高二第4讲 空间中的垂直关系(教师版)
- 格式:docx
- 大小:781.66 KB
- 文档页数:15
1.2.3空间中的垂直关系(一)【学习要求】1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理及其性质定理.3.会应用两定理解决问题.【学法指导】借助对实例、图片的观察,提炼直线与平面垂直的定义;通过直观感知,操作确认,归纳直线与平面垂直的判定定理及性质定理;通过运用两定理感悟和体验线面垂直转化为线线垂直的思想方法.填一填:知识要点、记下疑难点1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.如果一条直线AB和一个平面α相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线得垂面,交点叫做垂足,垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.3.线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.4.线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行 .研一研:问题探究、课堂更高效[问题情境]生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等.在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?本节我们就来研究这一问题.探究点一直线与平面垂直的定义问题1你能举出在日常生活中给人以直线与平面垂直的例子吗?答:旗杆与地面的关系,给人以直线与平面垂直的形象;大桥的桥柱与水面的位置关系,给人以直线与平面垂直的形象.问题2在平面内,如果两条直线互相垂直,则它们一定相交.在空间中,两条互相垂直的直线也一定相交吗?你能举例说明吗?答:不一定.在空间中,两条互相垂直相交的直线中,如果固定其中一条,让另一条平移到空间的某一个位置,就可能与固定的直线没有公共点,这时两条直线为异面直线,它们同样是互相垂直.小结:空间两直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.问题3在平面中,到线段AB两端距离相等点的集合是线段的垂直平分线,在空间中,线段AB的垂直平分线有多少条?AB的这些垂直平分线构成的集合是怎样的图形?答:容易发现,空间中线段AB的垂直平分线有无数多条,它们构成的集合是一个平面.问题4结合对下列问题的思考,试着说明直线和平面垂直的意义.(1)如图,阳光下直立于地面的旗杆AB与它在地面上的影子BC的位置关系是什么?随着太阳的移动,旗杆AB与影子BC所成的角度会发生改变吗?答:垂直关系,所成的角度不变,都为90°.(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B′C′的位置关系又是什么?依据是什么?由此得到什么结论?答:垂直关系,依据是空间两直线垂直的定义.得到的结论是:如果一条直线与平面垂直,则这条直线垂直于该平面内的任意一条直线.问题5通过上述分析,你认为应该如何定义一条直线与一个平面垂直?答:直线与平面垂直的定义:如果一条直线AB和一个平面α相交于一点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足,垂线上一点到垂足间的线段叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.问题6如何画直线与平面垂直?如何用符号表示直线与平面垂直?答:画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.直线l和平面α互相垂直,记作l⊥α.问题7若直线与平面内的无数条直线垂直,则直线垂直于平面吗?如不是,直线与平面的位置关系如何?答:不一定垂直,有可能平行或者相交.探究点二直线与平面垂直的判定定理问题1通常定义可以作为判定的依据,那么用上述定义判定直线与平面垂直是否方便?为什么?答:不方便,因为要验证直线垂直平面内所有的直线,这实际上是很困难的.问题2请同学们准备一块三角形的纸片,我们一起来做如图所示的试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问:折痕AD与桌面垂直吗?如何翻折才能保证折痕AD与桌面所在平面垂直?答: 从实验可知:当AD 与BC 不垂直时,翻折后的纸片竖起放置在桌面上折痕AD 与桌面不垂直;当AD 与BC 垂直时,翻折后的纸片竖起放置在桌面上折痕AD 与桌面垂直.问题3 由折痕AD ⊥BC ,翻折之后垂直关系不变,即AD ⊥CD ,AD ⊥BD.由此你能得到什么结论?答:若平面外一条直线与平面内两条相交直线垂直且相交,则该直线垂直这个平面.问题4 如图,把AD 、BD 、CD 抽象为直线l 、m 、n ,把桌面抽象为平面α,l 与α垂直的条件是什么? 答:条件是l 与平面α内的两条相交直线m ,n 垂直且相交.问题5 如图,若α内两条相交直线m 、n 与l 无公共点且l ⊥m 、l ⊥n ,我们可以把直线l 平移到交点处,由此你能给出判定直线与平面垂直的方法吗?答:线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.问题6 如何用符号语言表示直线与平面垂直的判定定理?答: ⎭⎪⎬⎪⎫m ⊂αn ⊂αm∩n =P l ⊥m l ⊥n⇒l ⊥α即:线线垂直⇒线面垂直. 例1 已知:a ∥b ,a ⊥α.求证:b ⊥α.证明 在平面α内作两条相交直线m ,n.因为直线a ⊥α,根据直线与平面垂直的定义知a ⊥m ,a ⊥n.又因为b ∥a ,所以b ⊥m ,b ⊥n.又因为m ⊂α,n ⊂α,m ,n 是两条相交直线,所以b ⊥α.小结:推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.跟踪训练1 已知:直线l ⊥平面α,直线m ⊥平面α,垂足分别为A 、B ,如图,求证:l ∥m.证明:假设直线m 不与直线l 平行,过直线m 与平面α的交点B ,作直线m′∥l ,由直线与平面垂直的判定定理的推论可知m′⊥α,设m 和m′确定的平面为β,α与β的交线为a ,因为直线m 和m′都垂直于平面α. 所以直线m 和m′都垂直于交线a.因为在同一平面内,通过直线上一点与已知直线垂直的直线不可能有两条,所以直线m 和m′必重合,即l ∥m.小结:推论2:如果两条直线垂直于同一个平面,那么这两条直线平行.例2 过一点和已知平面垂直的直线只有一条.已知:平面α和一点P(如下图).求证:过点P 与平面α垂直的直线只有一条.证明:不论点P 在α外或内,设PA ⊥α,垂足为A(或P).如果过点P ,除直线PA ⊥α外,还有一条直线PB ⊥α,设PA ,PB 确定的平面为β,且α∩β=a ,于是在平面β内过点P 有两条直线PA ,PB 垂直于交线a ,这是不可能的.所以过点P 与α垂直的直线只有一条.小结:如果直接证明比较难或感觉无从下手,可以假设结论不成立,然后设出成立的结论,由此推理得出矛盾,从而说明原结论成立.跟踪训练2 已知:直线l ⊥平面α,垂足为A ,直线AP ⊥l. 求证:AP 在平面α内.证明:设AP 与l 确定的平面为β,假设AP 不在平面α内,则设平面β与平面α交于直线AM ,如下图所示:因为l ⊥α,AM ⊂α,所以l ⊥AM ,又因为AP ⊥l ,所以在平面β内过一点A 存在两条直线垂直于l ,这是不可能的,所以AP 在平面α内.例3 有一根旗杆高8 m(如图),在它的顶点处系两条长10 m 的绳子,拉紧绳子并把它们的下端固定在地面上的两点(与旗杆脚不在同一条直线上).如果这两点与旗杆脚距 6m ,那么旗杆就与地面垂直,为什么?解:如题图,旗杆PO =8,两绳子长PA =PB =10,OA =OB =6,A ,O ,B 三点不共线,因此A ,O ,B 三点确定平面α,因为PO 2+AO 2=PA 2,PO 2+BO 2=PB 2,所以PO ⊥OA ,PO ⊥OB ,又OA∩OB =O.所以OP ⊥α,因此旗杆与地面垂直.小结:证明线面垂直的一般思路是依据线面垂直的判定定理,寻找满足定理的条件,当条件满足了,也就证明了线面垂直;线面垂直的定义说明了直线垂直平面,则直线垂直这个平面内的任意直线,常用此性质证,线面垂直线线垂直.跟踪训练3如图,直四棱柱A′B′C′D′—ABCD中,底面四边形满足什么条件时,A′C⊥B′D′?为什么?解:四边形ABCD的两条对角线互相垂直时,A′C⊥B′D′.因A′A⊥平面ABCD,BD⊂平面ABCD,所以A′A⊥BD,又因AC⊥BD,A′A∩AC=A,所以BD⊥A′C.由B′D′∥BD,得A′C⊥B′D′.练一练:当堂检测、目标达成落实处1.直线a⊥直线b,b⊥平面β,则a与β的关系是(D)A.a⊥β B.a∥βC.a⊂β D.a⊂β或a∥β2.直线l⊥平面α,直线m⊂α,则l与m不可能(A)A.平行B.相交C.异面D.垂直3.如图所示,AF⊥平面ABCD,DE⊥平面ABCD,且AF=DE,AD=6,则EF=________.解析:∵AF、DE垂直于同一平面ABCD,∴AF∥DE,又∵AF=DE,∴四边形ADEF为矩形,∴EF=AD=6.课堂小结:1.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.直线和平面垂直的性质定理可以作为两条直线平行的判定定理,可以并入平行推导链中,实现平行与垂直的相互转化,即线线垂直⇒线面垂直⇒线线平行⇒线面平行.3.“垂直于同一平面的两条直线互相平行”、“垂直于同一直线的两个平面互相平行”都是真命题.但“垂直于同一直线的两条直线互相平行”、“垂直于同一平面的两个平面互相平行”都是假命题.。
