系统辨识课件2 西工大
- 格式:ppt
- 大小:484.00 KB
- 文档页数:32
第 四 章系统辨识与参数估计4.1 系统辨识概述4.2 非参数模型辨识4.3 最小二乘参数估计4.4 递推最小二乘数估计4.5 其它最小二乘类估计4.6 极大似然估计法4.7 预报误差法4.8 子空间方法4.9 闭环辨识2012年5月29日星期二3第八讲14. 4 递推最小二乘估计2012年5月29日星期二3第八讲24.4 递推最小二乘数估计参数估计的一次算法, 当N很大时,(ΦTΦ)-1的计算是个很大的负担, 且每增加一个数据(ΦTΦ)-1的计算必须重复进行,因此, 递推算法在实际应用中是十分必要.•递推算法的基本思想:新估计c(k+1) = 原估计c(k) + 修正项2012年5月29日星期二3第八讲32012年5月29日星期二3第八讲44.4.1基本最小二乘递推公式2012年5月29日星期二3第八讲5定理4.6 对于定义的辨识问题, 未知参数向量θ的最小二乘估计的递推计算式为(1×S)(S×S)(S ×1)标量S = n a +n b +12012年5月29日星期二3第八讲62012年5月29日星期二3第八讲7证明:设基于N 时刻为止的所有观测数据对N 时刻的未知参数θ的最小二乘估计为 则由矩阵求逆引理可知2012年5月29日星期二3第八讲82012年5月29日星期二3第八讲92012年5月29日星期二3第八讲10注1: 新估计c(N+1)是原估计c(N)及校正项K(N+1)[y(N+1)-φT (N+1)c(N)]的线性组合。
若记代表原估计对N+1时刻输出的预测,则表示新息,即输出误差的预报,若预报误差为零,说明参数估计已准确,不必校正。
注2:递推算法所需的存贮容量及计算量都大大下降。
2012年5月29日星期二3第八讲11注5: 增益阵K(N)的计算误差δK(N),通过式给P(N)阵的计算带来误差δP(N),显然有δP(N) =-δK(N)φT (N)P(N-1)即误差以一次幂的形式传播,累积现象显著。
第2章 随机信号的描述与分析2.5 白噪声及其产生方法 2.5.1 白噪声的概念● 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数:)()(2τδστ=W R 谱密度:+∞<<∞-=ωσω2)(W S近似白噪声过程谱密度:⎩⎨⎧>≤=02,0,)(ωωωωσωW S (0ω为给定的远大于过程的截止频率)相关函数:τωτωπωστ0002sin )(⋅=W R 讨论白噪声时,还要涉及到白噪声的概率分布,服从正态分布的白噪声称为高斯白噪声。
n 维白噪声:一个n 维随机过程)(t W 满足:⎩⎨⎧=+=+=)()}()({)}(),({0)}({τδττQ t W t W E t W t W Cov t W E 其中Q 为正定常数矩阵,则称)(t W 为n 维白噪声过程。
● 白噪声序列白噪声序列是白噪声过程的离散形式。
如果序列)}({k W 满足: 相关函数: ,2,1,0,)(2±±==l l R l W δσ 则称为白噪声序列。
谱密度:2)()(σωω==∑∞-∞=-l l j WW e l RS2.5.2 表示定理与成形滤波器● 表示定理设平稳噪声序列)}({k e 的谱密度)(ωe S 是ω的实函数,或是ωcos 的有理函数,那么必定存在一个渐近稳定的线性环节,使得如果环节的输入是白噪声序列,则环节的输出是谱密度为)(ωe S 的平稳噪声序列)}({k e 。
● 成形滤波器表示定理中所涉及到的线性环节称为成型滤波器。
白噪声)(k w)(k e可以证明:如果)}({k e 的谱密度)(ωe S 是ωcos 的有理函数,那么一定存在一个成型滤波器,它的脉冲传递函数为:d d c cn n n n z d z d z c z c z C z D z H -------++++++== 111111111)()()( 且)(),(11--z D z C 的根都在z 平面的单位圆内。