求得端口 ab 处的等效电阻是极其困难的。
如果能将连接在 1 、 2 、 3 、三个端子间的 R12R23R31构成的三角形连接电路,等效变换为图 1 一 1 ( b )所示的由
R1R2R3构成的星形连接电路,则可方便地应用电阻串并联简化的办法求得端口ab 处的等效电阻,这就是工程实际中经常遇到的星形、三角形等效变换问题(简称 Y ―△变换)。
图1
在这里叙述 Y ―△变换并非要求同学们掌握此变换,而是通过讲解,了解变换的过程意义,为课程后续内容的学习(三相电路)先行建立一个感性认识,从而为更进一步的学习奠定基础。
等效要解决的问题是:图 1 一 2 ( a )所示三角形连接(连接)与图 1 一 2 ( b )星形连接( Y 连接),就其 1、 2 、 3 三个端子而言,要求对外等效。
要完成等效,应明确R1R2R3三个 Y 连接电阻与R12R23R31三个连接电阻应满足什麽关系。
一种推导等效变换的办法是两电路在一个对应端子悬空的同等条件下,分别测两电路剩余两端子间的电阻,并要求测得的电阻相等。
式 l 可方便地用来求三角形连接电阻等效的星形连接电阻。
若由星形连接求等效三角形连接的公式可将式!变换一下,即可得到。
竞赛辅导-叠加原理、 星形和三角形电路地等效替换
一、叠加原理:
若电路中有多个电源,则通过电路中任一支路地电流等于各个电动
势单独存在时,在该支路产生地电流之和.
例:如图所示, ΩΩΩΩΩ,
求:中地电流.
二 * 二、星形和三角形电路地等效替换:
在某些复杂电路中往往会遇到电阻地形或△形联接,为了简化电路,
有时需要把形联接地电路替换成△形联接电路,有时则需要把△形联接地电路替换成形联接地电路.为了能等效替换,要求形联接地三个端纽地电势、、以及流过地电流、、与△形联接地三个端纽相同.
可以证明,从
形联接到△形
联接,各电阻
之间地变换关
系为:
从△形联接到形联接,各电阻之间地变换关系为:
例.如图每一个电阻均为.求为多少?
例. 求下图电路中地电流.。
第二章简单电阻电路的计算当电路比较简单时,可不必通过列KCL 、KVL 方程组对电路进行求解,可直接根据电路的不同连接方式将电路进行等效变换,化简电路得到其解答。
通常用的方法有电阻的串、并联,电阻的星---三角形转换、电压源、电流源之间的等效转换等。
其中一部分在物理学中已述,在此,只进行总结。
第一节 电阻的串联和并联一、串联:电路模型如图2-1-1。
特点:①由于电流的连续性,通过各电阻的电流均相等。
②等效电阻Req=R1+R2+….+Rn 若各电阻都相同则Req=nR1。
③ 由KVL u=u 1+u 2+…+u n 若已知总电压和各电阻的值,可用分压公式得出各电阻的电压。
④总功率P=P1+P2+P3+… 因此,P1:P2:P3= R1:R2:R3二、并联:电路模型如图2-1-2。
特点:①根据电压与路径无关,各电阻的电压相等。
②由KCL i=i 1+i 2+i n③等效电阻若用电导表示,Geq=G1+G2+…+Gn 。
④分流公式:其中GGG G i G ...G G G ii eq 1n 2111=+++=⑤总功率P=P1+P2+P3+… 因此,321321R 1:R 1:R 1p :p :p =三、串、并联电路的计算,通过例题说明。
【实例2-1】 图为一滑线变阻器,作分压器使用。
R=500Ω,额定电流1.8安。
若外加电压U=500V ,R1=100Ω。
求:①电压U2。
R 1...R 1R 11Req n21阻。
总电阻小于任意一个电+++=为分压系数其中eq1eq 11211R R R R u R *...R R uu =++=畏腐防变,在、党处行“落 三、单位开入党誓誓词,集师、党员教习教以下简列做合学党,现制②若用内阻Rv=800Ω的电压表测量输出电压,问电压表的读数多大。
③若误将内阻0.5Ω的电流表当电压表去测量输出电压,会有何后果。
解:①根据分压公式:v 400500100500500R R R UU 12=-=-=②用内阻800Ω的电压表测量输出电压,相当于并联一个800Ω的电阻。
星形电路与三角形电路等效变换公式的简便方法摘要:介绍导出星形电路与三角形电路等效变换公式的一种简便方法关键词:星形电路三角形电路等效变换星形电路与三角形电路间的等效变换(简称Y—△等效变换)是电路分析和计算过程中经常需用到的一种变换。