第四讲:空间中的垂直(二)面面垂直与垂直综合一,知识点1,定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
二面角:两个半平面相交,若第三个平面垂直于他们的交线,且分别和两个平面有交线a,b ,则a,b,所成的角就是二个平面所成的角,简称二面角。
2,判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。
l l βαβα⊥⇒⊥⊂⎫⎬⎭(只需在一个平面内找到另一个平面的垂线就可证明面面垂直) 3,性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
m l l l m αβαββα⊥=⇒⊥⊂⊥⎫⎪⎪⎬⎪⎪⎭4,证明两直线垂直和主要方法:①利用勾股定理证明两相交直线垂直;②利用等腰三角形三线合一证明两相交直线垂直;③利用线面垂直的定义证明(特别是证明异面直线垂直); ④利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”)三垂线定理及其逆定理是对线面垂直的判定和性质的综合运用的简化④利用圆中直径所对的圆周角是直角,此外还有正方形、菱形对角线互相垂直等结论。
二,典型例题例1,设α、β、γ为平面,m 、n 、l 为直线,则m ⊥β的一个充分条件是( ) A .α⊥β,α∩β=l ,m ⊥l B .α∩γ=m ,α⊥γ,β⊥γ C .α⊥γ,β⊥γ,m ⊥α D .n ⊥α,n ⊥β,m ⊥α 【练习】已知m ,n ,l 为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A .α∥β,m ⊂α,n ⊂β⇒m ∥n B .l ⊥β,α⊥β⇒l ∥α C .m ⊥α,m ⊥n ⇒n ∥α D .α∥β,l ⊥α⇒l ⊥βa 斜影线αPO A ,PO OA PA a PA a a OA ααα⊥⇒⇒⊥⊂⊥⇒⎫⎬⎭图线线线如:是在平面上的射影 又直且即:影垂直斜垂直,反之也成立。
例2,已知直线l ⊥平面α,有以下几个判断: ①若m ⊥l ,则m ∥α,②若m ⊥α,则m ∥l ③若m ∥α,则m ⊥l ,④若m ∥l ,则m ⊥α, 上述判断中正确的是( )A .①②③B .②③④C .①③④D .①②④【练习】1、已知a 、b 是两条不重合的直线, α、β、γ是三个两两不重合的平面,给出下列四个命题:①若a ⊥α,a ⊥β,则α∥β; ②若α⊥γ,β⊥γ,则α∥β;③α∥β,a ⊂α,b ⊂β,则a ∥b ; ④若α∥β,α∩γ=a , β∩γ=b ,则a ∥b . 其中正确命题的序号是 2、设m 、n 是两条不同的直线,α、β是两个不同的平面.则下列命题中正确的是___________ ①m ⊥α,n ⊂β,m ⊥n ⇒α⊥β ②α∥β,m ⊥α,n ∥β⇒m ⊥n ③α⊥β,m ⊥α,n ∥β⇒m ⊥n ④α⊥β,α∩β=m ,n ⊥m ⇒n ⊥β点金秘笈:此类题目,主要考察在线面位置关系基础上的判定和性质定理,要求有一定的空间想象能力和逻辑推理能力。
1.2.3空间中的垂直关系(二)【学习要求】1.理解面面垂直的定义,并能画出面面垂直的图形.2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化.3.掌握面面垂直的证明方法,并能在几何体中应用.【学法指导】借助对实例、图片的观察,提炼平面与平面垂直的定义;通过直观感知,操作确认,归纳平面与平面垂直的判定定理及性质定理;通过运用两定理感悟和体验面面垂直转化为线线垂直的思想方法.填一填:知识要点、记下疑难点1.两平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.两个平面α,β互相垂直,记作:α⊥β .2.面面垂直的判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.3.面面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.研一研:问题探究、课堂更高效[问题情境]在第一大节,我们曾直观地看到,当一个平面通过另一个平面的垂线时,就给我们两个平面垂直的形象.这一小节我们将进一步研究平面与平面垂直的判定与性质.探究点一两平面垂直的定义及判断问题1如图,已知α∩β=CD,BA⊥CD, BE⊥CD.那么直线CD与平面ABE有怎样的关系?为什么?答:CD⊥平面ABE.因为AB∩BE=B,所以AB与BE确定平面ABE,又BA⊥CD, BE⊥CD,所以CD⊥平面ABE.问题2在问题1的图中,当∠ABE是什么角时,给我们两平面互相垂直的印象?答:当∠ABE为直角时;给我们两平面互相垂直的印象.问题3由问题2,你能总结出两平面垂直的定义吗?答:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条直线互相垂直,就称这两个平面互相垂直.两个平面α,β互相垂直,记作:α⊥β.问题4在问题1的图形中,已知∠ABE为直角,那么直线BA与平面β有怎样的关系?为什么?答:BA⊥β,因为∠ABE为直角,可知BA⊥BE,又BA⊥CD,所以BA⊥β.问题5在问题1的图中,如果平面α过平面β的垂线BA,那么这两个平面是否相互垂直呢?说明理由.答两个平面垂直.理由如下:在平面β内过点B作BE⊥CD,由于BA⊥β,所以BA⊥BE,因此∠ABE为直角.问题6由问题5你能得出怎样的结论?答:平面与平面垂直的判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.问题7如何画两个平面互相垂直的直观图?答:画两个互相垂直的平面,把直立平面的竖边画成和水平面的横边垂直,如图所示,平面α和平面β垂直.例1如图,已知:平面α⊥平面β,在α与β的交线上取线段AB=4 cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3 cm,BD=12 cm,求CD的长.解:连接BC,因为BD⊥AB,直线AB是两个互相垂直的平面α 和β的交线,所以BD⊥α,BD⊥BC,所以△CBD是直角三角形,在直角△BAC中,BC=32+42=5;在直角△CBD中,CD=122+52=13.所以CD的长为13 cm.小结:证明面面垂直需根据面面垂直的判定定理转化为证明线面垂直进而转化为证明线线垂直.此外还可用定义法.跟踪训练1如图,在三棱锥V-ABC中,VC⊥底面ABC,D是AB的中点,且AC=BC,求证:平面V AB⊥平面VCD.证明:因为AC=BC,所以△ABC是等腰三角形.又D是AB的中点,所以CD⊥AB.又VC⊥底面ABC,AB⊂底面ABC,所以VC⊥AB.因为CD∩VC=C,CD⊂平面VCD,VC⊂平面VCD,所以AB⊥平面VCD.又AB⊂平面V AB,所以平面V AB⊥平面VCD.例2已知Rt△ABC中,AB=AC=a,AD是斜边BC上的高,以AD为折痕使∠BDC成直角(如图).求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC;(2)∠BAC=60°.证明: (1)因为AD ⊥BD ,AD ⊥DC, 所以AD ⊥平面BDC.因为平面ABD 和ACD 都过AD , 所以平面ABD ⊥平面BDC ,平面ACD ⊥平面BDC ;(2)如图(1)中,在直角△BAC 中,因为AB =AC =a ,所以BC =2a, 所以 BD =DC =22a, 如图(2),△BDC 是等腰直角三角形, 所以BC =2BD =a, 所以AB =AC =BC ,因此∠BAC =60°.小结:对于由平面图形折叠而成的几何体,要注意利用平面图形折叠前后有些线段的长度及角的大小不变的性质. 跟踪训练2 如图,在四面体ABCD 中,BD =2a ,AB =AD =BC =CD =AC =a.求证:平面ABD ⊥平面BCD.证明:取BD 中点E ,连接AE ,CE ,则AE ⊥BD ,BD ⊥CE.在△ABD 中,AB =a ,BE =12BD=22a ,∴AE =22a ,同理,CE =22a. 在△AEC 中,AE =EC =22a ,AC =a ,∴AC 2=AE 2+EC 2,即AE ⊥EC. 又∵BD∩EC =E ,∴AE ⊥平面BCD.又∵AE ⊂平面ABD ,∴平面ABD ⊥平面BCD.探究点二 两平面垂直的性质问题1 设平面α与平面β垂直,α∩β=CD ,BA ⊂α,BA ⊥CD ,那么BA 是否垂直平面β?答:BA ⊥β,证明如下:如下图,在平面β内过点B 作BE ⊥CD ,因为α⊥β,所以BA ⊥BE , 又因为BA ⊥CD ,CD∩BE =B ,所以BA ⊥β.问题2 由问题1你能归纳出怎样的结论?答:面面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面. 例3 如图所示,P 是四边形ABCD 所在平面外的一点,ABCD 是∠DAB =60°且边长为a 的菱形.侧面PAD 为正三角形,其所在平面垂直于底面ABCD.(1)若G 为AD 边的中点,求证:BG ⊥平面PAD ;(2)求证:AD ⊥PB.证明:(1)连接PG ,BD ,由题知△PAD 为正三角形,G 是AD 的中点,∴PG ⊥AD.又平面PAD ⊥平面ABCD ,∴PG ⊥平面ABCD ,∴PG ⊥BG .又∵四边形ABCD 是菱形且∠DAB =60°,∴△ABD 为正三角形.∴BG ⊥AD.又AD∩PG =G ,∴BG ⊥平面PAD.(2)由(1)可知BG ⊥AD ,PG ⊥AD.∴AD ⊥平面PBG ,又∵PB ⊂面PBG ,∴AD ⊥PB.小结:证明线面垂直,除利用定义和判定定理外,另一种重要的方法是利用面面垂直的性质定理证明,应用时应注意:(1)两平面垂直;(2)直线必须在一个平面内;(3)直线垂直于交线.跟踪训练3 如图,已知平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC ,AE ⊥平面PBC ,E 点为垂足.