岩石力学-岩石力学-位移反分析法
- 格式:pdf
- 大小:458.63 KB
- 文档页数:4
岩石力学的研究内容水利水电建设1、坝基及坝肩稳定性,防渗加固理论和技术;2、有压和无压引水隧道设计、施工及加固理论技术;3、大跨度高边墙地下厂房的围岩稳定及加固技术;4、高速水流冲刷的岩石力学问题;5、水库诱发地震的预报问题;6、库岸稳定及加固方法采矿工程1、露天采矿边坡设计及稳定加固技术;2、井下开采中巷道和采场围岩稳定性问题;3、矿柱稳定性及采场结构优化设计问题;4、软岩巷道和深部开采技术问题;5、矿井突水预测、预报及预处理理论和技术;6、煤与瓦斯突出预测及处理理论和技术;7、岩爆、岩爆预报及预处理理论和技术;8、采空区处理及地面沉降问题;9、岩石破碎问题铁道建设工程1、线路边坡稳定性分析;2、隧道设计和施工技术;3、隧道施工中的地质超前预报及处理;4、高地应力的岩爆理论及处理;5、隧道人口施工技术及洞脸边坡角确定和加固措施其他研究领域1、核电站建设中核废料处理技术2、石油开采中井损防治及采空区地面变形问题3、山城及高层建筑的地基问题4、地层热能资源开发技术问题5、地震预报中的岩石力学问题岩石力学发展展望从事物的必然性出发,根据试验建立模型,处理本构关系,在特定的有限的条件下求解----正向思维将岩体也视为一个不确定系统,用系统思维、反馈思维、全方位思维(包括逆向思维、非逻辑思维、发散思维甚至直觉思维)对工程岩体的行为进行研究----逆向思维理论分析、数值模拟、参数测定---确定性方法将工程岩体看成为“人地系统”。
用“系统”概念来表征“岩体”可使岩体的“复杂性”得到全面科学的表达。
岩石或岩石工程系统不仅是因为多因子、多层次组合而具有“复杂性”,而且还在于他们大多具有很强的“不确定性”,即模糊性和随机性---非确定性系统分析方法土、岩石与岩体的力学性质弹塑性本构模型理论地应力及其测量岩石与土的流变性质岩土工程数值分析方法岩土工程反分析方法岩土工程随机分析及可靠度设计岩石力学的研究方法1、地质研究方法着重研究与岩石的力学性质和力学行为有关的岩体岩石岩相岩层特征的研究如软弱成份,可溶盐类,化成份以及原生结构岩体结构研究软弱面的起伏度,结构面的充填物等等环境因素研究如地应力成因和展布,地下水性态,水平地质条件等等2、物理测试方法利用物探技术探查岩体的力学性质结构探测采用地球物理方法和技术来探查各种结构面的力学行为环境物理量测如地应力机制,渗透水系量测等等岩石物理力学性质测试如室内岩块的物理性质,力学性质,原位岩体的力学性质,钻孔测试,变形监测以及位移反分析确定岩体和岩性参数等等3、力学分析方法力学模型、数值分析、模拟分析力学模型研究包括弹塑性模型,流变模型、断裂模型、损伤力学模型、渗透网络模型、拓扑模型等等数值分析方法如有限元法,边界元法,离散元法,系统分析法和设计施工风险决策的人工智能专家系统等等模拟分析如光弹应力分析,相似材料模型试验,离心模型试验4、整体综合分析方法综合多种分析手段进行系统分析岩石力学的诞生是以解决岩石工程稳定性问题和研究岩石的破碎条件为目的而诞生的。
5岩体工程中的反分析方法岩体工程中的反分析方法是指在岩体工程设计和施工过程中,通过对已有的地质调查和岩体工程工程数据进行分析,推导出岩体参数和设计参数之间的关系以及可能的工程风险,从而对整个工程进行风险评估和优化设计的一种方法。
反分析方法在岩体工程中具有重要的意义,可以帮助工程师更加全面地了解岩体状况,正确评估岩体强度和稳定性,提高岩体工程的施工效率和质量。
一、岩体工程反分析的基本原理二、岩体工程反分析的方法1.岩体参数反推法:此法通过对现场岩体状况和已知岩体参数进行分析,推导出其他未知参数的数值。
例如,通过实际工程施工数据和勘察数据,推断出岩体破碎和变形参数,帮助工程师进行进一步设计和加固措施的确定。
2.岩体工程风险评估法:此法通过对岩体强度和稳定性等参数的统计分析和盲点评估,对工程施工中可能出现的风险进行预测和评估,提出合理的措施和建议。
例如,通过对块石和裂隙分布的分析,评估岩体是否存在坍塌和滑坡风险。
3.岩体可靠度计算法:此法通过对岩体参数的统计数据和可靠度理论进行计算和评估,得出岩体工程的可靠度和安全系数,指导工程设计和施工过程中的决策。
例如,通过对岩体强度、裂隙分布和地质构造的综合分析,计算出岩体结构的可靠度,确定工程设计的合理性。
4.岩体变形预测法:此法通过对岩体应力和变形的分析和预测,帮助工程师了解岩体工程施工过程中可能出现的变形情况,提前采取相应的措施和预防措施。
