第二章地图的数学基础
- 格式:ppt
- 大小:1.67 MB
- 文档页数:26
第二章地图的数学基础地图的数学基础,是指使地图上各种地理要素与相应地面景物之间保持一定对应关系的经纬网、坐标网、大地控制点、比例尺等数学要素。
第一节地球的形状与大小地球的表面是一个不可展平的曲面,而地图是在平面上描述各种制图现象,这给地图工作者提出了一个问题,如何建立球面与平面间的对应关系。
要解决这个问题首先必须对地球的形状和大小进行研究。
一、地球的自然表面(自然球体)由地球自然表面所包围的形体我们称之为地球自然球体。
地球自然表面是一个崎岖不平的不规则表面,有高山、丘陵、平原、盆地和海洋。
世界第一高峰珠穆朗玛峰高出海平面8844.43m,而在太平洋西部的马利亚纳海沟的斐查兹海渊,低于海平面11034m。
人们对地球形状的认识曾经历了漫长的过程,古人在实现了环球航行后才发现地球是球形的,近代大地测量发现更接近于两极扁平的椭球。
长短半径大约差21km。
通过人造地球卫星对地球观察的资料分析,发现地球是一个不规则的“近似于梨形的椭球体”,它的极半径略短,赤道半径略长,北极略突出,南极略扁平(图2--1)。
这里所讲的梨形,是一种形象的夸张。
因为地球南北半球的极半径之差在近几十米范围之内,这与地球的自然表面起伏、极半径和赤道半径之差都在20 km左右相比是十分微小的。
所以,地球自然表面是一个极复杂而又不规则的球形曲面,不能用数学公式表达。
二、地球的物理表面(大地体)当海洋静止时,自由水面与该面上各点的重力方向(铅垂线)成正交,这个面叫水准面。
在众多的水准面中,有一个与静止的平均海水面相重合,并假想其穿过大陆、岛屿形成一个闭合曲面,这就是大地水准面。
它实际是一个起伏不平的重力等位面——地球物理表面(图2--2)。
由于地球的自然表面极其复杂与不规则,大地测量学家就引入了大地体的概念。
所谓大地体是由大地水准面所包围的地球形体。
大地水准面是地球形体的一级逼近。
由于地球引力的大小与地球内部的质量有关,而地球内部的质量分布又不均匀,致使地面上各点的铅垂线方向产生不规则的变化,因而大地水准面实际上是一个略有起伏的不规则曲面。
§3 常见地图投影一.方位投影以平面为投影面,使平面与椭球体相切或相割,将球面上的经纬线网投影到平面上形成方位投影。
1、变形分布规律其等变形线是以投影中心为圆心的同心圆。
投影中心是没有变形的点,从投影中心向四周变形逐渐增大。
在投影平面上,由投影中心向各方向的方位角保持不变。
2、正轴方位投影切点在北极或南极,又叫极地投影。
经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
在正轴投影中,因为经线和纬线正交,所以经纬线方向和主方向一致。
一般用于绘制南、北半球地图或北极、南极区域地图。
按变形性质又可以分为等积、等角、等距投影等。
1)正轴等角方位投影经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
经线和纬线正交,所以经纬线方向和主方向一致。
在中央经线上纬线间隔自投影中心向外逐渐增大;经线夹角等于相应的经差。
投影变形情况:①无角度变形,任一点长度比相同,极值长度比相等(a=b),经纬线长度比相等(m=n)。
②微分圆投影后保持正圆性质。
③极点为投影中心,是无变形点,距投影中心愈远长度变形和面积变形愈大, 在投影边缘面积变形是中心的四倍。
2)正轴等距方位投影经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
经线和纬线正交,所以经纬线方向和主方向一致。
经线投影后保持正长,所以投影后的纬线间距相等。
投影变形情况:①经线方向没有长度变形(m=1),各纬圈间的距离与实地相等。
②极点为投影中心,为无变形点。
③等变形线是以极点为中心的同心圆,距投影中心愈远角度变形和面积变形愈大。
等距切方位投影亦称波斯托等距方位投影。
3)正轴等积方位投影经纬线形状:纬线为同心圆,经线为自圆心辐射的直线,其夹角等于经差。
经线和纬线正交,所以经纬线方向和主方向一致。
在中央经线上纬线间隔自投影中心向外逐渐减小。
投影变形情况:①没有面积变形,面积比等于1,但角度变形较大②沿经线长度比大于1,沿纬线长度比小于1,两者互为倒数,面积比等于1。