(1)求证:PA ⊥平面ABC ;(2)当E 为△PBC 的垂心时,求证:△ABC 是直角三角形.证明:(1)在△ABC 内取一点D ,作DF ⊥AC 于点F ,因为平面PAC ⊥平面ABC ,且交线为AC ,所以DF ⊥平面PAC ,又PA ⊂平面PAC ,所以DF ⊥AP.作DG ⊥AB 于点G ,同理可证DG ⊥AP.因为DG 、DF 都在平面ABC 内,且DG∩DF =D ,所以PA ⊥平面ABC.(2)连接BE 并延长,交PC 于点H.因为E 是△PBC 的垂心,所以PC ⊥BE.又已知AE 是平面PBC 的垂线,所以PC ⊥AE.又BE∩AE =E ,所以PC ⊥平面ABE.因为AB ⊂平面ABE ,所以PC ⊥AB.又因为PA ⊥平面ABC ,AB ⊂平面ABC ,所以PA ⊥AB.又PC∩PA =P ,所以AB ⊥平面PAC.又AC ⊂平面PAC ,所以AB ⊥AC ,即△ABC 是直角三角形.练一练:当堂检测、目标达成落实处1.下列命题中正确的是(C)A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β2.设两个平面互相垂直,则(B)A.一个平面内的任何一条直线都垂直于另一个平面B.过交线上一点垂直于一个平面的直线必在另一个平面内C.过交线上一点垂直于交线的直线必垂直于另一个平面D.分别在两个平面内的两条直线互相垂直3.已知四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EBD⊥平面ABCD.证明:连接AC,BD,交点为F,连接EF,EF是△SAC的中位线,∴ EF∥SC.∵SC⊥平面ABCD,∴EF⊥平面ABCD,又EF⊂平面BDE,∴平面BDE⊥平面ABCD.课堂小结:1.判定面面垂直的方法主要有:(1)面面垂直的定义(使用较少);(2)面面垂直的判定定理(使用最多).在证明两个平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线在现有的图中不存在,则可通过作辅助线来解决.2.空间中的垂直关系相互转化图:3.运用两个平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.。
1.6空间中的垂直关系(优质课)教案教学目标:理解空间中三种垂直关系的定义;掌握空间中三种垂直关系判定及性质;用空间中三种垂直关系的定义、判定及性质解决垂直问题.教学过程:一、直线与平面垂直1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互垂直.2.如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作AB⊥α,直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离3.直线和平面垂直的判定4.(1)判定定理:如果一条直线和一个平面内的任何两条相交直线都垂直,那么这条直线垂直于这个平面.符号语言:l⊥a,l⊥b,a∩b=A,a⊂α,b⊂α⇒l⊥α,如图:(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.符号语言:a∥b,a⊥α⇒b⊥α,如图:5.直线与平面垂直的性质(1)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.符号语言:a⊥α,b⊥α⇒a∥b,如图:(2)一条直线垂直于一个平面,它就和平面内的任意一条直线垂直.符号语言:a⊥α,b⊂α⇒a⊥b,如图:6.设P是三角形ABC所在平面α外一点,O是P在α内的射影(1)若PA=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB中点.(2)若PA、PB、PC两两垂直,则O为△ABC的垂心.(3)若P到△ABC三边距离相等,则O为△ABC的内心.7.(1)过一点有且只有一条直线与已知平面垂直.(2)过一点有且只有一个平面与已知直线垂直.二、直线和平面平行1.平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作α⊥β.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号表示:a⊥α,a⊂β⇒α⊥β,如图:3.两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面.符号表示:α⊥β,α∩β=CD,BA⊂α,BA⊥CD,B为垂足⇒BA⊥β,如图:推论:如果两个平面垂直,那么过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.类型一线面垂直例1:如图,直角△ABC 所在平面外一点S ,且SA =SB =SC ,点D 为斜边AC 的中点. (1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC.解析:由于D 是AC 中点,SA =SC ,∴SD 是△SAC 的高,连接BD ,可证△SDB ≌△SDA .由AB =BC ,则Rt △ABC 是等腰直角三角形,则BD ⊥AC ,利用线面垂直的判定定理即可得证. 答案:(1)∵SA =SC ,D 为AC 的中点, ∴SD ⊥AC .在Rt △ABC 中,连接BD ,则AD =DC =BD ,又∵SB =SA ,SD =SD , ∴△ADS ≌△BDS .∴SD ⊥BD .又AC ∩BD =D , ∴SD ⊥面ABC .(2)∵BA =BC ,D 为AC 中点,∴BD ⊥AC . 又由(1)知SD ⊥面ABC ,∴SD ⊥BD .于是BD 垂直于平面SAC 内的两条相交直线, ∴BD ⊥平面SAC . 练习1:((2014·河南南阳一中高一月考)如图所示,在四棱锥P -ABCD 中, 底面ABCD 是矩形,侧棱P A ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点, P A =AD .求证:EF ⊥平面PCD .答案:如图,取PD 的中点H ,连接AH 、HF .∴FH12CD, ∴FH AE ,∴四边形AEFH 是平行四边形,∴AH ∥EF . ∵底面ABCD 是矩形,∴CD ⊥AD . 又∵PA ⊥底面ABCD , ∴PA ⊥CD ,PA ∩AD =A , ∴CD ⊥平面PAD .又∵AH ⊂平面PAD ,∴CD ⊥AH .又∵PA =AD ,∴AH ⊥PD ,PD ∩CD =D , ∴AH ⊥平面PCD ,又∵AH ∥EF ,∴EF ⊥平面PCD .练习2:如右图,在正方体1111ABCD A B C D −中,P 为1DD 的中点,O 为ABCD 的中心, 求证:1B O ⊥平面PAC 答案:连结111,,PO PB B D ,OP D 1C 1B 1A 1D CBA由正方体的性质可知,1,AC BD AC BB ⊥⊥,且1BD BB B =∴AC ⊥面11BDD B 又∵BO ⊂面11BDD B ∴1B O AC ⊥ 设AB a =,则1111,,22OB OD a B D PD PD a ===== ∵2222222222221113113,22424OB OB BB a a a OP PD DO a a a =+=+==+=+= 222222111119244PB B D PD a a a =+=+=∴2221OB PO PB += ∴1B O PO ⊥ ∵PO AC O =∴1B O ⊥平面PAC练习3:在如右图,在空间四边形ABCD 中,,AB AD BC CD ==, 求证:AC BD ⊥答案:设E 为BD 的中点,连结,AE EC∵AB AD = ∴BD AE ⊥ 同理可证:BD EC ⊥ 又∵AEEC E = ∴BD ⊥面AEC∵AE ⊂面AEC ∴BD AC ⊥例2:如图在△ABC 中,∠B =90°,SA ⊥平面ABC , 点A 在SB 和SC 上的射影分别是N 、M ,求证:MN ⊥SC . 解析:根据直线平面垂直的性质,找到所求垂直的线段中的 一条与另一条所在的平面垂直,即可证明这两条线段互相垂直. 答案:证明:∵SA ⊥平面ABC , ∴SA ⊥BC ,又∠ABC =90°,∴BC ⊥AB ,∴BC ⊥平面SAB , ∴AN ⊥BC ,又AN ⊥SB ,∴AN ⊥平面SBC , ∴AN ⊥SC ,又AM ⊥SC , ∴SC ⊥平面AMN , ∴MN ⊥SC .练习1:如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 、AC 上的点,且EF ⊥A 1D ,EF ⊥AC .求证:EF ∥BD 1. 答案:如图所示,连接A 1C 1、C 1D 、BD 、B 1D 1. 由于AC ∥A 1C 1,EF ⊥AC ,∴EF ⊥A 1C 1. 又EF ⊥A 1D ,A 1D ∩A 1C 1=A 1, ∴EF ⊥平面A 1C 1D .①E ABCD∵BB 1⊥平面A 1B 1C 1D 1,A 1C 1⊂平面A 1B 1C 1D 1, ∴BB 1⊥A 1C 1.又∵四边形A 1B 1C 1D 1为正方形,∴A 1C 1⊥B 1D 1. ∵BB 1∩B 1D 1=B 1,∴A 1C 1⊥平面BB 1D 1D . 而BD 1⊂平面BB 1D 1D ,∴BD 1⊥A 1C 1. 同理,DC 1⊥BD 1,DC 1∩A 1C 1=C 1, ∴BD 1⊥平面A 1C 1D .②由①②可知EF ∥BD 1.练习2:在空间中,下列命题:①平行于同一条直线的两条直线平行;②垂直与同一直线的两条直线平行;③平行与同一平面的两条直线平行;④垂直于同一平面的两条直线平行.其中正确的由___ . 