因变换公式推导过程复杂,故在解决有关问题时,人们通常直接套用有关公式。
然而,由于变换公式形式比较繁锁,记忆不便,每次计算通常都需查找电路方面的有关书籍,给Y—△等效变换带来了不便。
最近有人已进行了一些研究,试图解决这一问题。
在本文中,作者提出了一种导出Y—△等效变换公式的简便方法。
利用该法,可非常迅速地写出Y—△等效变换公式,给电路的Y—△等效变换带来了方便。
为了说明本文方法,先以电阻电路为例,列写出Y—△等效变换公式。
设图1(a)和图1(b)两电路互为等效电路,则两电路的电阻间存在以下关系。
R1= (1)R2= (2)R3= (3)R12= + + (4)R23= + + (5)R31= + +(6)若星形电路的三个电阻相等,即R1= R2 =R3= RY,则等效的三角形电路有三个电阻也相等,即R12= R23 =R31= R△。
将这些关系停薪留职入(1)式和(4)式可得RY= R△(7)R△=3RY (8)以上(1)—(8)式即为Y—△等效变换用到的有关公式。
本文提出的导出上述各公式的方法是首先通过对称Y形和△形电路导出(7)、(8)两式,然后根据Y—△等效变换公式的基本形式对(7)、(8)两式进行变化,最后利用电路元件位置的对称性,通过变化了的(7)、(8)两式直接写出(1)—(6)式。
下面介绍这一方法。
设图2(a)和图2(b)互为等效电路,从两电路的1端流入的电流均为I,并且该电流分为两等份分别从2、3端流出。
因图2(a)和图2(b)互为等效电路,故两电路的1、2端间的电压相等,所以有RYI+RY• I=R△• I(9)由此得RY= R△(10)这样即导出了(7)式,根据Y—△等效变换公式的基本形式,可将(10)式变为RY= = (11)设上式中RY为星形电路1端所接电阻R1,则上式等号右边分子上的两个电阻R△必为三角形电路中相对1端位置成对称关系的两个电阻R12、R31,而分母为三角形电路中的三个电阻,必为R12、R12、R31、,这样由(11)式可导出R1=(12)以上即为(1)式。
星形电阻网络与三角形电阻网络的等效变
换
§ 2-2 星形电阻网络与三角形电阻网络的等效变换
图2-2-1(a)(b)所示三端电阻网络分别称为星形(Y 形)电阻网络和三角
形(△形)电阻网络。
图2-2-1 星形电阻网络与三角形电阻网络
星形电阻网络与三角形电阻网络可以根据需要进行等效变换。
(1)、由三角形电阻网络变为等效星形电阻网络
星形网络中①、②两端间的端口等效电阻(③端开路)由与串联组成,三
角形网络中①、②两端间的等效电阻(③端开路)由与串联后再与
并
联组成。
令此两等效电阻相等,即得
(③端开
路)(2-2-1)
同理(①端开
路)(2-2-2)
(②端开
路)(2-2-3)
由式(2-2-1)至(2-2-3)联立得
(2-2-4)
(2-2-5)
(2-2-6)
以上三式是由三角形电阻网络变为等效星形电阻网络时计算星形网络电阻的
公式。
这三个公式的结构规律可以概括为:星形网络中的一个电阻,等于三角形
网络中联接到对应端点的两邻边电阻之积除以三边电阻之和。
(2)、由星形电阻网络变为等效三角形电阻网络
可将式(2-2-4)、(2-2-5)、(2-2-6)对、和联立求解
得
(2-2-7)
(2-2-8)
(2-2-9)
这是由星形电阻网络变换为等效三角形电阻网络时计算三角形网络电阻的公
式。
这三个公式的结构规律可以概括为:三角形网络中一边的电阻,等于星形网
络中联接到两个对应端点的电阻之和再加上这两个电阻之积除以另一电阻。
(3)、对称三端网络(symmetrical three –terminal resistance network)
三个电阻相等的三端网络称为对称三端网络。
对称三端电阻网络的等效变换:
已知三角形网络电阻为
变换为等效星形电阻网络的等效电阻为
相反的变换是
就是说:对称三角形电阻网络变换为等效星形电阻网络时,这个等效星形电阻
网络也是对称的,其中每个电阻等于原对称三角形网络每边电阻的。
对称星形电
阻网络变换为等效三角形电阻网络时,这个等效三角形电阻网络也是对称的,其
中每边的电阻等于原对称星形网络每个电阻的3倍。