(2)若 AB =B C ,则 B D ⊥AC ,
由(1)可知,SD ⊥平面 AB C ,而 B D ⊂ 平面 AB C ,
因此 SD ⊥B D .
∵SD ⊥B D ,B D ⊥AC ,SD ∩AC =D ,∴B D ⊥平面 SAC .
T 题型二面
面垂直问题
例 2如图所示,已知△AB C 是等边三角形,E C ⊥平面 AB C ,B D ⊥
(1)求证:SD ⊥平面 AB C ;
(2)若 AB =B C ,求证:B D ⊥平面 SAC .
【证明】(1)如图所示,取 AB 中点 E ,连接 SE ,D E ,在 R t△AB C 中,D ,E 分别
为 AC ,AB 的中点,故 D E∥B C ,且 D E ⊥AB ,
∵SA=SB ,
∴△SAB 为等腰三角形.
从斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫斜线
在平面内的射影.
(2)斜线和平面所成的角的定义
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这
个平面所成的角.
若直线在平面内或直线和平面平行,则说直线和平面成 0°
角;若直线和
平面垂直,则说直线和平面成 90°
角.
任一直线和平面所成角 θ
由于平面 P D C⊥平面 AB CD ,而直线 CD 是平面 P D C 与平面 AB CD 的交
线,
故 P E ⊥平面 AB CD ,由此得∠P B E 为直线 P B 与平面 AB CD 所成的角.
在△P D C 中,由于 P D =C D =2,P C =2 3,
可得∠P CD =30°
.
在 R t△P EC 中,P E =P C sin30°