答案:①④练习3:已知,,a b c 及平面β,则下列命题正确的是( )A 、////a a b b ββ⎫⇒⎬⊂⎭B 、a a b b ββ⊥⎫⇒⊥⎬⊥⎭C 、//a c a b b c ⊥⎫⇒⎬⊥⎭D 、//a a b b ββ⊂⎫⇒⎬⊂⎭ 答案:B例3:如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6.求证:BD ⊥平面PAC .解析:通过计算得到直角,进而得到垂直. 答案:∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA .∵∠BAD 和∠ABC 都是直角,∴tan ∠ABD =AD AB =33,tan ∠BAC =BCAB=3, ∴∠ABD =30°,∠BAC =60°.∴∠AEB =90°,即BD ⊥AC , 又PA ∩AC =A ,∴BD ⊥平面PAC .练习1:在正方体中ABCD -A 1B 1C 1D 1中,P 为DD 1的中点, O 为底面ABCD 的中心.求证:B 1O ⊥平面PAC . 答案:如图所示,连接AB 1、CB 1、B 1D 1、PB 1、PO .设AB =a ,则AB 1=CB 1=B 1D 1=2a ,AO =OC =22a , ∴B 1O ⊥AC .∵B 1O 2=OB 2+BB 21=⎝⎛⎭⎪⎫22a 2+a 2=32a 2,PB 21=PD 21+B 1D 21=⎝ ⎛⎭⎪⎫12a 2+(2a )2=94a 2,OP 2=PD 2+DO 2=⎝ ⎛⎭⎪⎫12a +⎝⎛⎭⎪⎫22a 2=34a 2,∴B 1O 2+OP 2=PB 21,∴B 1O ⊥OP . 又PO ∩AC =O ,∴B 1O ⊥平面PAC .练习2: 如图,若测得旗杆PO =4,P A =PB =5,OA =OB =3,则旗杆PO 和地面α的关系是________.答案:∵PO =4,OA =OB =3,P A =PB =5,∴PO 2+AO 2=P A 2,PO 2+OB 2=PB 2, ∴PO ⊥OA ,PO ⊥OB .又OA ∩OB =O ,∴PO ⊥平面AOB ,∴PO ⊥地面α.类型二 平面与平面垂直例4:(2014·山东临沂高一期末测试)如图,在底面为正三角形的直三棱柱ABC -A 1B 1C 1中,点D 是BC的中点,求证:平面AC 1D ⊥平面BCC 1B 1.解析:运用平面垂直的判定.答案:∵△ABC 为正三角形,D 为BC 的中点,∴AD ⊥BC .又∵CC 1⊥底面ABC ,AD ⊂平面ABC , ∴CC 1⊥AD .又BC ∩CC 1=C , ∴AD ⊥平面BCC 1B 1. 又AD ⊂平面AC 1D ,∴平面AC 1D ⊥平面BCC 1B 1.练习1:三棱锥S -ABC 中,∠BSC =90°,∠ASB =60°,∠ASC =60°,SA =SB =SC . 求证:平面ABC ⊥平面SBC .答案:解法一:取BC 的中点D ,连接AD 、SD .由题意知△ASB 与△ASC 是等边三角形,则AB =AC . ∴AD ⊥BC ,SD ⊥BC .令SA =a ,在△SBC 中,SD =22a , 又∵AD =AC 2-CD 2=22a ,∴AD 2+SD 2=SA 2. 即AD ⊥SD .又∵AD ⊥BC ,∴AD ⊥平面SBC . ∵AD ⊂平面ABC ,∴平面ABC ⊥平面SBC .解法二:∵SA =SB =SC =a , 又∵∠ASB =∠ASC =60°,∴△ASB 、△ASC 都是等边三角形. ∴AB =AC =a .作AD ⊥平面SBC 于点D ,∵AB =AC =AS ,∴D 为△SBC 的外心. 又∵△BSC 是以BC 为斜边的直角三角形, ∴D 为BC 的中点,故AD ⊂平面ABC . ∴平面ABC ⊥平面SBC .练习2:如右图,在四面体ABCD 中,,BD AB AD CB CD a =====.求证:平面ABD ⊥平面BCD . 答案:取BD 的中点E ,连结,AE EC∵AB AD = ∴AE BD ⊥ 同理CE BD ⊥ 在△ABD中,1,22AB a BE BD a ===∴2AE a ==同理2CE a = 在△AEC中,,2AE CE a AC a === ∴222AC AE CE =+ ∴AE CE ⊥ ∵BDCE E = ∴AE ⊥平面BCD ∵AE ⊂平面ABD ∴平面ABD ⊥平面BCD练习3:空间四边形ABCD 中,若,AD BC BD AD ⊥⊥,那么有( ) A 、平面ABC ⊥平面ADC B 、平面ABC ⊥平面ADBC 、平面ABC ⊥平面DBCD 、平面ADC ⊥平面DBC 答案:D例5:已知P 是△ABC 所在平面外的一点,且P A ⊥平面ABC ,平面P AC ⊥平面PBC ,求证:BC ⊥AC .解析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条放入一平面中,使另一条直线与该平面垂直,即由线面垂直得到线线垂直.在空间图形中,高一级的垂直关系蕴含着低一级的垂直关系,通过本题可以看到:面面垂直⇒线面垂直⇒线线垂直. 答案:如图,在平面P AC 内作AD ⊥PC 于点D ,∵平面P AC ⊥平面PBC ,AD ⊂平面P AC ,且AD ⊥PC , ∴AD ⊥平面PBC ,又BC ⊂平面PBC ,∴AD ⊥BC .∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∵AD ∩P A =A ,∴BC ⊥平面P AC , 又AC ⊂平面P AC ,∴BC ⊥AC .练习1:已知三棱锥P -ABC 中,侧面PAC 与底面ABC 垂直,PA =PB =PC . (1)求证:AB ⊥BC ;(2)若AB =BC ,过点A 作AF ⊥PB 于点F ,连接CF ,求证:平面PBD ⊥平面AFC . 答案:如图所示:(1)取AC 的中点D ,连接PD 、BD , ∵PA =PC ,∴PD ⊥AC ,又平面PAC ⊥平面ABC ,且平面PAC ∩平面ABC =AC , ∴PD ⊥平面ABC ,D 为垂足. ∵PA =PB =PC , ∴DA =DB =DC ,∴AC 为△ABC 的外接圆的直径,故AB ⊥BC . (2)∵PA =PC ,AB =BC ,PB =PB , ∴△ABP ≌△CBP .ABCDE∵AF⊥PB,∴CF⊥PB,又AF∩CF=F,∴PB⊥平面AFC,又PB⊂平面PBD,∴平面PBD⊥平面AFC.练习2:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,如图所示.求证:P A⊥平面ABC.答案:如图所示,在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G,∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,∴DF⊥平面PAC,又∵PA⊂平面PAC,∴PA⊥DF,同理可证:DG⊥PA,∵DF∩DG=D,且DF⊂平面ABC,DG⊂平面ABC,∴PA⊥平面ABC.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A.平行B.垂直C.相交不垂直D.不确定答案:B2.若一条直线l上有两个点到平面α的距离相等,则l与α的关系是( )A.平行B.相交C.垂直D.不确定答案:D3.已知直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①α∥β,l⊄β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β其中正确的两个命题是( )A.①②B.③④C.②④D.①③答案:D4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D5.若有直线m、n和平面α、β,下列四个命题中,正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α答案:D6. Rt △ABC 所在平面α外一点P 到直角顶点的距离为24,到两直角边的距离都是610,那么点P 到平面α的距离等于__________.答案: 12_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A .平行B .垂直C .斜交D .不能确定 答案:B2.直线a ⊥直线b ,a ⊥平面β,则b 与β的位置关系是( )A .b ⊥βB .b ∥βC .b ⊂βD .b ⊂β或b ∥β 答案:D 3.下列命题①⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ; ②⎭⎪⎬⎪⎫a ⊥αa ∥b ⇒b ⊥α; ③⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b; ④⎭⎪⎬⎪⎫a ⊥ba ⊥b b ⊂αc ⊂α⇒a ⊥α; ⑤⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α; ⑥⎭⎪⎬⎪⎫a ⊥αb ⊥a ⇒b ∥α. 其中正确命题的个数是( )A .3B .4C .5D .6 答案:A4..若平面α∥平面β,直线a ⊂α,直线b ⊂β,那么a 、b 的位置关系是( )A .无公共点B .平行C .既不平行也不相交D .相交答案:A5.直线a 与平面α内的两条直线都垂直,则a 与α的位置关系是( )A .垂直B .平行C .a 在平面α内D .不确定 答案:D6.若平面α⊥平面β,且平面α内的一条直线a 垂直于平面β内的一条直线b ,则( )A .直线a 必垂直于平面βB .直线b 必垂直于平面αC .直线a 不一定垂直于平面βD.过a的平面与过b的平面垂直答案:C7.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与AB的位置关系为____________________.答案:MN⊥AB8.