第二章 数学基础
- 格式:ppt
- 大小:1.50 MB
- 文档页数:55
八年级上第二章数学知识点概述八年级上册第二章是数学知识点较多的一个章节,主要讲解了分式的乘除、分式的加减、分式的化简、分式方程、正比例函数、反比例函数等重要知识点。
这些知识对于学生掌握数学基础知识,尤其是在日常生活中运用数学的过程中非常重要。
一、分式的乘除分式是数学知识的一个重要部分,它在数学中有着广泛的应用。
在乘除分式的运算中,我们需要把分母相乘或相除,然后把分子相乘或相除,最后对结果进行合理化简。
这样可以得到我们所需要的简单分式。
在运算过程中,我们需要注意分母是否为零,以及如何简化分式使得答案更加准确。
二、分式的加减分式的加减是我们在日常生活中应用最多的运算,例如在购物、比价以及账户余额计算等方面都需要运用到分式的加减运算。
在分式的加减中,我们需要首先找到所有的公因数,然后对分子进行化简,最后得到运算结果。
在具体计算的时候,还需要注意分母是否为零的情况。
三、分式的化简分式的化简在求解数学问题时也是非常重要的一个环节。
在化简过程中,我们需要把分子、分母的公因式约掉,从而使得分数的形式简单化。
同时,在化简运算时,还需要注意约分的原则和方法。
四、分式方程分式方程在数学中也是一个非常基础的知识点。
在分式方程中,我们需要把一个分式的值与一个已知的数或其他分数相等,然后通过分式的加减、乘除运算把变量求出来。
在计算分式方程的过程中,我们需要注意多种情况的处理,例如分母为零的情况、公因式处理等。
五、正比例函数和反比例函数正比例函数和反比例函数是八年级上册第二章中的重点内容之一。
这两种函数可以解决很多实际问题,例如距离、体积、面积等计算。
正比例函数的特点是变量之间成正比例关系,而反比例函数的特点是变量之间成反比例关系。
在解决问题的过程中,我们需要首先确定函数的性质,然后运用相应的解题方法,最后得出问题的答案。
综上所述,八年级上册第二章数学知识点是一个十分重要的知识点。
学生应该仔细阅读、认真理解,并在课堂上积极参与讨论,加强对这些知识点的掌握。
第2章 直线和圆的方程§2.1直线的倾斜角与斜率1.倾斜角与斜率:倾斜角:当直线l 与x 轴相交时,以x 轴为基准,x 轴正向和直线l 向上的方向之间所成的角α叫直线的倾斜角,取值范围为0180α︒︒≤<.斜率:直线的倾斜角α的正切值叫做这条直线的斜率.斜率通常用k 来表示.斜率k 公式:如果直线经过两点()11122212(,),(,),P x y P x y x x ≠,则1212tan x x y y k --==α. 直线的方向向量:斜率为k 的直线的一个方向向量是()1,k ,若斜率为k 的直线的一个方向向量的坐标为(,)x y ,则y k x=. 2.两条直线平行和垂直的判定斜率分别为12k k ,的两条不重合的直线12,l l ,有1212//l l k k ⇔=.斜率分别为12k k ,的两条直线12,l l ,有12121l l k k ⊥⇔=-.§2.2 直线的方程1.直线方程:⑴点斜式:()00x x k y y -=-(不能表示斜率不存在的直线)⑵斜截式:b kx y +=(不能表示斜率不存在的直线,b 是直线与y 轴的交点纵坐标(即y 轴上的截距)) ⑶两点式:1112122121(,)y y x x x x y y y y x x --=≠≠-- ⑷截距式:1x y a b+=(,a b 是直线在,x y 轴上的截距,且0,0a b ≠≠) ⑸一般式:0=++C By Ax (,A B 不同时为0) 2.给定直线方程判断直线的位置关系:(一)对于直线222111:,:b x k y l b x k y l +=+=有:⑴⎩⎨⎧≠=⇔212121//b b k k l l ; ⑵1l 和2l 相交12k k ⇔≠;⑶1l 和2l 重合⎩⎨⎧==⇔2121b b k k ; ⑷12121-=⇔⊥k k l l .(二)对于直线:0l Ax By C ++=:(1)与直线:0l Ax By C ++=垂直的一个向量为(),A B ,平行的一个向量为(),B A -.(2)对于直线0:,0:22221111=++=++C y B x A l C y B x A l 有:⎩⎨⎧≠=⇔1221122121//C B C B B A B A l l ; 1l 和2l 相交1221B A B A ≠⇔;0212121=+⇔⊥B B A A l l .§2.3直线的交点坐标与距离公式(1)两点间距离公式:已知111222(,),(,)P x y P x y ,则()()21221221y y x x P P -+-=.(2)点到直线距离公式: 00(,)P x y 到直线:0l Ax By C ++=的距离d 为:2200B A CBy Ax d +++=.(3)两平行线间的距离公式: 1l :01=++C By Ax 与2l :02=++C By Ax 间的距离d 为:2221B A C C d +-=.§2.4 圆与方程1.圆的方程: ⑴标准方程:()()222r b y a x =-+-(其中圆心为(,)a b ,半径为r .) ⑵一般方程:022=++++F Ey Dx y x .(2240D E F +->).§2.5 直线与圆、圆与圆的位置关系1.直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系:(d 表示圆心到直线的距离) d r >⇔ 0⇔∆<相离;d r =⇔ 0⇔∆=相切;d r <⇔ 0⇔∆>相交.2.直线和圆相交弦长公式:222d r l -=(d 表示圆心到直线的距离)3.两圆位置关系:21O O d =(1)外离:r R d +>;(2)外切:r R d +=;(3)相交:r R d r R +<<-;(4)内切:d R r =-(R r >);(5)内含:r R d -<(R r >.。
第二章 数学基础 (Mathematics)第一节 矩阵(Matrix)及其二次型(Quadratic Forms)第二节 分布函数(Distribution Function),数学期望(Expectation)及方差(Variance) 第三节 数理统计(Mathematical Statistics ) 第一节 矩阵及其二次型(Matrix and its Quadratic Forms)2.1 矩阵的基本概念与运算 一个m ×n 矩阵可表示为:v a a a a a aa a a a A mn m m n n ij ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡== 212222111211][矩阵的加法较为简单,若C=A +B ,c ij =a ij +b ij但矩阵的乘法的定义比较特殊,若A 是一个m ×n 1的矩阵,B 是一个n 1×n 的矩阵,则C =AB 是一个m ×n 的矩阵,而且∑==nk kj ikij b ac 1,一般来讲,AB ≠BA ,但如下运算是成立的:● 结合律(Associative Law ) (AB )C =A (BC ) ● 分配律(Distributive Law ) A (B +C )=AB +AC 问题:(A+B)2=A 2+2AB+B 2是否成立?向量(Vector )是一个有序的数组,既可以按行,也可以按列排列。
行向量(row ve ctor)是只有一行的向量,列向量(column vector)只有一列的向量。
如果α是一个标量,则αA =[αa ij ]。
矩阵A 的转置矩阵(transpose matrix)记为A ',是通过把A 的行向量变成相应的列向量而得到。
显然(A ')′=A ,而且(A +B )′=A '+B ',● 乘积的转置(Transpose of a production ) A B AB ''=')(,A B C ABC '''=')(。