例如,通过对岩体松动和变形的数值模拟和预测,确定预警线和控制线,指导工程施工的安全进行。
5.岩体材料性质反推法:此法通过对岩体材料强度和特性的统计分析和评估,反推出岩体的特性参数和工程性质,帮助工程师进行岩体工程设计和施工的优化。
例如,通过对岩石抗压和抗拉强度进行实验测定和数据分析,推断出岩石的工程性质和强度特性。
反分析方法在岩体工程中的应用具有重要的意义,可以有效帮助工程师了解岩体状况,评估岩体参数和工程风险,指导工程设计和施工过程中的决策和措施。
岩石力学参数测量与分析方法引言岩石作为地球上最常见的固体物质之一,在地质、矿产资源开发以及工程建设中起着至关重要的作用。
了解岩石的力学性质和参数,对于地质灾害的预测和工程设计的可靠性具有重要意义。
本文将介绍一些常用的岩石力学参数测量与分析的方法,为相关领域的研究人员和工程师提供参考。
一、应力-应变曲线的测量与分析方法应力-应变曲线是描述岩石在外力作用下的变形行为的重要参数。
常用的测量方法包括压力试验、拉伸试验、剪切试验等。
其中,剪切试验是一种常用的测量岩石力学参数的方法。
在剪切试验中,通过施加一个水平剪切力和一个垂直压力,测量岩石样本在剪切力下的变形情况。
然后,根据变形和应力之间的关系,可以得到应力-应变曲线。
曲线的形状和斜率可以反映岩石的强度和变形能力。
二、弹性模量的测量与分析方法弹性模量是岩石力学中最基本的参数之一,它描述了岩石对外力作用下的弹性变形能力。
常用的测量方法包括静力弹性模量测定和动力弹性模量测定。
静力弹性模量测定方法主要是通过施加不同大小的压力或拉伸力,测量岩石样本的应力和应变关系,得到弹性模量。
而动力弹性模量测定方法主要是通过地震波传播的速度和岩石的密度来计算弹性模量。
三、抗压强度的测量与分析方法抗压强度是岩石力学中评价岩石抵抗外力压缩的能力的重要参数。
传统的抗压强度测量方法是在实验室中进行压力试验。
在压力试验中,岩石样本被垂直施加压力,然后记录岩石破裂的压力值。
除了传统方法外,近年来还出现了一些新的测量方法,如非接触式测量方法和声波测量方法。
这些方法不仅提高了测量的准确性,还能够在线实时监测岩石的抗压强度。
四、剪切强度的测量与分析方法剪切强度是岩石力学中评价岩石抵抗剪切破坏的能力的重要参数。
常用的剪切强度测量方法包括剪切试验和直剪试验。
剪切试验是一种常用的测量剪切强度的方法。
在剪切试验中,岩石样本在剪切力的作用下发生破坏,通过记录岩石破坏的剪切力值和剪切位移,可以计算剪切强度。
所谓岩土工程位移反分析,即以现场测量到的位移为基础,通过数学物理反分析模型,得到岩土介质的本构模型及等效力学参数(如初始地应力、变形参数、强度参数等)的方法。
最终目的是建立一个输出位移更接近现场实测位移的理论模型,以便较正确地反映或预测岩土结构的某些力学行为。
20 世纪70 年代初人们开始岩土工程位移反分析的研究,随着岩土工程的发展,国内外众多学者对位移反分析的理论与应用进行了大量广泛而深入的研究。
岩土工程位移反分析涉及的研究内容非常广泛,下面就从位移解析解、位移反分析的唯一性、位移测量点的优化布置、本构模型、数值计算方法、优化方法这六个方面对其进行综合地考察。
1.3.1 位移解析解1898 年,Kirsch[92]最早发表了弹性平板中圆孔周围的二维应力分布解,Jaeger和Cook (1969)[93]对Kirsch 方程进行了详细的推导。
此后,Poulos 和Davi(s1974)[94]、Pender (1980)[95]、Carter(1982)[96]和Verruijt(1999)[97]分别在不同的边界条件下给出了圆形巷道的位移解析解。
Exadaktylos(2002)给出了半圆形巷道的位移解析解[98]。
Muskhelishvili(1953)[99]和蔡晓鸿(2008)[100]分别在不同的边界条件下给出了椭圆形巷道的位移解析解。
吕爱钟(1998)[10]、张路青(2001)[101]求解了不同地应力条件下任意形状巷道的位移解析解。
1.3.2 位移反分析的唯一性反分析的唯一性是位移反分析中最重要却研究得最不充分的理论问题之一。
迄今为止,国外尚未有相关论文发表,国内的论文也是凤毛麟角。
吕爱钟(1988)[103]推导了参数可辨识条件,论证了地下洞室弹性位移反分析的多种唯一性问题,并指出某些问题无论安装多少个位移测点其反分析的结果都不是唯一的。
张路青(2001)[101]进一步研究了考虑剪应力时位移反分析的唯一性问题。