如图所示,已知正三棱柱ABC-A1B1C1的面对角线A1B⊥B1C,求证B1C⊥C1A.答案:如图所示,连接A1C,交AC1于点D,则点D是A1C的中点.取BC的中点N,连接AN、DN,则DN∥A1B.又A1B⊥B1C,∴B1C⊥DN.又△ABC是正三角形,∴AN⊥BC.又平面ABC⊥平面BB1C1C,平面ABCD∩平面BB1C1C=BC,AN⊂平面ABC,∴AN⊥平面BB1C1C.又B1C⊂平面BB1C1C,∴B1C⊥AN.又AN⊂平面AND,DN⊂平面AND,AN∩DN=N,∴B1C⊥平面AND.又C1A⊂平面AND,∴B1C⊥AC1.能力提升9.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有一个B.至多有一个C.有无数多个D.一定不存在答案:B10.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,则球的体积与三棱锥体积之比是()A.πB.2πC.3πD.4π答案:D11. (2014·浙江文,6)设m,n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C12.已知平面ABC外一点P,且PH⊥平面ABC于H.给出下列4个命题:①若P A⊥BC,PB⊥AC,则H是△ABC的垂心;②若P A、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则P A=PB=PC;④若P A=PB=PC,则H是△ABC的外心.其中正确命题的个数为()A.1B.2C.3D.4答案:D13. 平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹为________.(填直线、圆、其它曲线)答案:直线14. 如图所示,已知矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ ⊥QD ,则a 的值等于________.答案:215. 如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD .底面各边都相等,M 是PC 上的一动点,当点M 满足________________时,平面MBD ⊥平面PCD .(注:只要填写一个你认为正确的即可)答案:BM ⊥PC (其它合理答案亦可)16. 如图所示,△ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.(1)求证:DE =DA ;(2)求证:平面BDM ⊥平面ECA ;(3)求证:平面DEA ⊥平面ECA .答案:(1)取EC 的中点F ,连接DF .∵CE ⊥平面ABC ,∴CE ⊥BC .易知DF ∥BC ,∴CE ⊥DF .∵BD ∥CE ,∴BD ⊥平面ABC .在Rt △EFD 和Rt △DBA 中,EF =12CE =DB ,DF =BC =AB , ∴Rt △EFD ≌Rt △DBA .故DE =DA .(2)取AC 的中点N ,连接MN 、BN ,则MN CF .∵BD CF ,∴MN BD ,∴N ∈平面BDM .∵EC ⊥平面ABC ,∴EC ⊥BN .又∵AC ⊥BN ,EC ∩AC =C ,∴BN ⊥平面ECA .又∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .(3)∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA .又∵DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .。
人教版高二数学必修第四册《空间中的垂直关系》说课稿一、引言《空间中的垂直关系》是人教版高二数学必修第四册的一章内容,本章主要介绍了三维空间中的垂直关系的概念、性质以及应用,并通过丰富的例题让学生深入理解垂直关系的几何特征和运用方法。
本说课稿将重点介绍该章节的教学目标、教学重点和难点、教学方法和教学过程的设计。
二、教学目标1.理解垂直关系的概念,掌握判断两条直线或两个平面是否垂直的方法;2.掌握垂直关系的性质和判定定理,并能运用定理解决问题;3.在三维空间中,能够熟练应用垂直关系的概念和性质,分析解决相关几何问题。
三、教学重点和难点3.1 教学重点1.垂直关系的定义和性质;2.垂直关系的判定定理。
3.2 教学难点1.理解垂直关系的几何特征,能准确判断两直线或两平面是否垂直;2.运用垂直关系的判定定理解决实际问题。
四、教学内容和安排4.1 教学内容1.垂直关系的概念和性质;2.垂直关系的判定定理;3.垂直关系在三维空间中的应用。
4.2 教学安排1.师生互动,通过引导问题引发学生对垂直关系的思考;2.展示垂直关系的定义和性质,以图例和实例帮助学生理解;3.通过演示和讨论,引入垂直关系的判定定理;4.练习和实践,通过例题和习题的讲解,巩固学生对垂直关系的理解和应用;5.总结与反思,让学生回顾本节课的重要内容和自己的学习体会。
五、教学方法本节课将采用多种教学方法来促进学生的主动参与和深入理解垂直关系的概念和运用方法。
具体教学方法包括:1.启发式教学法:通过提出问题、让学生自主发现、分析和总结,引导学生理解垂直关系的几何特征和性质;2.归纳法:通过示例与练习,让学生掌握垂直关系的判定定理,培养学生逻辑思维和推理能力;3.演示法:用图表和实例展示垂直关系的概念和运用方法,加深学生对知识点的理解;4.口头解答和板书:通过口头解答来激发学生思考和讨论,同时将关键内容通过板书方式呈现,方便学生复习和记忆。
六、教学过程设计6.1 Step 1 引入通过举例引发学生对垂直关系的思考,比如问“墙面上两个相交的直线之间是否存在垂直关系?”等问题。
高二数学两个平面垂直的判定和性质知识精讲人教版【基础知识精讲】1.二面角半平面:一个平面内的一条直线,把这个平面分为两部分,其中的每一部分都叫做半平面.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱为AB,面为α,β的二面角,记作二面角α—AB—β,如果棱用a表示,则记作二面角α—a—β,有时也可以全用大写拉丁字母表示,例平面PAB与平面QAB形成的二面角记作P—AB—Q.注意:平面几何中可以把角理解为一个旋转量,同样一个二面角也可以看作以一个半平面以其棱为轴旋转而成的.2.二面角的平面角平面与平面的位置关系,总的来说只有相交或平行两种.为了对相交平面的相互位置作进一步的对探讨,有必要研究二面角的大小问题.如图,在二面角α—a—β的棱a上任取一点O,在半平面α和β内,从点O分别作垂直于棱a的射线OA,OB,射线OA和OB组成∠AOB,在棱a上另取一点O′,按同样方法作∠A′O′B′.因为OA和O′A′,OB和O′B′都垂直于棱a,所以∠AOB和∠A′O′B′的两边分别平行且方向相同,因此∠AOB=∠A′O′B′,可见∠AOB的大小与点O在棱上的位置无关.二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.注意:①它是一个“平面角”,因此两边必须在同一平面内.②二面角的平面角的两边都必须与棱垂直.画二面角和它的平面角,最常见的两种形式:(1)直立式(2)平卧式二面角的大小,可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度.特别地:平面角是直角的二面角叫做直二面角. 二面角Q 的X 围是[0,π]3.两个平面垂直的判定(i)定义:两个平面所成二面角为直二面角;如果α与β垂直,记作α⊥β,画两个互相垂直的平面,把直立平面的竖边画成和水平平面的横边垂直,如图:(ii)两个平面垂直的判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.AB ⊥β,AB ⊂α⇒α⊥β.建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直,就是依据这个定理.(iii)垂直于平行平面中的一个平面必垂直于另一个平面. α∥β,r ⊥α⇒r ⊥β说明 平面与平面的垂直问题可以转化为直线与平面的垂直问题,即线面垂直可以导致面面垂直.4.两个平面垂直的性质(i)两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个平面.α⊥β,α∩β=a,b ⊂α,b ⊥a ⇒b ⊥β(ii)过一平面内一点而垂直于另一平面的直线必在这平面内. (iii)相交平面同时垂直于第三个平面,则交线垂直于第三平面. (iv)过不垂直于平面的一直线有且只有一个平面与已知平面垂直. 从两个平面垂直的性质可以看出面面垂直可以得出线面垂直.5.两条异面直线上两点的距离公式设a 、b 是异面直线,AA ′是a 、b 的公垂线,A ′∈b,A ∈b ,AA ′=d.E ∈a,F ∈b ,A E '=m,FA =n.且a 、b 成θ角,则EF =θcos 2222mn n m d ±++.说明 (i)两条异面直线公垂线的存在性.(ii)可证明两条异面直线的距离是异面直线上两点的距离.(iii)可以解决分别在二面角的面内两点的距离问题.【重点难点解析】二面角及其平面角是本节重点概念,应熟练掌握找平面角的各种基本办法,两个平面垂直的判定定理及性质定理,是本节的两个重要定理,应弄清定理内容,灵活使用定理处理综合问题.如何选取恰当位置作出二面角的平面角是本节的难点,应在掌握找平面角的各种方法之后,通过加强练习达到灵活熟练的程度.同时,异面直线上两点间距离的计算也是本节的一个难点.例1 直线a 、b 是异面直线,a ⊥平面α,b ⊥平面β,a ⊥b ,求证:α⊥β.证明 过b 上任意一点作直线a ′,使a ∥a ′.∵a ⊥b,∴a ′⊥b.设相交直线a ′、b 确定一个平面γ,γ∩β=c.∵b ⊥β,c ⊂β,∴b ⊥c.在平面γ内,b ⊥c,b ⊥a ′,∴a ′∥c.∴a ∥a ′∥c.又∵a ⊥α,∴c ⊥α,c ⊂β,∴β⊥α例2 在三棱锥S —ABC 中,∠ASB =∠BSC =60°,∠ASC =90°,且SA =SB =SC ,求证:平面ASC ⊥平面ABC.证明 取AC 的中点O ,连SO 、BO ,由已知,得ΔSAB 、ΔSBC 都是正三角形.∴BC =AB =a,SA =SC =a,又SO ⊥AC ,BO ⊥AC ,∴∠SOB 就是二面角S —AC —B 的平面角.又∵SA =AB =a,SC =BC =a,AC =AC,∴ΔACS ≌ΔACB.∴SO =BO =22a.在ΔSOB 中,∵SB =a,∴∠SOB =90°. 即平面SAC ⊥平面ABC.另证:过S 作SO ⊥平面ABC ,垂足是O.∵SA =SB =SC ,∴S 在平面内的射影是ΔABC 的外心,同前面的证明,可知ΔABC 是直角三角形,∴O 在斜边AC 上.又∵平面SAC 经过SO ,∴平面SAC ⊥平面ABC说明 证明“面面垂直”的常用方法是根据定义证明平面角是90°,或利用判定定理证明一个平面经过另一个平面的垂线.例3 如图,四面体ABCD 的棱BD 长为2,其余各棱的长均是2,求:二面角A —BD—C 、A —BC —D 、B —AC —D 的大小.解 (1)取BD 的中点O ,连AO 、OC. 在ΔABD 中,∵AB =AD =2,BD =2,∴ΔABD 是等腰直角三角形,AO ⊥BD ,同理OC ⊥BD. ∴∠AOC 是二面角A —BD —C 的平面角 又AO =OC =1,AC =2,∴∠AOC =90°.即二面角A —BD —C 为直二面角.(2)∵二面角A —BD —C 是直二面角,AO ⊥BD ,∴AO ⊥平面BCD. ∴ΔABC 在平面BCD 内的射影是ΔBOC. ∵S ΔOCB =21,S ΔABC =23,∴cos θ=33.即二面角A —BC —D 的大小是arccos33. (3)取AC 的中点E ,连BE 、DE. ∵AB =BC ,AD =DC ,∴BD ⊥AC ,DE ⊥AC ,∴∠BED 就是二面角的平面角. 在ΔBDE 中,BE =DE =26,由余弦定理,得cos α=-31 ∴二面角B —AC —D 的大小是π—arccos31. 评析 本例提供了求二面角大小的方法:先作出二面角的平面角,再利用其所在的三角形算出角的三角函数值,或利用面积的射影公式S ′=S ·cos θ求得.例4 如图所示,在三棱锥S —ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交AC 、SC 于D 、E.又SA =AB ,SB =SC.求以BD 为棱,以BDE 与BDC 为面的二面角的度数.解法一:由于SB =BC ,且E 是SC 中点,因此BE 是等腰三角形SBC 的底边SC 的中线,所以SC ⊥BE.又已知SC ⊥DE ,BE ∩DE =E ,∴SC ⊥平面BDE , ∴SC ⊥BD ,又∵SA ⊥底面ABC ,BD 在底面ABC 上, ∴SA ⊥BD.而SA ∩SC =S , 所以BD ⊥平面SAC.∵DE =平面SAC ∩平面BDE ,DC =平面SAC ∩平面BDC , ∴BD ⊥DE ,BD ⊥DC.∴∠EDC 是所求二面角的平面角. ∵SA ⊥底面ABC , ∴SA ⊥AB ,SA ⊥AC.设SA =a,则AB =a,BC =SB =2a. 又AB ⊥BC ,所以AC =3a.在Rt ΔSAC 中 tg ∠ACS =AC SA =31,所以∠ACS =30°. 又已知DE ⊥SC ,所以∠EDC =60°,即所求的二面角等于60°.解法二:由于SB =BC ,且E 是SC 的中点,因此BE 是等腰ΔSBC 的底边SC 的中线,所以SC ⊥BE.又已知SC ⊥DE ,BE ∩DE =E.∴SC ⊥平面BDE ,SC ⊥BD.由于SA ⊥底面ABC ,且A 是垂足,所以,AC 是SC 在平面ABC 上的射影,由三垂线定理的逆定理得BD ⊥AC ;又E ∈SC ,AC 是SC 在平面内的射影,所以E 在平面ABC 内的射影在AC 上,由于D ∈AC ,所以DE 在平面ABC 内的射影在AC 上,根据三垂线定理得BD ⊥DE.∵DE ⊂平面BDE ,DC ⊂平面BDC. ∴∠EDC 是所求二面角的平面角. 以下解法同解法一.例5 在直三棱柱ABC —A ′B ′C ′中,∠BAC =90°,AB =BB ′=1,直线B ′C 与平面ABC 成30°的角.(如图所示)(1)求点C ′到平面AB ′C 的距离; (2)求二面角B —B ′C —A 的余弦值.解 (1)∵ABC —A ′B ′C ′是直三棱柱,∴A ′C ′∥AC ,AC ⊂平面AB ′C ,∴A ′C ′∥平面AB ′C ,于是C ′到平面AB ′C 的距离等于点A ′到平面AB ′C 的距离,作A ′M ⊥AB ′于M.由AC ⊥平面AB ′A ′A 得平面AB ′C ⊥平面AB ′A ′A ,∴A ′M ⊥平面AB ′C ,A ′M 的长是A ′到平面AB ′C 的距离.∵AB =BB ′=1,∠B ′CB =30°,∴B ′C =2,BC =3,AB ′=2,A ′M =AA AA B A ''⨯''=22. 即C ′到平面AB ′C 的距离为22; (2)作AN ⊥BC 于N ,则AN ⊥平面B ′BCC ′,作NQ ⊥B ′C 于Q ,则CQ ⊥B ′C ,∴∠AQN 是所求二面角的平面角,AN =BCAC AB ⨯=36,AQ =C B B A AC ''⨯=1.∴sin ∠AQN =AQ AN =36,cos ∠AQN =33.说明 利用异面直线上两点间的距离公式,也可以求二面角的大小,如图,AB =BB ′=1,∴AB ′=2,又∠B ′CB =30°,∴BC =3,B ′C =2,AC =2.作AM ⊥B ′C 于M ,BN ⊥B ′C 于N ,则AM =1,BN =23,=23,CM =1,∴MN =21.∵BN ⊥B ′C,AM ⊥B ′C ,∴BN 与AM 所成的角等于二面角B —B ′C —A 的平面角.设为θ.由AB 2=AM 2+BN 2+MN 2-2AM ×BN ×cos θ得cos θ=31=33.例6 如图所示,四棱锥P —ABCD 的底面是边长为a 的菱形,∠A =60°,PC ⊥平面ABCD ,PC =a,E 是PA 的中点.(1)求证平面BDE ⊥平面ABCD. (2)求点E 到平面PBC 的距离.(3)求二面角A —EB —D 的平面角大小.解 (1)设O 是AC ,BD 的交点,连结EO. ∵ABCD 是菱形,∴O 是AC 、BD 的中点,∵E 是PA 的中点,∴EO ∥PC ,又PC ⊥平面ABCD ,∴EO ⊥平面ABCD ,EO ⊂平面BDE ,∴平面BDE ⊥平面ABCD. (2)EO ∥PC ,PC ⊂平面PBC , ∴EO ∥平面PBC ,于是点O 到平面PBC 的距离等于E 到平面PBC 的距离.作OF ⊥BC 于F , ∵EO ∥平面ABCD ,PC ⊂平面PBC ,∴平面PBC ⊥平面ABCD ,于是OF ⊥平面PBC ,OF 的长等于O 到平面PBC 的距离.由条件可知,OB =2a ,OF =2a×23=43a ,则点E 到平面PBC 的距离为43a.(3)过O 作OG ⊥EB 于G ,连接AG∵OE ⊥AC ,BD ⊥AC ∴AC ⊥平面BDE∴AG ⊥EB(三垂线定理)∴∠AGO 是二面角A —EB —D 的平面角 ∵OE =21PC =21a,OB =23a∴EB =a.∴OG =EB OB OE ⋅=43a 又AO =21a.∴tan ∠AGO =OG AO =332∴∠AGO =arctan332. 评析 本题考查了面面垂直判定与性质,以及利用其性质求点到面距离,及二面角的求法,三垂线定理及某逆定理的应用.例7 如图,矩形ABCD 中,AB =2,BC =23,以AC 为轴翻折半平面,使二平面角B —AC —D 为120°,求:(1)翻折后,D 到平面ABC 的距离;(2)BD 和AC 所成的角.分析 研究翻折问题,通常要画出翻折前的平面图形和翻折后的空间图形,对应点的字母要相同.解 分别过B 、D 作AC 的垂线,垂足是E 、F ,过F 作FB ′∥BE ,过B 作BB ′∥AC ,交点B ′,则四边形EFB ′B 是矩形.∵AC ⊥DF ,AC ⊥B ′F ,∴AC ⊥平面B ′FD ,即∠DF ′B 就是二面角B —AC —D 的平面角,亦即∠DFB ′=120°.过D 作DO ⊥′BF ,垂足为O.∵DO ⊂平面DFB ′,AC ⊥平面DFB ′.∴DO ⊥AF ,DO ⊥平面ABC.在Rt ΔADC 中,CD =2,AD =23,∴DF =3,OD =OF ·sin60°=23. (2)在ΔDFB ′中,DB ′=︒⋅'⋅⋅-'+120cos 22F B DF F B DF =3.又由(1)可知,AC ∥BB ′,AC ⊥平面DFB ′.∴BB ′⊥平面DFB ′,∴ΔDBB ′是直角三角形,又BB ′=EF =2.∴tan ∠DBB ′=23. ∵AC ∥BB ′,∴AC 与BD 所成的角就是∠DBB ′,即为arctan23. 说明 处理翻折问题,只要过不在棱上的点作棱的垂直相交的线段,就可以化成基本题型处理,本题也可以这样考虑,即利用异面直线DF 、BE 上两点B 、D 间的距离,先求出BD 2=EF 2+DF 2+BE 2-2DF ·BE ·cos120°=13,从而得出∠DBB ′=arccos132.【难题巧解点拨】例1 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m (2)α⊥β⇒l ∥m (3)l ∥m ⇒α⊥β (4)l ⊥m ⇒α∥β 其中正确的两个命题是( )A.(1)与(2)B.(3)与(4)C.(2)与(4)D.(1)与(3)分析:本题主要考查直线与平面、平面和平面的位置关系,以及空间想象能力和逻辑推理能力.解法一:在l ⊥α,m ⊂β的前提下,当α∥β时,有l ⊥β,从而l ⊥β,从而l ⊥m ,得(1)正确;当α⊥β时,l 垂直于α、β的交线,而m 不一定与该交线垂直,因此,l 与m 不一定平行,故(2)不正确.故应排除A 、C.依题意,有两个命题正确,不可能(3),(4)都正确,否则连同(1)共有3个命题正确.故排除B ,得D.解法二:当断定(1)正确之后,根据4个选择项的安排,可转而检查(3),由l ∥m,l ∥α知m ⊥α,从而由m ⊂α得α⊥β.即(3)正确.故选D.解法三:不从(1)检查起,而从(2)、(3)、(4)中任一命题检查起,如首先检查(4);由l ⊥α,m ⊥β不能否定m 是α、β的交线,因此α∥β不一定成立,故(4)是不正确的,因此可排除B 、C.依据A 和D 的内容可知(1)必定是正确的,否则A 和D 也都排除,以下只要对(2)或(3)检查,只须检查一个便可以做出判断.例2 一X 正方形的纸ABCD ,BD 是对角线,过AB 、CD 的中点E 、F 的线段交BD 于O ,以EF 为棱,将正方形的纸折成直二面角,则∠BOD 等于( )A.120°B.150°C.135°D.90°分析:本题考查线面垂直,面面垂直,余弦定理,以及空间与平面问题的转化能力。
课 题:6.2.3 直线与平面垂直的性质 平面与平面垂直的性质 教 材:湘教版高中数学·必修3【教学内容解析】本节课是湘教版教材必修3中第六章第二节的内容,属于新授性质原理课.其中直线与平面垂直的性质、平面与平面垂直的性质的形成是教学重点.以上结构图反应出了直线与平面垂直的性质、平面与平面垂直的性质在本节中的位置.是在学生掌握了线面垂直、面面垂直的判定之后紧接着研究的其性质.线面平行、面面平行研究了性质定理,为本节课提供了研究方法上的范式.线面、面面垂直是线线垂直的拓展,又是空间垂直的基础,且后续内容如:空间的角和距离等又都借助垂直来构建,在空间几何中起着承上启下的作用.通过本节课的学习研究,可进一步完善空间垂直与平行的知识结构,更好地培养学生观察发现、空间想象、推理能力,体会由特殊到一般、正难则反、类比、归纳、转化等数学思想方法.因此,学习这部分知识有着非常重要的意义.【教学目标设置】1.学生通过对生活视频、实验操作的观察、直观感知、发现、猜想、归纳直线与平面垂直的性质、平面与平面垂直的性质定理.2.在性质的探究活动中,学生通过独立思考与合作交流,直观感知、发展类比、归纳等培养学生合情推理能力、逻辑思维能力和空间想象能力.3.学生运用特殊化、类比、正难则反、转化等数学思想,体验了研究空间位置关系的一般方法.4.在探究线面垂直的性质、面面垂直的性质的过程中,体会数学的严谨、简洁之美,体验探究发现的乐趣,培养善于实验观察、勇于探索的良好习惯.【学生学情分析】1.学生已有的认知基础学生能够感知生活中有大量的线面、面面垂直关系,已经掌握了线线、线面、面面平行的判定和性质以及线面、面面垂直的判定的相关知识,从而具备了研究空间位置关系的经验,也体会了立体几何中转化、类比的数学思想方法.2.达成目标所需要的认知基础要达成本节课的目标,这些已有的知识和经验基础不可或缺,还需要整体上把握本节课的研究内容、方法和途径,能运用转化、类比等数学思想,同时具备较好地观察发现、直观感知、空间想象、合情推理、抽象概括等能力,以及独立思考、合作交流、反思质疑等良好的数学学习习惯.我校为全市二类重点高中,招收的学生相当部分基础薄弱,自主学习能力差.进入高二,虽然能领悟一些基本的数学思想与方法,但还没有形成完整、严谨的数学思维习惯,对问题的探究能力也有待培养.3.重难点及突破策略重难点:1.运用转化、正难则反、特殊到一般、类比等数学思想方法来研究直线与平面、平面与平面垂直的性质,提高学生从数学的角度发现和提出问题、分析和解决问题的能力.2.探究实验、归纳猜想、推理论证直线与平面、平面与平面垂直的性质定理,突破“空间向平面”、“平行与垂直”、“线面与面面”的转化.突破策略:1.启发学生明确研究的内容与方法,从总体上认识研究的目标与手段.2.引导学生经过“直观感知⇒操作确认⇒推理论证”的学习过程形成线面垂直、面面垂直的性质定理.3.发动学生通过问题串交流、汇报、展示思维过程,相互启发.【教学策略分析】根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用教法和学法如下:怎样快速判断旗杆与地面的垂直关系?旨在让学生直观感知,借助生活现象形成关于同垂直一个平面的多条直线平行的直观感,可以帮助学既真实又有效. 并引导学生进一步概括直线与平面垂直的性质定理本质.。
第4讲空间中的垂直关系(教师版)一.学习目标:1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.二.重点难点:重点:线面与面面垂直的判定.难点:线面与面面垂直的证明,特别是通过计算证明垂直关系.三.知识梳理:1.直线与平面垂直(1)直线和平面垂直的定义直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理一条直线与平面内的两条相交直线都垂直,则该直垂直于同一个平面的两条[探究] 1.若两条平行线中的一条垂直于一个平面,那另一条与此平面是否垂直?提示:垂直2.平面与平面垂直的判定定理一个平面过另一个平面的一条垂线,则这两个两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平[探究] 2..垂直于同一平面的两平面是否平行?提示:不一定.可能平行,也可能相交.3.垂直于同一条直线的两个平面一定平行吗?提示:平行.可由线面垂直的性质及面面平行的判定定理推导出.四.典例剖析:题型一线面、面面垂直判断题例1(1)下列命题中,正确的序号是________.①若直线l与平面α内的一条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④若平面α内有一条直线与直线l不垂直则直线l与平面α不垂直.[思路探索] 利用线面垂直的定义并结合反例法,反证法判断.解析当l与α内的一条直线垂直时,不能保证l与平面α垂直,所以①不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确.根据线面垂直的定义,若l⊥α则l与α的所有直线都垂直,所以④正确.答案③④(2)(2012·浙江省名校新高考研究联盟第二次联考)下列错误的是( )A.如果平面α⊥平面γ,如果平面β⊥平面γ,α∩β=l,那么l⊥γB.如果平面α⊥平面β,那么平面α内一定存在直线垂直于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面β,过α内任意一点作交线的垂线,那么此垂线必垂直β解析:D中当过交线上任意一点作交线的垂线不在平面α内时,此垂线不垂直β,故选D.(3)(教材习题改编)PD垂直于正方形ABCD所在的平面,连接PB、PC,PA、AC、BD,则一定互相垂直的平面有( )A.8对B.7对C.6对D.5对解析:选B 由于PD⊥平面ABCD.故平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.课堂小结:(1)线面垂直的定义不易用来判定线面垂直,但能利用它判定线面不垂直.(2)要注意定义的等价性.课堂练习1:(1)下列命题中正确的个数是( )①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l与平面α内的一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.A.0 B.1 C.2 D.3答:B(2)下列命题错误的是________(填序号).①若直线l与平面α内的两条直线垂直,则l⊥α;②若直线l与平面α内的两条相交直线垂直,则l与α的所有直线垂直;③过一点和已知直线垂直的平面有且只有一个;④a、b为异面直线,a∥α,b∥α,若l⊥a,l⊥b,则l⊥α.解析②③④正确,①不正确.答案①(3)(2012·金丽衢十二校第二次联考)已知平面α,β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.当满足条件时,m⊥β.(填符合条件的序号)解析:当m⊥α且α∥β时,m⊥β,即应当填②⑤.题型二线面垂直的证明——————常运用线面垂直的判定定理证例2(等腰三角形中线即高证垂直)(2013年高考浙江卷(文))如图,在在四棱锥P-ABCD中,PA ⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点.(Ⅰ)证明:BD ⊥面PAC ; (2)(3)(略)证明:(Ⅰ)由已知得三角形ABC 是等腰三角形,且底角等于30°,且6030AB CB AD CD ABD CBD ABD CBD BAC BD DB =⎫⎪=⇒∆≅∆⇒∠=∠=∠=⎬⎪=⎭且,所以;、BD AC ⊥,又因为PA ABCD BD PA BD PAC BD AC ⊥⇒⊥⎫⇒⊥⎬⊥⎭; 课堂练习2:(勾股定理证垂直)(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中BC =. (1) 证明:DE //平面BCF ;(2) 证明:CF ⊥平面ABF ;(3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.图 4【答案】(1)在等边三角形ABC中,AD AE=AD AEDB EC∴=,在折叠后的三棱锥A BCF-中也成立,//DE BC∴,DE⊄平面BCF,BC⊂平面BCF,//DE∴平面BCF;(2)在等边三角形ABC中,F是BC的中点,所以AF BC⊥①,12BF CF==.在三棱锥A BCF-中,2BC=,222BC BF CF CF BF∴=+∴⊥②BF CF F CF ABF⋂=∴⊥平面;(3)由(1)可知//GE CF,结合(2)可得GE DFG⊥平面.11111113232333F DEG E DFGV V DG FG GF--⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅=⎝⎭题型三线线垂直的证明——————常转化为证线面垂直例3:(2013年高考课标Ⅰ卷(文))如图,三棱柱111ABC A B C-中,CA CB=,1AB AA=, 160BAA∠= .(Ⅰ)证明:1AB AC⊥;(Ⅱ)若2AB CB==,16AC=,求三棱柱111ABC A B C-的体积.【答案】(I)取AB的中点O,连接OC O、1OA O、1A B,因为CA=CB,所以OC AB⊥,由于AB=A A1,∠BA A1=600,故,AA B∆为等边三角形,所以OA1⊥AB.因为OC⨅OA1=O,所以AB⊥平面OA1C.又A1CC平面OA1C,故AB⊥AC. (II)由题设知12ABC AA B∆∆与都是边长为的等边三角形,12AA B都是边长为的等边三角形,所以2211111.OC OA AC AC OA OA OC ==+⊥又,故111111111,--= 3.ABC ABCOC AB O OA ABC OA ABC A B CABC S A B C V S OA=⊥∆⨯=因为所以平面,为棱柱的高,又的面积ABC的体积课堂练习3:(2013年高考大纲卷(文))如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD-∠=∠==∆∆中,,与都是边长为2的等边三角形.(I)证明:;PB CD⊥(II)(略)【答案】(Ⅰ)证明:取BC的中点E,连结DE,则ABED为正方形.过P作PO⊥平面ABCD,垂足为O. 连结OA,OB,OD,OE.由PAB∆和PAD∆都是等边三角形知PA=PB=PD, [来源:学科网]所以OA=OB=OD,即点O为正方形ABED对角线的交点, OE BD⊥,从而PB OE⊥.因为O是BD的中点,E是BC的中点, 所以OE//CD.因此,PB CD⊥.题型四面面垂直的证明——————常转化为证线面垂直例4(2013年高考山东卷(文))如图,四棱锥中,,,分别为的中点(Ⅰ)求证:;(Ⅱ)求证:课堂练习4:(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD【答案】(I)因为平面PAD⊥平面ABCD,且PA垂直于这个平面的交线AD所以PA垂直底面ABCD.(II)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE所以ABED为平行四边形,所以BE∥AD,又因为BE⊄平面PAD,AD⊂平面PAD ,所以BE∥平面PAD.(III)因为AB⊥AD,而且ABED为平行四边形所以BE⊥CD,AD⊥CD,由(I)知PA⊥底面ABCD,所以PA⊥CD,所以CD⊥平面PAD[来源:学§科§网]所以CD⊥PD,因为E和F分别是CD和PC的中点所以PD∥EF,所以CD⊥EF,所以CD⊥平面BEF,所以平面BEF⊥平面PCD.题型五线面、面面垂直探究问题例5(2012北京文)如图1,在Rt△ABC中,∠C=90°,D,E分别是AC,AB上的中点, 点F为线段CD上的一点.将△ADE沿DE折起到△A 1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【考点定位】本题第二问是对基本功的考查,对于知识掌握不牢靠的学生可能不能顺利解决.第三问的创新式问法,难度比较大.解:(1)因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE.所以A1F⊥BE(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C 的中点,所以A1C⊥DP,所以A1C⊥平面DEP,从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.课堂练习5:(2012北京理)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB 上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)(略)(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.、、【考点定位】此题第二问是对基本功的考查,对于知识掌握不牢靠的学生可能不能顺利解答.第三问的创新式问法,难度非常大.解:(1) CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD , 又 1AC ⊂平面1A CD , ∴1AC ⊥DE 又1AC CD ⊥, ∴1AC ⊥平面BCDE (3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈,则(10A P a =- ,,,()20DP a = ,,设平面1A DP 法向量为()1111n x y z = ,,,则1111020ay x ay ⎧-=⎪⎨+=⎪⎩∴111112z x ay ⎧=⎪⎪⎨⎪=-⎪⎩∴()136n a =- , 假设平面1A DP 与平面1A BE 垂直,则10n n ⋅=,∴31230a a ++=,612a =-,2a =-∵03a << ∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直五.品味高考(家庭作业):1.(2013年普通高等学校招生统一考试广东省数学(理)卷)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )yCA .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D2.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))已知为异面直线,平面,平面.直线满足,,,l m l n l l αβ⊥⊥⊄⊄,则 ( )A .,且B .,且C .与相交,且交线垂直于 D .与相交,且交线平行于【答案】D3.(2013年普通高等学校招生统一考试浙江数学(理)试题)在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为045C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为060【答案】A4.(2013年普通高等学校招生统一考试辽宁数学(理)试题)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II) (略)【答案】(略)5.(2013年普通高等学校招生全国统一招生考试江苏卷)本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点 ∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC ,同理:FG∥平面ABC 又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC(2)∵平面⊥SAB 平面SBC ,平面SAB 平面SBC =BCAF ⊆平面SABAF⊥SB ,∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC 又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA6.(2013年普通高等学校招生统一考试广东省数学(理)卷)如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=. (Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ)(略)【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===.COBDEC DO BE'A 图1 图2ABCSGFE连结,OD OE ,在OCD ∆中,由余弦定理可得OD ==,由翻折不变性可知A D '=所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE .7.(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O为底面中心, A 1O ⊥平面ABCD, 1AB AA ==证明: A 1C ⊥平面BB 1D 1D ; (Ⅱ) (略)解:(Ⅰ) BD O A ABCD BD ABCD O A ⊥∴⊂⊥11,,面且面 ;又因为, 在正方形ABCD中,BD C A AC A C A AC A BD A AC O A BD AC ⊥⊂⊥=⋂⊥11111,,故面且面所以;且在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在O E C A OCE A E D B 1111111⊥为正方形,所以,则四边形的中点为设.,所以由以上三点得且,面面又O O BD D D BB O D D BB BD =⋂⊂⊂111111E .E ,D D BB C A 111面⊥.(证毕)8.(2013年高考江西卷(理))如图,四棱锥P ABCD -中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,1AC D OB E'A H,连接CE 并延长交AD 于F .(1) 求证:AD CFG ⊥平面;解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====, 故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG .。